001     54914
005     20200402210254.0
024 7 _ |2 pmid
|a pmid:17009319
024 7 _ |2 DOI
|a 10.1002/prot.21158
024 7 _ |2 WOS
|a WOS:000242056500018
037 _ _ |a PreJuSER-54914
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
084 _ _ |2 WoS
|a Biophysics
100 1 _ |a Isin, B.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Predisposition of the Three-Dimensional Dark State Structure of Rhodopsin for Functional Conformational Changes
260 _ _ |a New York, NY
|b Wiley-Liss
|c 2006
300 _ _ |a 970 - 983
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Proteins - Structure Function and Bioinformatics
|x 0887-3585
|0 16361
|y 4
|v 65
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a As the only member of the family of G-protein-coupled receptors for which atomic coordinates are available, rhodopsin is widely studied for insight into the molecular mechanism of G-protein-coupled receptor activation. The currently available structures refer to the inactive, dark state, of rhodopsin, rather than the light-activated metarhodopsin II (Meta II) state. A model for the Meta II state is proposed here by analyzing elastic network normal modes in conjunction with experimental data. Key mechanical features and interactions broken/formed in the proposed model are found to be consistent with the experimental data. The model is further tested by using a set of Meta II fluorescence decay rates measured to empirically characterize the deactivation of rhodopsin mutants. The model is found to correctly predict 93% of the experimentally observed effects in 119 rhodopsin mutants for which the decay rates and misfolding data have been measured, including a systematic analysis of Cys-->Ser replacements reported here. Based on the detailed comparison between model and experiments, a cooperative activation mechanism is deduced that couples retinal isomerization to concerted changes in conformation, facilitated by the intrinsic dynamics of rhodopsin. A global hinge site is identified near the retinal-binding pocket that ensures the efficient propagation of signals from the central transmembrane region to both cytoplasmic and extracellular ends. The predicted activation mechanism opens the transmembrane helices at the critical G-protein binding cytoplasmic domain. This model provides a detailed, mechanistic description of the activation process, extending experimental observations and yielding new insights for further tests.
536 _ _ |a Funktion und Dysfunktion des Nervensystems
|c P33
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK409
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Algorithms
650 _ 2 |2 MeSH
|a Binding Sites
650 _ 2 |2 MeSH
|a Hydrogen Bonding
650 _ 2 |2 MeSH
|a Isomerism
650 _ 2 |2 MeSH
|a Ligands
650 _ 2 |2 MeSH
|a Light
650 _ 2 |2 MeSH
|a Models, Molecular
650 _ 2 |2 MeSH
|a Neural Networks (Computer)
650 _ 2 |2 MeSH
|a Periodicity
650 _ 2 |2 MeSH
|a Protein Conformation
650 _ 2 |2 MeSH
|a Receptors, G-Protein-Coupled: metabolism
650 _ 2 |2 MeSH
|a Retinaldehyde: chemistry
650 _ 2 |2 MeSH
|a Retinaldehyde: metabolism
650 _ 2 |2 MeSH
|a Rhodopsin: chemistry
650 _ 2 |2 MeSH
|a Rhodopsin: metabolism
650 _ 2 |2 MeSH
|a Structure-Activity Relationship
650 _ 7 |0 0
|2 NLM Chemicals
|a Ligands
650 _ 7 |0 0
|2 NLM Chemicals
|a Receptors, G-Protein-Coupled
650 _ 7 |0 116-31-4
|2 NLM Chemicals
|a Retinaldehyde
650 _ 7 |0 60383-01-9
|2 NLM Chemicals
|a metarhodopsins
650 _ 7 |0 9009-81-8
|2 NLM Chemicals
|a Rhodopsin
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a G-protein-coupled receptors
653 2 0 |2 Author
|a collective dynamics
653 2 0 |2 Author
|a light activation
653 2 0 |2 Author
|a Gaussian network model
653 2 0 |2 Author
|a metarhodopsin II
653 2 0 |2 Author
|a elastic network
653 2 0 |2 Author
|a retinal isomerization
700 1 _ |a Rader, A.J.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Dhiman, H. K.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Klein-Seetharaman, J.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB44599
700 1 _ |a Bahar, I.
|b 4
|0 P:(DE-HGF)0
773 _ _ |a 10.1002/prot.21158
|g Vol. 65, p. 970 - 983
|p 970 - 983
|q 65<970 - 983
|0 PERI:(DE-600)1475032-6
|t Proteins
|v 65
|y 2006
|x 0887-3585
856 7 _ |u http://dx.doi.org/10.1002/prot.21158
909 C O |o oai:juser.fz-juelich.de:54914
|p VDB
913 1 _ |k P33
|v Funktion und Dysfunktion des Nervensystems
|l Funktion und Dysfunktion des Nervensystems
|b Gesundheit
|0 G:(DE-Juel1)FUEK409
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IBI-2
|l Biologische Strukturforschung
|d 31.12.2006
|g IBI
|0 I:(DE-Juel1)VDB58
|x 0
970 _ _ |a VDB:(DE-Juel1)85760
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ISB-2-20090406
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ISB-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-6-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21