000055236 001__ 55236
000055236 005__ 20200423204421.0
000055236 0247_ $$2DOI$$a10.1016/j.surfrep.2006.04.001
000055236 0247_ $$2WOS$$aWOS:000239295100001
000055236 0247_ $$2Handle$$a2128/10582
000055236 037__ $$aPreJuSER-55236
000055236 041__ $$aeng
000055236 082__ $$a330
000055236 084__ $$2WoS$$aChemistry, Physical
000055236 084__ $$2WoS$$aPhysics, Condensed Matter
000055236 1001_ $$0P:(DE-Juel1)130885$$aPersson, B. N. J.$$b0$$uFZJ
000055236 245__ $$aContact mechanics for randomly rough surfaces
000055236 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2006
000055236 300__ $$a201 - 227
000055236 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000055236 3367_ $$2DataCite$$aOutput Types/Journal article
000055236 3367_ $$00$$2EndNote$$aJournal Article
000055236 3367_ $$2BibTeX$$aARTICLE
000055236 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000055236 3367_ $$2DRIVER$$aarticle
000055236 440_0 $$05674$$aSurface Science Reports$$v61$$x0167-5729$$y4
000055236 500__ $$aRecord converted from VDB: 12.11.2012
000055236 520__ $$aWhen two solids are squeezed together they will in general not make atomic contact everywhere within the nominal (or apparent) contact area. This fact has huge practical implications and must be considered in many technological applications. In this paper I briefly review the basic theories of contact mechanics. I consider in detail a recently developed contact mechanics theory. I derive boundary conditions for the stress probability distribution function for elastic, elastoplastic and adhesive contact between solids and present numerical results illustrating some aspects of the theory. I analyze contact problems for very smooth polymer (PMMA) and Pyrex glass surfaces prepared by cooling liquids of glassy materials from above the glass transition temperature. I show that the surface roughness which results from the frozen capillary waves can have a large influence on the contact between the solids. The analysis suggests a new explanation for puzzling experimental results [L. Bureau, T. Baumberger, C. Caroli, arXiv:cond-mat/0510232 v1] about the dependence of the frictional shear stress on the load for contact between a glassy polymer lens and flat substrates. I discuss the possibility of testing the theory using numerical methods, e.g., finite element calculations. (c) 2006 Elsevier B.V. All rights reserved.
000055236 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000055236 588__ $$aDataset connected to Web of Science
000055236 650_7 $$2WoSType$$aJ
000055236 773__ $$0PERI:(DE-600)1479038-5$$a10.1016/j.surfrep.2006.04.001$$gVol. 61, p. 201 - 227$$p201 - 227$$q61<201 - 227$$tSurface science reports$$v61$$x0167-5729$$y2006
000055236 8567_ $$uhttp://dx.doi.org/10.1016/j.surfrep.2006.04.001
000055236 8564_ $$uhttps://juser.fz-juelich.de/record/55236/files/0603807.pdf$$yOpenAccess
000055236 8564_ $$uhttps://juser.fz-juelich.de/record/55236/files/0603807.gif?subformat=icon$$xicon$$yOpenAccess
000055236 8564_ $$uhttps://juser.fz-juelich.de/record/55236/files/0603807.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000055236 8564_ $$uhttps://juser.fz-juelich.de/record/55236/files/0603807.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000055236 8564_ $$uhttps://juser.fz-juelich.de/record/55236/files/0603807.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000055236 909CO $$ooai:juser.fz-juelich.de:55236$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000055236 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000055236 9141_ $$y2006
000055236 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000055236 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000055236 9201_ $$0I:(DE-Juel1)VDB30$$d31.12.2006$$gIFF$$kIFF-TH-I$$lTheorie I$$x0
000055236 970__ $$aVDB:(DE-Juel1)86175
000055236 980__ $$aVDB
000055236 980__ $$aConvertedRecord
000055236 980__ $$ajournal
000055236 980__ $$aI:(DE-Juel1)PGI-1-20110106
000055236 980__ $$aUNRESTRICTED
000055236 9801_ $$aUNRESTRICTED
000055236 9801_ $$aFullTexts
000055236 981__ $$aI:(DE-Juel1)PGI-1-20110106