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Intramolecular dynamics of linear macromolecules by fluorescence correlation spectroscopy
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A theoretical description of the dynamics of DNA molecules and actin filaments in solution as measured
experimentally by fluorescence correlation spectroscopy is provided and compared to recent experimental
results. Particular attention is paid to the contribution of the intramolecular dynamics to the fluorescence
correlation function. Using a semiflexible chain model, a theoretical expression is presented for the fluores-
cence correlation spectroscopy correlation function. The dependence of this function on various model param-
eters, such as chain length, persistence length, and fluorescence label density, is discussed. Our investigations
show that the intramolecular dynamics provides a significant contribution or even dominates the correlation
function as soon as the longest intramolecular relaxation time significantly exceeds the shortest experimentally
accessible time. Correspondingly, the shape of the correlation function changes considerably. Approximate
analytical expressions are provided, which are in qualitative agreement with the exact theoretical solutions as
well as experimental results, for both DNA and actin filaments. Our approach is in agreement with the
predictions of the Zimm model, in the limit of very flexible polymers, as well as the predictions of semiflexible

polymer models with respect to the intramolecular dynamics in solution.
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I. INTRODUCTION

Fluorescence correlation spectroscopy (FCS) is today one
of the most powerful and sensitive techniques to study the
dynamics of labeled monomolecules in solution [1-8]. In
FCS, one detects the fluctuations of the fluorescent light in-
tensity in a small and fixed volume element, usually formed
by a laser focus of submicron size. The temporal autocorre-
lation of these fluctuations can be related to the dynamical
processes involved, such as diffusion behavior, reaction ki-
netics, or photophysical processes. Thus, with the appropri-
ate model of the particular system dynamics, different char-
acteristic rates can be measured.

FCS has been applied in studies of the diffusive dynamics
of simple colloids [9], polymers [10-12], and biomolecules
[13-16]. For the first time, molecular mobility can be mea-
sured at a molecular level in various cellular compartments.
In particular, translational diffusion and active transport can
be distinguished [17], and differences in the local environ-
ment can be studied by alterations in the molecular mobility
of known fluorophores [18]. Simultaneous measurements of
mobility parameters and association or dissociation kinetics
suggests that FCS might be a useful technique to gain insight
into mechanisms and pathways of signal transduction
[19-21]. In most of the studies, the size of the diffusive
object is smaller than the focal volume, even when polymers
are studied [10-12]. With increasing interest in colloidal sys-
tems, extensions have been proposed to diffusion of particles
with sizes larger than the focal volume [22]. A more complex
dynamic arises when biological macromolecules are investi-
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gated that are both significantly larger than the laser focus
and labeled with more than one chromophore [16]. For such
objects, the FCS correlation function is determined by the
diffusion of the whole molecule as well as the intramolecular
dynamics. To separate the corresponding contributions re-
quires an adequate theoretical description of both the mo-
lecular dynamics as well as the FCS correlation function.
Biological macromolecules exhibit a broad spectrum of
conformational degrees of freedom ranging from very flex-
ible molecules (e.g., ss-DNA), semiflexible molecules (e.g.,
ds-DNA, actin filament), to rodlike objects (e.g., microtu-
bule). The stiffness and relaxation behavior are essential for
their biological functions. The equilibrium properties of
semiflexible polymers are mostly elucidated either in terms
of the Kratky-Porod model [23,24] or a semiflexible Gauss-
ian chain model [25,26] (and references therein). Most of the
theoretical investigations of the dynamics of flexible macro-
molecules are based on the Rouse-Zimm model [27-31].
However, the persistence length of biological molecules is
often on the order of or even exceeds the size of the laser
focus in an FCS experiment. The real molecule is very dif-
ferent from a Rouse chain on this length scale due to chain
stiffness. As long as the biological molecule is rather rodlike,
its dynamics can be described by the Kratky-Porod wormlike
chain model [32-34]. A model that accounts for the dynam-
ics of polymers of any stiffness has been presented in Refs.
[35-37]. The major advantage of this approach is that it al-
lows us to analytically investigate the dynamics of semiflex-
ible macromolecules, both in solution as well as in melt. The
full dynamic structure factor can be obtained. In contrast,
many other approaches rely on the first cumulant of the dy-
namic structure factor extracted from equilibrium properties.
In particular, a detailed comparison of theoretical results to
quasielastic neutron and dynamic light-scattering experi-
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ments on various natural and synthetic macromolecules in
dilute solution exhibits good agreement [36]. Similar agree-
ment has been obtained for the coherent and incoherent dy-
namic structure factors of various macromolecules in melt
[38,39]. Moreover, the intramolecular dynamics of partially
stretched DNA molecules can be very well described in
agreement with experiments [40].

In this paper, we theoretically determine the FCS correla-
tion function of semiflexible macromolecules and compare
the results to experimental measurements on DNA molecules
and actin filaments. The dependence of the correlation func-
tion on polymer length for DNA and actin filaments is dis-
cussed, as well as its theoretical dependence on the label
density. Particular attention is paid to the contribution of the
intramolecular dynamics to the FCS correlation function.

The paper is organized as follows. In Sec. II, the theoret-
ical background of the fluorescence correlation technique is
described. The theoretical model is introduced, its equilib-
rium properties, and the solutions of the equations of motion
are discussed briefly. The FCS correlation function is calcu-
lated using the dynamic structure factor. In Sec. III, the ex-
perimental equipment is described. Results are presented in
Sec. IV. Section V summarizes our findings.

II. THEORETICAL BACKGROUND

A. Fluorescence correlation spectroscopy

The principle of FCS was invented and realized in the
early 1970s by Magde et al. [41], Elson and Magde [42], and
Magde et al. [43]. By introducing a confocal setup to detect
the emitted light, the sensitivity of the method was enor-
mously enhanced [44]. Under carefully chosen conditions
[45], the observation volume can be approximated by a
three-dimensional Gaussian ellipsoid

2,2 2
W(r):W()exp<—2x 2y exp —2Z—2 . (1)
o 20

This function represents the probability of exciting and de-
tecting a fluorescent molecule at position r in sample space.
The 1/e?-radius r is the waist size of the focused excitation
laser; the value z; is mainly determined by the confocal de-
tection optics.

The time-dependent intensity

I(r) = f W(r)C(r, 0 d>x (2)

in a FCS experiment (often measured with an APD) therefore
depends both on the observation volume given by the setup
and the dynamic properties of the system under study. C(r, 1)
is the time- and space-dependent density of fluorescent
markers. Ricka and Binkert have shown that a transformation
to Fourier space simplifies the theoretical calculation of the
autocorrelation function [46]. It can be written as
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(a3l + 1), f Oq)C(g.0dq

=Ty

=gp(0)

s

f Q(¢q)C(q,0)d%q

3)

where ((q)=FT{W(r)},FT{W(r)}_, is a Gaussian filter func-
tion in Fourier space representing the observation volume.
Using Eq. (1), Q explicitly reads

r2 Z2
(g) =0 exp(— Y- @

(Note, the constant €, drops in the calculation of gp.) C(q,1)
is the fluorescence density-density autocorrelation function

in Fourier space. gp(0)=1/(CV.;) with C the mean particle
concentration and Vi g= 7'?/21’320 the so-called effective vol-
ume. The FCS correlation function (3) contains information
about diffusion, possible chemical reactions, and the photo-
physics of the molecules.

Assuming pointlike scattering centers, the correlation
function can be written as C(r,t)=3Y b;d[r—rt)], where b,
is the scattering amplitude of particle i. The autocorrelation

function C (¢.1) is then equal to the dynamic structure factor
S(q,1).

For the simplest case of monodisperse Brownian diffusing
objects with attached pointlike dyes, the solution of the dif-
fusion equation leads directly to S(q,7)=exp(—-¢>Dt), where
D is the diffusion coefficient. Integration of Eq. (3) with the
filter function (4) yields

(l‘) t -1 r2t -1/2
GD(t)=55(0)=<1+;) (“é;) , (5)

which describes the diffusional decay of the correlation func-
tion, where T=I‘S/4D is the diffusion time. By fitting this
function to experimental correlation data, the diffusion coef-
ficient and the concentration can be determined if the obser-
vation volume is well characterized.

In the case of a fractional time dependence, i.e., S(q,?)
=exp[—¢*(I'1)#], as observed in anomalous diffusion or poly-
mer dynamics [30], Eq. (5) changes to

B1-1 2 g1l-12
GD=[1+<L*) ] [1+r—g<é> } , (6)
T o\ T

with 7'*=(r%/ 4T")"E [16]. Equations (5) and (6) demonstrate
that the time dependence of the correlation function is deter-
mined by the dynamic structure factor. Therefore, an ad-
equate dynamic structure factor is needed to extract molecu-
lar parameters from the correlation function. One aspect of
the present paper is to determine the correlation function for
a semiflexible polymer and hence advance the analysis pre-
sented in Ref. [16].

FCS is not only sensitive to intensity fluctuations due to
diffusion but also due to photokinetic processes of the fluo-
rescent dyes. Changes in the brightness of the diffusing ob-
ject can be detected with FCS as long as they are signifi-
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cantly faster than the diffusion time. The most prominent and
well-known process is the triplet decay. The excited mol-
ecules can occupy a metastable dark triplet state. This leads
to intensity fluctuations in the time range of this lifetime. The
correlation function of the triplet state kinetics can be ap-
proximated by an exponential decay [47]

TTexp<— i) (7)

iy

Grriplee =1 + -
T denotes the fraction of dyes in the triplet state and 7 is the
triplet time.

For objects carrying several chromophores, the situation
is more complex. A chain with M dyes along its contour can
have M+1 different states of brightness, depending on the
number of dyes in a dark state. The kinetics of the fluctua-
tions can be modeled with an M+1 isomerization, that
means by switching on or off one single dye the state of the
chain changes to the neighboring state. Assuming constant
on and off rates k., and k. between the different states, the
problem reduces to a finite death and birth process. The so-
lution of this problem has been presented before [16]. We
take into account these processes by introducing the function
G(1), which depends only on the number of dyes along the
chain and the two rates k., and k.. The function is a super-
position of M+1 exponentially decaying functions with de-
cay rates and amplitudes given by the on and off rates and
the starting conditions. The characteristic decay time of
Go(?) turned out to be 10—100 us. As the triplet state Kinet-
ics is faster and the diffusion process is slower, this function
describes an intermediate decay.

The time scales of the kinetic processes are well sepa-
rated. Thus, the correlation function can be written as the
product of the respective functions [48]. In our case, this
results in

g = gD(O)GTriplet(I)GIso(t)GD(t)' (®)

The functions Grypie(f) and Giy(#) are both normalized to
decay to the value 1 for large times. Gp(¢) decays from 1 to
0. To investigate the diffusional decay, it is important to get
the amplitude of the correlation function. The experimental
correlation functions were fitted with Egs. (6) and (8). Then
the experimental data were normalized by dividing them by
the amplitude, yielding a new function

G(t) = g(t)/gD(O) = GTrip]et(t)GIso(t)GD(t) . (9)

The amplitude of this function is normalized in such a way
that the diffusion part decays from 1 to O (see also Ref. [16]).
To gain insight into the FCS correlation function of a poly-
mer, we briefly discuss the dynamical properties of semiflex-
ible chain molecules in dilute solution.

B. Equilibrium properties of semiflexible polymers

The polymer chain is modeled as a continuous, differen-
tial space curve r(s), where s (-L/2<s<L/2) is the contour
coordinate along the chain. A minimal model for a semiflex-
ible polymer is a Gaussian semiflexible chain [25]. Its basic
features are as follows: (i) The chain is composed of Gauss-
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ian segments, i.e., the distribution function of the distance
between two points along the chain contour is Gaussian; and
(ii) bending restrictions are taken into account. The distribu-
tion and partition function of such a chain can be systemati-
cally derived by the maximum entropy principle [25,49]. For
a continuous chain of length L, the partition function reads

L2 [ o\2 e (L2 [ #r\2
Z=| expy—v —|ds—< — | ds
-1 \ 08 2J) 1n\0s

2 2
_VO{(ar(—&ssz)) *(Mjs/z)) ”D% (10)

The Lagrangian multipliers v, v,, and € are given by

3p 3 3
v=-, Vy=—, €=,

2 4 4p

= L (11)

21,
The terms with the first derivative in r capture the chain
flexibility, i.e., they account for the chain entropy. The term
with the second derivative is the bending energy. The chain
ends behave differently from the rest of the chain, which is
captured in the terms with v,. The major difference to the
Kratky-Porod wormlike chain model [23] is the constraint
for the tangent vector u=dr(s)/ds. In the Gaussian model,
the constraint u?(s)=1 is relaxed to {(u*(s))=1.

An oft-required quantity is the joint probability distribu-
tion W[r(s),r(s")] of two points at r(s) and r(s’). A straight-
forward calculation yields

3 3/2
Wlr(s)—r(s')]= <—2mr(s ) )

y exp(_ 3[r(s) = ()P

20(s—s") )’ (12)

with

o(s—s")={[r(s)-r(s") = ls=s] - %(1 — el
p 2p

(13)
As a particular result, the mean square end-to-end distance is

obtained from Eq. (13) by setting s=L/2 and s'=-L/2.
Moreover, the radius of gyration is given by [25]

( 2> L 1 N 1 1
r)y=—-—S+-—-—
& 6p 4p2 4p3L 8p4L2

(1=, (14)

C. Dynamics of semiflexible polymers

To describe the dynamics of macromolecules in dilute so-
lution, hydrodynamic interactions [30,36] mediated by the
solvent particles have to be taken into account. This is
achieved by the Rotne-Prager tensor Q(r(s),r(s")) [36,50],
which has been shown to be a first-order correction to the
Oseen tensor [51].

In order to arrive at an analytically tractable equation of
motion, we apply the preaveraging approximation by Zimm
[29]. This approximation replaces the hydrodynamic tensor
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by its average calculated with the equilibrium distribution
function. With the joint probability distribution of a Gaussian
semiflexible chain (12), the averaged hydrodynamic tensor is
given by H(s,s")=I[8(s—s")/3mn+Q(s—s')], where the &
function accounts for the local friction, 7 is the solvent vis-
cosity, and

, _®(|s—s’|—d) / 3
Os =)= 37y 27o(s —s')

3d*
o) 1

X exp(—

Here, the Heaviside step function @ is introduced to exclude
self-interactions and d is the thickness of the molecule.

The equation of motion of the polymer chain including
hydrodynamic interactions is then given by the Langevin
equation [36]

9 L2 [92
—r(s,1) = H(s,s')| 2vkgT——=r(s’,t
ﬁtr(s ) f_m (ss)[ vkpT™ 53 (s",1)

&
—ekBT—ﬁ (s’ ) +(s',1) |ds', (16)
s

with the boundary conditions

|:2V(%I‘(S,l) - e%r(s,t)Lm =0, (17)
d &
|:2V0£F(S,l‘) + egr(s,t)] » =0. (18)

The stochastic force I'(s,7) is assumed to be stationary, Mar-
kovian, and Gaussian with zero mean [30].

To solve the equation of motion, we use an eigenfunction
expansion in terms of the eigenfunctions of the eigenvalue
equation

at d
ekBTE lﬁn(s) - 2VkBTE ¢n(s) = §n¢n(s) . (19)

The eigenfunctions are given by

1
o= \fz : (20)

: h ! .
,(s) = 3 /ﬁ(gl,l sin ,f,,s L sin J,,s >, ¥ odd.
L\ "cosh {,L/2 cos {,L/2
(21)
/ cosh {;s cos ¢,
(s) = &<§,’l ; /{n e bt ), V n even.
L \""sinh {,L/2 sin {,L/2
(22)

The c,s follow from the normalization condition. The wave
numbers ¢, and {/, where {/*~{>=4p?, are determined by
the boundary conditions (17) and (18). ¢ describes the
translational motion of the whole molecule.

To solve Eq. (16), the eigenfunction expansions
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r(s,))= 2 X, (0, (s), T(s,0)= 2 T,(0,(5) (23)
n=0 n=0

are inserted, which yields

P - s\l 3
X=X (Qnm + —) [— X0+ T, 0) .
t 37y T

m=0

(24)

The 7,s are the relaxation times in the free draining limit and
are related to the eigenvalues ¢, via 7,=vy/§,, where y
=37 is the friction constant per length. The Q,,s are the
matrix elements of Q(s—s') in terms of the eigenfunctions
().

A numerical calculation shows that the interaction matrix
Q.. 1s almost diagonal over the whole range of the flexibility
parameter pL. Hence, except for the first mode (n=1) in the
limit of large stiffness, the interaction matrix is well approxi-
mated by

Q 2 5nm L(L_s) ( 3d2 ) é, d
m = DU —— exXp|— COS ¢,5ds.
N3 gL )y o(s) P 20(s)

(25)

For n=1 and pL— 0, the full expression for Q;, has to be
used [35]. The amplitudes yx,(7) are then given by

t
Xa() = —2— f e~ VAD ()t (26)
TNTyJ

with the relaxation times

— 27)
1 +37930,,

The time correlation functions of appropriate polymer
properties are often required when the above results are ap-
plied to experimental measurements. Many of these correla-
tion functions can simply be obtained from the correlation
functions of the amplitudes Y,,. A straightforward calculation
yields

7, =

kT .
XD Xm(0)) = =78, VY nm#0.  (28)
m™n

The center of mass diffusion constant D follows from the
time correlation function for the translational mode n=0,

1
D=lim ([ xo(r) - X0(0)?)

kyT V6 (L L-s 342
= l+—= —— exp| — ds|.
3wyl NaLJ g No(s) 20(s)

(29)

The FCS correlation function includes the dynamic struc-
ture factor, which is defined as [30]
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L2

S(q.1) = f (exp{- iq[r(s,t) — r(s',0)1})dsds’
-L2

L2 L2
(30)

for the continuous chain, where ¢ is the scattering vector.
Since the distribution of distances is Gaussian in our model
and by exploiting the correlations (28), the dynamic structure
factor is given by the well-known expression [30]

L2

S(q,t) = f exp{ =, (t)]dsds (31)

L2 -L2
where [36]
@ (1) ={[r(s,t) = r(s",0)]>) =6Dt + (s — 5")

LS @1 —) (32)
™ n=1

and o is defined in Eq. (13).

D. FCS correlation function

As discussed in Sec. II A, the dynamic structure factor
determines the FCS correlation function (3). Assuming a ho-
mogeneously labeled continuous semiflexible chain, the cor-
relation function gp(7) is easily calculated via Egs. (3), (4),
and (31). The final expression reads

L2 (L2 2(1)“, (t) -1
gp(=g 1+ P
-2 J-Ln 3rp

2q)ss’(t) -2
X |1+ 3 dsds’ . (33)
320

In an experiment, only a certain number of monomers (N)
are labeled. The structure factor of the continuous chain is
then given by

N N

E > (expl-iglr () - rj(O)),  (34)

lljl

S(g.1) =

with r;(f)=r(s;,t) and s; the contour coordinate of the labeled
monomer. The average is calculated with the distribution
function of the continuous chain. The correlation function

gp(?) is then given by
20,0\ 20.(1)\ 12
200}, 0] g
3r0 3ZO

N N
=42 3 (14
i=1 j=1

where (I>ij=([r(s,~,t)—r(sj,O)]z). The factors g and ¢ com-
prise various constants, which will not be of any relevance
for the further study, because we will focus on the normal-
ized correlation function Gp(f)=gp(t)/gp(0) (cf Sec. IT A).

Analytical approximations for the eigenfunctions and re-
laxation times can be derived in the limits of flexible chains
(pL— ) and semiflexible chains (pL<1), respectively. In
the first case, the stretching modes dominate, whereas in the
second case the bending modes dominate [35,36]. For pL
— o0, the relaxation times (27) reduce to
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L 2
7= — (—) (36)
mkgTp \ n
L 3/2
7= —— (—) : (37)
\3mkgT \pn

where the latter ones are the well-known Zimm relaxation
times [29,30]. Hence, the relaxation times for a flexible poly-
mer in solution are proportional to L*¥? and vary with n=3/2,
In the limit pL <1, the relaxation times with mode numbers
n>1 are approximately given by

64ypL?
i (38)
wkgT(2n —1)
_ 64mpL* (39)
T, = .
N6k T(2n — 1)* In(AL/d)
For n=1, the relaxation time
L’;
= (40)
12kpT

is obtained in the limit pL— 0 [35]. The dimensionless quan-
tity AL/d is a measure of the hydrodynamic aspect ratio of
the macromolecule. Since semiflexible chains without hydro-
dynamic interactions already display the dependence 7,
~L*(2n-1)* [33,34,36,52], hydrodynamic interactions
have only a small influence on the mode number and chain
length dependence of the relaxation times (for more details,
see Refs. [35,36]).

In order to elucidate the influence of bending and stretch-
ing modes on the FCS correlation function, we consider the
limits where all internal modes are either stretching modes or
bending modes. We like to point out that these limits are not
strictly valued for the model discussed, but can serve as first
approximations. Moreover, the analysis is only carried out
for continuously labeled polymers.

Using the expression for the stretching relaxation times
(37), the eigenfunctions in the limit pL> 1, and by convert-
ing the sum over 7 in Eq. (32) to an integral (¢/7;<1) [30],
we find

2d,(r) 2 4Dt 8
—35 ) = |S|2 + B + _(th)ZB
3rg 3prg g 0T

% 32
d.
Xf cos(%(rzt)_m)[l —exp(— x?ﬂ—);,
0 6pry N2/ | x

(41)

with

kgT
6777]r(3)'

FZ = (42)

The decay rate I', is identical to the decay rate of the dy-
namic structure factor [30]. But in FCS 1/r, plays the role of
the scattering vector. Also in this situation, the decay rate is
independent of chain length and persistence length. For
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I';t> 1, the time dependence in the integral (41) can be ne-
glected and we find the approximation

20 (¢ 2 4Dt
xi ) _ |S|2 +5. 42(F t)2/3 (43)
3r, 3pr; r0

i.e., the well-known 73 time dependence of the mean square
displacement for flexible polymers is obtained [29,30].
The correlation function is then given by

L -1 )
o 2] 20
0 2

o
(44)

(The applied approximations are valid in a certain time win-
dow. In the limit f—oc, a better approximation is obtained
when the term (1-s/L) is included in the integral over s. In
this limit the intramolecular dynamics is negligible.)

The integral can be evaluated analytically, which yields

[ 4Dt 12

6zprLf A+ — 5.42(T ;1)*3

g{)( )= gp 0 acoth 0 3
o1 -1

2L 4Dt 12

P+ +542(0 )%

¥
—acoth PTo 0

(45)

where f=zy/ro [pL>1, T £>1 (42)].
Assuming that all relaxation times are bending relaxation
times (39), ®,,/(¢) becomes (s—s' —s)

3/23/4
2<Ds(t) 252 2 . 4_Dt N 273 (FBt)3/4
3r3 3r0 r% T

X f: COS(%(FCI‘)_]M)D —CXP(—XA)]?’

(46)
with
[ 173
\6p kT In(AL/d)
B= 3773/27]}’3/3 > (47)
V672K, T In(AL/d) )
- 647pL*

For I'.t> 1, Eq. (46) reduces to

20 (1) 2s* 4Dt
i ) _ S+ T 1 1.65(T )%, (49)
3ry 3r;, r0

The time dependence t* of ®(t) applies to semiflexible
polymers in solution as well as in melt [33-36,53,54]. The
correlation function again follows from Eq. (44). Evaluation
of the integral yields
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372 4Dt -12
b ~ 3/4
1) =2gL 1+— +1.65(Tgt
gp(0) gf\/w2 1)< 2 (Ts1) )
[2(2 - 1)L? 4Dt
X arctan %{(1 +—+ 1.65(F3t)3/4>
3ry o
2L 4Dt -2
X (f2 +=5+— +1 65(FBt)3/4)] (50)
3 g
[pL<1,T>1 (48)]. In Sec. IV, we will discuss the depen-
dence of the FCS correlation function on the persistence

length and compare the theoretical results with experimental
measurements.

III. EXPERIMENTAL SETUP

We used a commercial FCS setup by Carl Zeiss (Jena,
Germany) consisting of the module ConfoCor2 [55] and the
microscope Axiovert200 with a Zeiss C-Apochromat 40X
NA 1.2 water immersion objective. For excitation the
488 nm line of an argon ion laser was used. The laser inten-
sity for all measurements was 60 wW in sample space. The
emitted light was split up by a 50/50 mirror and fed to two
identical independent detection channels with 505 nm long
pass filters and pinholes with 70 um diam. The intensities
coming from the two avalanche photodiodes were cross cor-
related. Artifacts such as detector afterpulsing or other detec-
tion noise do not occur in the cross-correlation function.

Calibration measurements were done with a 10 nM
rhodamine 6G solution. For all measurements r, was be-
tween 180 and 200 nm. The ratio z,/ry was always between
7 and 8.

\-phage DNA (48 502 bp) was purchased from MBI Fer-
mentas (St. Leon-Rot, Germany). The linear 7250 and
2686 bp DNA were the result of cutting the plasmids
M13mpl8 (MBI Fermentas) and pUC18 (MBI Fermentas)
with the restriction enzyme ECO R1 (New England BioLabs,
Beverly, MA, USA).

All DNA samples were kept in 10 mM Tris (pH 8.0),
1 mM EDTA, and 100 mM NaCl. DNA pieces were labeled
with the intercalating fluorescent dye YOYO-1 (absorption:
491 nm, emission: 509 nm) (Molecular Probes, Eugene, OR,
USA, Y-3601). The number of dyes N per chain was tuned
by adding a dye solution with an appropriate concentration.
The mixture was gently shaken at 37 °C to have a preferably
homogeneous dye distribution along the chain. Nevertheless,
the number of dyes per chain and their distance are statisti-
cally distributed and can have large fluctuations especially at
low label densities.

Monomeric G-actin from rabbit muscle (M,,=42 kDa)
was a kind gift from the group of M. Birmann (Physics
Department E22, Technical University Miinchen, Germany).
G-actin was fluorescently labeled by attaching a rhodamine
dye covalently to the protein.

Unlabeled and labeled G-actin were mixed in G-buffer
(2 mM Tris/HCl pH 7.4, 0.5 mM ATP, 0.2 mM CaCl,,
0.2 mM Dithiothreitol, and 0.2% NaNj3) at a ratio of 10:1,
and then polymerized by changing to F-buffer conditions (G-
buffer +2 mM MgCl, and 100 mM KCI). The total G-actin
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concentration during the polymerization was 2 mg/ml.
Gelsolin was added to the solution to control the length of
the filaments. This capping protein inhibits polymerization.
The molar ratio of G-actin and gelsolin determines the aver-
age length (L)

[G-actin]/[gelsolin]
370

After 20 min, phalloidin (Molecular Probes, P-3457) (phal-
loidin: G-actin=1:4) was added to stabilize the filaments.
These filaments could now be diluted without depolymeriza-
tion. The average label distance along the chains was
~28 nm as every tenth monomer was labeled.

(Ly= (51)

IV. RESULTS AND DISCUSSION

As is well known, the decay of the dynamic structure
factor is given by S(g,7)=exp(—¢>Dt) for small scattering
vectors q<r§>1/2< 1 [56,57]. Similarly, the diffusive decay of
the FCS correlation function is determined by the diffusion
coefficient for (rﬁ)“ 2<ry and only the overall translational
motion of a macromolecule is observed. In order to study the
intramolecular dynamics, typical chain dimensions as the ra-
dius of gyration should obey the relation (r§)1’2>r0. For
flexible polymers, the persistence length should be much
smaller than ry, i.e., pry>1. Combining the two conditions
for flexible polymers (in 6 solvent) leads to the inequalities
ro/L>1/pL>(ry/L)>. To satisfy this relation, rather long
polymers are required. For an FCS microscope with rg
~200 nm, a reasonable polymer length would be pL=~10*
Even long DNA molecules are smaller than pL= 10%; thus, no
strict flexible chain behavior is obtained.

To study the intramolecular dynamics of molecules by
FCS, the experimentally accessible time scale has to be
shorter than the longest relaxation time 7, [(37), (39), and
(40)] of the polymer. For times larger than the longest relax-
ation time, the intramolecular contribution to @ (¢) (32) is
time independent and the center-of-mass diffusion term de-
termines the FCS correlation function. Hence, the intramo-
lecular dynamics yields a significant contribution to @ (z)
for t<7; only.

The diffusive part of the FCS function for a continuously
labeled polymer is calculated using Eq. (33) as well as (35)
with @, (¢) defined in Eq. (32). By changing the number of
labels (), we ensure that the results of the two expressions
coincide. The wave numbers and the relaxation times 7, are
calculated from the nonlinear equations following from the
boundary conditions (17) and (18), [35-38]. To avoid arti-
facts by truncating the sum over the mode numbers in Eq.
(32), we choose a sufficiently large maximum mode number
and ensure that the curves which we will present in the fol-
lowing correspond to the limit of an infinite sum.

A. FCS correlation function for flexible polymers

In this section, we will discuss the diffusive part of the
FCS correlation for polymers that approximately resemble
flexible chains. In particular, we will address the dependence
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FIG. 1. Diffusive parts of the FCS correlation functions for con-
tinuously labeled (flexible) polymers of various lengths: pL=10",
2Xx10', 510, 10%, 2x 10%, 5x 10%, 103, 2x 103, 5x10% and
10* (left to right). Other parameters are 1,=50 nm, d=2.5 nm, T
=300 K, #=0.01 P, ry=0.18 um, and f=7. The inset shows the
FCS correlation functions calculated with intramolecular contribu-
tions only (pL increases from top to bottom).

of the correlation function on the length of the polymer and
the density of fluorescence labels. In order to compare the
theoretical results with experimental measurements, we
chose model parameters typical for DNA molecules. In par-
ticular, we use the persistence length lp=1/ 2p=50 nm, the
thickness d=2.5 nm, temperature 7=300 K, viscosity #
=0.01 P, ry=0.18 um, and f=7.

1. Chain length dependence

A variation of the chain length at fixed persistence length
corresponds to a change from rather rigid (pL= 1) to flexible
polymers (pL>1). (Note, ®,,, not only depends on pL but
also on the ratios ry/L and d/L, which decrease with increas-
ing chain length.) Hence, generally both stretching as well as
bending modes contribute to ®.

Figure 1 displays FCS correlation functions for continu-
ously labeled chains of various lengths. The chain lengths
increase from pL=10 (left) to pL=10* (right). The inset
shows the intramolecular contributions only, i.e., Gp(f) cor-
responds to the FSC correlation function in the center-of-
mass reference frame of a single polymer. With increasing
chain length, the corresponding curves shift to longer times,
the time window over which the correlation function decays
increases, and the correlation functions seem to approach a
limiting curve. The intramolecular contribution to the overall
decay of the correlation function increases with increasing
chain length (see inset of Fig. 1).

Alternatively, we can consider the function 1/Gp(f)—1,
which amplifies the time dependence of Gp(7) close to unity.
If the correlation function displays a time dependence as as-
sumed in Eq. (6), a double logarithmic plot will directly
yield the exponent 3 for small times.

Figure 2 shows correlation functions for various chain
lengths in such a representation. For small pL values,
1/Gp(r)—1 increases essentially linearly with time (see also
Fig. 3). Considering Eq. (5), we see that in the short time
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FIG. 2. FCS correlation functions for (flexible) polymers of
various lengths (pL values see Fig. 1). The dashed lines are calcu-
lated taking into account intramolecular contributions only (pL in-
creases from right to left).

regime 4Dt/ry<1, the decay of the correlation function is
determined by the xy component of the observation volume,
which corresponds to the observed linear time dependence.
For 4Dt/ rﬁ/ 2> 1, all spatial components are important and
1/Gp(t)-1 increases like 132

The dashed lines represent the intramolecular contribu-
tions to the correlation functions, which saturate at t> 7.
This contribution to the correlation function is negligible for
small pL values. Hence, we do not discuss correlation func-
tions for pL <10 at this point. With increasing chain length,
the intramolecular contribution increases, which leads to re-
duced slopes of the curves for r<7.

The time dependence of the slopes of log[1/Gp—1] is
depicted in Fig. 3 for the various chain lengths. As already
pointed out, for pL=10 and #<<0.1 s, the slope is essentially
equal to unity because diffusion dominates over the intramo-
lecular dynamics [cf. Eq. (32)]. At sufficiently large times,
all the slopes assume the value %, whereas for the intramo-
lecular contribution a zero slope is found. With increasing
polymer length, we find a time window with slopes signifi-
cantly smaller than unity. This time window covers the ex-

dlog(1/G_(t)-1))/dtt

N N N T N N N N T O I |

0.0 ol ol T T N LIS Sk R W TP R
10" 102 10° 10* 10° 10®° 10" 10® 10° 10"
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FIG. 3. Slopes of the functions log[1/Gp(t)—1] for various
polymer lengths (pL values as in Fig. 1). The solid lines correspond
to the total correlation function and the dotted lines to the intramo-
lecular contribution (pL increases from left to right).
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perimentally accessible time scale. [The center of the experi-
mental time window can be located by setting Gp(z,) =0.5.]
For pL =200, the slope is on the order of %, the value pre-
dicted by Zimm theory [30]. For longer chains, we find a
slope smaller than % and the analytical expression (45) even
predicts the time dependence ¢ for T'yt> 1, T jt>4Dt/rj, a
limiting value that is reached for a very flexible polymer.
This is not surprising, since 1/Gp(¢)—1 does not yield the
monomer mean square displacement, in general, and, hence,
does not have to exhibit Zimm behavior. (Only for a single
label follows the mean square displacement, cf. Sec. IV A 2.)
It is rather a weighted function of the mean square displace-
ments of all monomers [cf. Egs. (41) and (44)]. This under-
lines our point that an adequate model is necessary to extract
the physical properties of the polymer under investigation.

The various plots indicate that the intramolecular dynam-
ics determines the decay of the FCS correlation function for
sufficiently long chains (pL>10) and short enough times
(t<7)). In this parameter range, the intramolecular dynamics
is measured directly. This is reflected in Fig. 3. For long
polymers, the derivative of log[1/Gp(1)—1], where Gp(7) is
calculated taking only intramolecular contributions into ac-
count, develops a plateau, which extends over several de-
cades. The slope calculated with the total correlation func-
tion assumes slightly larger values. The dominance of the
intramolecular dynamics at large chain lengths is a conse-
quence of the following facts: (i) 7, ~L*?, i.e., the relaxation
time 7, increases with the chain length; (ii) D~ L™, i.e., the
diffusion constant decreases with the chain length; and (iii)
the relaxation time I', is independent of chain and persis-
tence length. As far as the current parameters are concerned,
the universal regime is reached for pL = 5000. The time win-
dow of this regime increases with increasing polymer length.

In Fig. 4, 1/Gp(7)—1 of the numerically determined cor-
relation function is compared to the analytical expression
(45) for flexible polymers. For pL > 1000, the full theoretical
result is very well described by the analytical approximation
over several decades. With decreasing chain lengths, the ana-
lytical approximation deviates more and more from the exact
data. This is to be expected, since the approximation should
apply for very flexible polymers. To achieve agreement,
however, the time scale of the analytical expression is mul-
tiplied by 1.7. This is a consequence of the approximations
involved in the calculation of the sum over modes in Egs.
(41) and (43). As numerical studies show, the major reason is
that the cosine of Eq. (41) is replaced by one. Similarly, the
correlation function of the intramolecular part is very well
approximated by the analytical expression. Again the time
has to be multiplied by a factor of 1.9. Although there is a
quantitative disagreement between the time scales by ap-
proximately a factor of 2 the analytical correlation function
captures the time dependence of the exact one.

In the limit of very short times, the theoretical correlation
function predicts a  dependence g-]f)~ [1+2D¢/ r(z)f2
+2.71(th)2/ 31217, i.e., we should observe an exponent of %
in the 1/Gp(f)—1 representation. The numerical calculation,
however, yields larger exponents for #/7;<<1, which ap-
proach unity for very small times. On the one hand, this is a
consequence of the semiflexibility of a DNA molecule. For
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FIG. 4. Comparison of the full numerically determined FCS
correlation function (solid lines) with the analytical approximation
of Eq. (45) (dotted lines) for the polymer lengths pL=10?, 2 X 102,
5% 10%, 103, 2% 103, 5% 103, and 10*. (For the other parameters,
see Fig. 1.) The time scale of the analytical solution is multiplied by
1.7 to match the time scale of the full numerical correlation func-
tion. Inset: Correlation functions taking into account intramolecular
contributions only for pL=103 and 10* (solid lines: theoretical ex-
pression, dotted lines: analytical approximation). The time scale of
the analytical solution is multiplied by 1.9 (pL increases from left to
right).

short times bending modes determine the relaxation behavior
rather than stretching modes. On the other hand, for I' #<<1,
the time dependence of the cosine function in Eq. (41) can-
not be neglected anymore because the function rapidly oscil-
lates. As is clear from numerical calculations using the full
expression (32), this gives rise to a linear time dependence.
To observe stretching modes only, much more flexible chains
with a much shorter persistence length have to be consid-
ered.

The dependence of the FCS correlation function on chain
length can be studied by measuring DNA fragments pro-
duced in the way described in Sec. III. The FCS correlation
functions for three DNA lengths are presented in Fig. 5. The
numbers of labels are sufficiently large to correspond to con-
tinuously labeled chains. The theoretical curves agree very
well with the experimental data. As far as the parameters are
concerned, we set rp=0.2 um and f=7. As indicated by the
dashed lines, the contribution of the intramolecular dynamics
to the FCS signal is small for all three chain lengths. Only
for A-phage DNA does it provide an appreciable contribution
(see Fig. 6). This is also reflected in the slope of
log[1/Gp(t)—1] shown in Fig. 6. For the shortest DNA, the
slope is essentially equal to unity, whereas a slightly smaller
value is found for the 7250 bp DNA molecules. For A-phage
DNA a slope of %% can be inferred. This is the value pre-
sented in Ref. [16]. However, the slope does not correspond
to the value of a semiflexible chain, but is rather a conse-
quence of only a partial contribution of the intramolecular
dynamics to the total FCS correlation function.

Strictly speaking, there is no fit parameter in the theoret-
ical model. Indeed, the experimental time scales for the two
shorter DNA fragments agree with the time scale of the
model within ~10%. For these molecules, we find the diffu-
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FIG. 5. Comparison of theoretical FCS correlation functions
(solid lines) with experimental measurements (squares) on densely
labeled DNA for pL=9 (2686 bp), 25 (7250 bp), and 165
(48 502 bp) (left to right). The dotted lines represent intramolecular
contributions only (pL increases from top to bottom).

sion constants D=~4.3 um?/s (2686 bp DNA) and D
~2.3 um?/s (7250 bp DNA), respectively. For \-phage
DNA, however, we obtain the diffusion coefficient D
~1.1 um?/s, in agreement with results presented in Ref.
[16]. This value is approximately a factor of two larger than
the value extracted from dynamic light-scattering experi-
ments [58]. The origin of the discrepancy remains to be clari-
fied.

2. Variation of label density

The FCS correlation function depends not only on chain
length but also on the density of labels along the polymer
contour [16]. Thus far, all theoretical curves correspond to a
homogeneous and continuous distribution of labels. The cor-
relation function for a discrete distribution of labels follows
from Eq. (35). As before, we assume an underlying continu-
ous chain, but only a discrete number of labels yield a fluo-
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FIG. 6. Comparison of the theoretical FCS correlation function
(solid lines) with experimental measurements on DNA (squares) for
pL=9, 25, and 165 (left to right). The dotted lines represent in-
tramolecular contributions only (pL increases from bottom to top).
Insert: Slopes of the theoretical correlation functions log[1/Gp(f)

-11.
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FIG. 7. FCS correlation functions for various label densities:
N=1,2,3,5,7,11,21, continuum (left to right). The dotted lines
give the intramolecular contributions only. The chain length is pL
=200. The other parameters are the same as in Fig. 1. Inset: Slopes
of log(1/Gp—1) for various label densities (increasing from right to
left). The slopes for N=51 are presented in addition to those given
above.

rescence signal. For simplicity, we assume that the distances
between neighboring labels are constant. A random distribu-
tion would also be possible, but then we would have to av-
erage over the distribution of the labels.

A limiting situation is a single label on the DNA mol-
ecule. The dynamic structure factor (34) is then identical to
the incoherent dynamic structure factor and @, (32) reduces
to the mean square displacement

kT
gy

@, (1) = 6Dt + —— 2, 7,45 (s)[1 —exp(= #/7,)]. (52)
n=1

The correlation function itself reads

-1
gp(s,0) = (1 + %}O)) (1

20 (¢ -2
352( )) ’ (53)
) 3

<o

with s the position of the label along the chain contour. Thus,
the correlation function depends on the position of the label.
However, it is a quantitative rather than a qualitative differ-
ence. Experimentally, single labeled DNA molecules have
been measured in Ref. [59].

By inversion, the mean square displacement is obtained
from gp(s,r) (53). We can use this relation to test how
closely 1/Gp(f)—1 resembles the mean square displacement.
The numerical calculation shows that 1/Gp(r)—1 agrees very
well with the mean square displacement up to the time where
4Dt/ r5> 1, i.e., up to the transition to free diffusion of the
whole molecule. At even larger times, the mean square dis-
placement is ~, whereas 1/Gp(f)—1~ 1.

Figure 7 depicts FCS correlation functions for various la-
bel densities. The chain length is pL=200 and the other pa-
rameters are identical to those of the previous subsection.
For N=1, one of the chain ends is labeled and for N=2 both
ends are labeled. For N=3, only curves for an odd number
of labels are presented, where the central point of the poly-
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mer is always labeled. The shape of the curves changes sig-
nificantly with increasing label number. As discussed above,
for a single label only the incoherent self-term (52) contrib-
utes to the decay of the correlation function. The correlation
function for a molecule with both end points labeled is at
short times identical to that of a single labeled polymer. In
this time regime, the individual incoherent terms of the ends
contribute to the decay of the correlation function. However,
there is also a coherent term P_; /5, »(7). At short times its
contribution to the correlation function is too small to be
detected; the function o(L) [cf. Egs. (32) and (35)] is much
larger than the sum over the eigenfunctions of Eq. (32). With
increasing time, however, the latter sum is comparable to the
sum in the self-term (52) and modifies the decay of the cor-
relation function as is visible in Fig. 7 for = 10% us. Label-
ing of further points leads to a shift of the correlation func-
tion curves to larger times. This is, on the one hand, related
to the appearance of more and more coherent terms with
increasing label density. On the other hand, the chain ends
are more mobile than the central part of the polymer, i.e., the
mean square displacement of a chain end is larger than the
mean square displacement of the chain center in the time
window of the decay of the correlation function. This leads
to a shift of the whole curve to larger times even if only
incoherent terms are included in the calculation of gp(s,?).
Naturally, there is a limiting curve for continuously labeled
polymers.

The various contributions to the decay of the correlation
function affect its shape. For a single label, only its mean
square displacement enters the correlation function. Thus,
the slopes of log[1/Gp—1] are close to % over a broad time
window (see inset of Fig. 7). The appearing coherent term in
®,; for larger label densities leads to a decrease of the in-
tramolecular contribution to the correlation function as seen
by the dashed lines of Fig. 7. The slopes of log[1/Gp(z)
—1] then become significantly smaller than the value for a
single labeled polymer in a certain time window. In this time
regime, a superposition of the intramolecular dynamics and
the overall diffusion of a molecule is observed. Thus, one has
to be carefully relating the observed exponent to the intramo-
lecular dynamics. At larger label densities, the relative con-
tribution of the center-of-mass diffusion compared to the in-
tramolecular dynamics increases and the slopes assume
larger values. Again, the correlation function is determined
by the center-of-mass motion rather than by the intramolecu-
lar motion alone. For label numbers N =50, the correlation
functions are hardly distinguishable from the limiting func-
tion for a continuously labeled chain.

B. FCS correlation function for semiflexible polymers

The dynamics of DNA molecules discussed in the last
section is mainly determined by stretching modes, although
the bending modes yield an appreciable contribution to the
dynamics particularly at short chain lengths. Thus, DNA
molecules are semiflexible polymers if they are sufficiently
short. In this section we focus on actin filaments, which are
much more rigid than DNA molecules, and hence, bending
modes dominate the relaxation behavior. To describe the ac-
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FIG. 8. FCS correlation functions for (rigid) polymers of
various length: pL=0.0085,0.017,0.035,0.085,0.17,0.35,0.85,
1.7,3.5 (left to right). Further parameters are: [,=16 um and d
=8 nm. The remaining parameters are the same as in Fig. 1. The
inset shows the FCS correlation functions in a semilogarithmic
representation.

tin filaments, we use the parameters /,=16 um [36,60] and
d=8 nm. The other parameters are the same as for the DNA
molecules (see Sec. IV A). We would like to point out that
the persistence length of an actin filament is approximately
two orders of magnitude larger than the focus ry,.

To study the dependence of the FCS correlation function
on the length of an actin filament, we systematically vary its
length from approximately 100 nm to 100 um. These
lengths correspond to the range 1073 <pL <35, i.e, all of them
are rather rigid. Finally, we use the theoretical expression
following from the preaveraging approximation (cf. Ref.
[36]) to determine AL/d.

Figure 8 displays Gp(#) for actin-filament-like semiflex-
ible polymers of various lengths. The chain length increases
from left to right. The various curves exhibit a decrease of
the slope with increasing chain length (1<<7) and seem to
approach a limiting curve. We will address the latter point
further on down. As shown in Fig. 9, the overall diffusion of
the polymer determines the correlation function for pL
=0.02. The intramolecular contribution is small. For large
pL values, however, the intramolecular dynamics dominates
more and more the time dependence in the experimentally
accessible time window 1072 < 1/Gp(t)—1<107. In fact, the
correlation function is completely determined by the in-
tramolecular dynamics at large pL values. Hence, for such
lengths the intramolecular dynamics is measured directly.
The reason for this is the strong dependence of the 7,s (38)
on chain length. In particular, the longest relaxation time
shifts very fast to large times and extends the time range in
which the intramolecular dynamics dominates over the
whole experimentally accessible time window.

The dominance of the intramolecular dynamics is also
reflected in the slopes of the functions log[1/Gp(r)—1],
which are displayed in Fig. 10. For pL>0.17 and taking into
account the intramolecular contributions only, the slopes are
close to those of the overall correlation functions. As ex-
pected, the slopes for very short polymers are of the order of
unity at short times and turn over to % at large times. With
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FIG. 9. FCS correlation functions for (rigid) polymers of vari-
ous lengths (increasing from right to left). Solid lines: total corre-
lation functions; dotted lines: intramolecular contributions. The pa-
rameters are the same as in Fig. 8.

increasing chain length two other regimes develop. Before
the diffusive time regime (f— ) begins, a plateau appears
with a slope close to %, corresponding to the dynamics of
semiflexible polymers. A regime with slopes on the order of
0.65 is present at somewhat shorter times. The latter regime
is within the experimental time window. The increase of the
slope for r— 0 has been explained in Sec. IV A.

The reason for the unexpected time dependence of the
correlation function with an exponent of %% can be under-
stood by the analytical approximations presented in Sec.
II D. As shown by Fig. 11, the time correlation functions are
very well described by the analytical expression (50). Only
the time scale has to be adjusted to a certain extent. The main
reason for this adjustment is that the cosine term of Eq. (46)
is replaced by unity in the analytical approximation.

For the appropriate limits, Gp(#) is well approximated by

1.4 -
12 -
1.0 |

0.8

D

0.6

dlog(1/G_(t)-1)J/clt
T

0.4

02 U R

0.0 Lrowl i oot Pl el o Svervodsg o
10" 102 10®° 10* 10° 10° 10”7 10® 10°
t(us)

FIG. 10. Slopes of the function log[1/Gp(t)—1] for various
polymer lengths (increasing from left to right; pL values as in Fig.
8). The solid lines correspond to the total correlation function and
the dotted lines to the intramolecular contributions only.
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FIG. 11. Comparison of the full theoretical FCS correlation
function (solid lines) to the analytical approximation of Eq. (50)
(dotted lines) for various polymer lengths. The time scales of the
analytical approximations are multiplied by the following factors to
match the time scales of the full numerical correlation functions:
1.0 (pL=0.0085), 0.95 (0.017), 1.0 (0.035), 1.2 (0.085), 1.3 (0.17),
1.4 (0.35), 1.5 (0.85), and 1.7 (1.7) (left to right). (For the other
parameters see Fig. 8.)

[1+2Dt/r} +0.825(Tp)*4]!, Tpr<1

i
Gp() =) Nff—1(T)" o L -
1.65 arctan(\ 2 — 1) 1
(54)

Hence, two regimes are predicted for 1/Gp—1 with an ex-
ponent of 3-1. The one for I'zt<<1 is not obtained by the exact
correlation function (33), which rather yields an exponent
close to unity for r— 0. The reason is again that the cosine
function of Eq. (46) cannot be approximated by unity for
I'gt<1. The exponent =0.65 (see Fig. 10) is a consequence
of the transition from the short time behavior to the long time
behavior. Since arctan(yf2—1)/4f2—1 is much smaller than
unity, the intermediate slope is smaller than %.

As previously pointed out, all correlation functions ap-
proach a limiting curve at large chain lengths. The reason is
the weak chain length dependence of I'y [cf. Eq. (47)]. As
soon as the intramolecular dynamics determines the correla-
tion function, the logarithmic chain length dependence yields
only small changes in the time scale.

All the theoretical results discussed are in agreement with
experimental findings. Figure 12 provides an example of
measurements of actin filaments of various lengths. For all
samples, the experimental label densities are large enough to
provide label density independent signals.

A drawback of the experimental synthesis of actin fila-
ments is that their length is difficult to adjust. In general,
polydisperse samples are produced. Thus, the actual length
of a measured filament is not precisely known. The filament
length for a theoretical curve is therefore determined such
that the theoretical time scale (which is the only adjustable
parameter) matches the experimental data using the param-
eters lp=16 pm, d=8 nm, T7T=300K, »=0.01P, rg
=0.2 um, and f=7. By this procedure, we obtain the follow-
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FIG. 12. Comparison of the theoretical FCS correlation func-
tions (solid lines) to experimental measurements (squares) on actin
filaments for pL=0.0036, 0.018, 0.035, and 0.15 (left to right).
Inset: FCS correlation function for pL=0.85. The dotted line corre-
sponds to the intramolecular contribution only.

ing lengths: pL=0.0036 (L=180 nm), pL=0.018
(L=900 nm), pL=0.035 (L=1.75 pum), and pL=0.15
(L=7.5 um). Note, for the calculation of p, we use
p=(3lp)‘1, which is an adequate expression for the stiff actin
filaments under consideration as shown in Ref. [26]. Consid-
ering the fact that the samples are polydisperse, the agree-
ment is very good between the theoretical curves and the
experimental data. For most of the measurements, the experi-
mental data are well reproduced over the whole range of the
experimentally accessible time scale.

The inset of Fig. 12 shows the limiting behavior for very
long actin filaments (L=43 um, pL=0.85). The exponent of
the theoretical curve is approximately 0.67 compared to =1
for pL=0.0085, which demonstrates that it decreases with
increasing chain length.

The agreement between the theoretical expression and the
experimental data also implies that the theoretically deter-
mined diffusion coefficients are close to those of actin fila-
ments in solution.

V. SUMMARY AND CONCLUSIONS

In this paper, the fluorescence correlation function of
semiflexible polymers has been determined theoretically.
Moreover, measurements of the FCS correlation functions of
DNA molecules and actin filaments of various lengths have
been presented and compared to theoretical predictions.

For polymer radii of gyration smaller than the size of the
focal volume, the decay of the FCS correlation function is
determined by the diffusion of the whole molecule. When the
typical chain dimension, e.g., the radius of gyration, exceeds
the size of the focal volume, the intramolecular dynamics
becomes relevant and can even dominate the relaxation be-
havior. However, the actual polymer length depends on its
flexibility. Evidently, flexible polymers have to be much
longer than semiflexible ones. Moreover, the longest relax-
ation time of the polymer has to be larger than the time at
which the experimental FCS correlation function has essen-
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tially decayed in order to observe the internal dynamics. In-
creasing the chain length, this limit is easier reached for
semiflexible polymers, because the relaxation time of a flex-
ible polymer increases as L**, whereas semiflexible poly-
mers exhibit the much stronger dependence L*. Hence, it is
much easier to observe the intramolecular dynamics for the
latter molecules.

Our calculations provide analytical approximations for the
FCS correlation functions of flexible and semiflexible poly-
mers. The comparison to the numerical solution of the full
expression exhibits very good agreement in the limits of the
applicability of the approximations.

Moreover, we find very good agreement between the ex-
perimental measurements and the theoretical calculations for
DNA molecules and actin filaments of various lengths. The
theoretical model takes hydrodynamic interactions into ac-
count via a preaveraged Rotne-Prager tensor. The agreement
between measurements on double-stranded DNA and theo-
retical results suggests that hydrodynamic interactions are
taken into account reasonably well. In particular, we cannot
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describe the experimental data by a Rouse-type approach,
which neglects hydrodynamic interactions. This is in contrast
to Ref. [59], where agreement with measurements on single
labeled ds-DNA could only be obtained for the Rouse model.
For highly labeled DNA molecules, a clear distinction be-
tween Rouse and Zimm dynamics is difficult and depends on
chain length because the intramolecular dynamics yields
only a small contribution to the decay of the correlation
function. Diffusion coefficients, however, exhibit a strong
dependence on hydrodynamic interactions and the observed
quantitative agreement between our diffusion coefficients
and those obtained by other measurements (cf. Sec. IV A 1)
clearly underlines that hydrodynamic interactions are of ma-
jor importants for DNA in solution. We would like to point
out that the intramolecular contribution to the decay of the
correlation function is more pronounced (cf. Fig. 7) for
weakly labeled molecules. From our considerations, it is not
at all obvious why Rouse-like dynamics of ds-DNA was ob-
served in [59]. The clarification of this point requires more
measurements on single labeled DNA molecules.
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