000055236 001__ 55236 000055236 005__ 20200423204421.0 000055236 0247_ $$2DOI$$a10.1016/j.surfrep.2006.04.001 000055236 0247_ $$2WOS$$aWOS:000239295100001 000055236 0247_ $$2Handle$$a2128/10582 000055236 037__ $$aPreJuSER-55236 000055236 041__ $$aeng 000055236 082__ $$a330 000055236 084__ $$2WoS$$aChemistry, Physical 000055236 084__ $$2WoS$$aPhysics, Condensed Matter 000055236 1001_ $$0P:(DE-Juel1)130885$$aPersson, B. N. J.$$b0$$uFZJ 000055236 245__ $$aContact mechanics for randomly rough surfaces 000055236 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2006 000055236 300__ $$a201 - 227 000055236 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000055236 3367_ $$2DataCite$$aOutput Types/Journal article 000055236 3367_ $$00$$2EndNote$$aJournal Article 000055236 3367_ $$2BibTeX$$aARTICLE 000055236 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000055236 3367_ $$2DRIVER$$aarticle 000055236 440_0 $$05674$$aSurface Science Reports$$v61$$x0167-5729$$y4 000055236 500__ $$aRecord converted from VDB: 12.11.2012 000055236 520__ $$aWhen two solids are squeezed together they will in general not make atomic contact everywhere within the nominal (or apparent) contact area. This fact has huge practical implications and must be considered in many technological applications. In this paper I briefly review the basic theories of contact mechanics. I consider in detail a recently developed contact mechanics theory. I derive boundary conditions for the stress probability distribution function for elastic, elastoplastic and adhesive contact between solids and present numerical results illustrating some aspects of the theory. I analyze contact problems for very smooth polymer (PMMA) and Pyrex glass surfaces prepared by cooling liquids of glassy materials from above the glass transition temperature. I show that the surface roughness which results from the frozen capillary waves can have a large influence on the contact between the solids. The analysis suggests a new explanation for puzzling experimental results [L. Bureau, T. Baumberger, C. Caroli, arXiv:cond-mat/0510232 v1] about the dependence of the frictional shear stress on the load for contact between a glassy polymer lens and flat substrates. I discuss the possibility of testing the theory using numerical methods, e.g., finite element calculations. (c) 2006 Elsevier B.V. All rights reserved. 000055236 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0 000055236 588__ $$aDataset connected to Web of Science 000055236 650_7 $$2WoSType$$aJ 000055236 773__ $$0PERI:(DE-600)1479038-5$$a10.1016/j.surfrep.2006.04.001$$gVol. 61, p. 201 - 227$$p201 - 227$$q61<201 - 227$$tSurface science reports$$v61$$x0167-5729$$y2006 000055236 8567_ $$uhttp://dx.doi.org/10.1016/j.surfrep.2006.04.001 000055236 8564_ $$uhttps://juser.fz-juelich.de/record/55236/files/0603807.pdf$$yOpenAccess 000055236 8564_ $$uhttps://juser.fz-juelich.de/record/55236/files/0603807.gif?subformat=icon$$xicon$$yOpenAccess 000055236 8564_ $$uhttps://juser.fz-juelich.de/record/55236/files/0603807.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000055236 8564_ $$uhttps://juser.fz-juelich.de/record/55236/files/0603807.jpg?subformat=icon-700$$xicon-700$$yOpenAccess 000055236 8564_ $$uhttps://juser.fz-juelich.de/record/55236/files/0603807.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000055236 909CO $$ooai:juser.fz-juelich.de:55236$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000055236 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt bis 2009 000055236 9141_ $$y2006 000055236 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000055236 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000055236 9201_ $$0I:(DE-Juel1)VDB30$$d31.12.2006$$gIFF$$kIFF-TH-I$$lTheorie I$$x0 000055236 970__ $$aVDB:(DE-Juel1)86175 000055236 980__ $$aVDB 000055236 980__ $$aConvertedRecord 000055236 980__ $$ajournal 000055236 980__ $$aI:(DE-Juel1)PGI-1-20110106 000055236 980__ $$aUNRESTRICTED 000055236 9801_ $$aUNRESTRICTED 000055236 9801_ $$aFullTexts 000055236 981__ $$aI:(DE-Juel1)PGI-1-20110106