001     55302
005     20240708133730.0
024 7 _ |2 DOI
|a 10.1016/j.tsf.2005.12.167
024 7 _ |2 WOS
|a WOS:000238249000112
037 _ _ |a PreJuSER-55302
041 _ _ |a eng
082 _ _ |a 070
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Materials Science, Coatings & Films
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a van den Donker, M. N.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB58523
245 _ _ |a The role of plasma induced substrate heating during high rate deposition of microcrystalline silicon solar cells
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2006
300 _ _ |a 562 - 566
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Thin Solid Films
|x 0040-6090
|0 5762
|v 511-512
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a A 13.56 MHz parallel plate hydrogen-diluted silane plasma, operated at high pressure and high power, was used to deposit microcrystalline silicon solar cells with efficiencies of 6-9% at high deposition rates of 0.4-1.2 nm/s. In this regime new challenges arise regarding temperature control, since the high plasma power causes the substrate to heat up significantly during film deposition. We investigated this effect of plasma-induced substrate heating experimentally by means of pyrometric substrate temperature measurements and spectroscopic gas temperature measurements. The substrate temperature was observed to increase by up to 100 K during film deposition, depending on power density and deposition time. Performance of deposited solar cells decreased whenever the plasma induced heating caused a drift outside the ideal temperature window, of around 475 K (similar to 206 degrees C). Further analysis related this decrease in performance to the substrate temperature's influence on film crystallinity and open circuit voltage. (c) 2005 Elsevier B.V. All rights reserved.
536 _ _ |a Erneuerbare Energien
|c P11
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK401
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a silane
653 2 0 |2 Author
|a hydrogen
653 2 0 |2 Author
|a silicon
653 2 0 |2 Author
|a solar cells
653 2 0 |2 Author
|a plasma processing and deposition
653 2 0 |2 Author
|a Raman scattering
700 1 _ |a Schmitz, R.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB3113
700 1 _ |a Appenzeller, W.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB5983
700 1 _ |a Rech, B.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB5941
700 1 _ |a Kessels, W. M. M.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a van de Sanden, M. C. M.
|b 5
|0 P:(DE-HGF)0
773 _ _ |a 10.1016/j.tsf.2005.12.167
|g Vol. 511-512, p. 562 - 566
|p 562 - 566
|q 511-512<562 - 566
|0 PERI:(DE-600)1482896-0
|t Thin solid films
|v 511-512
|y 2006
|x 0040-6090
856 7 _ |u http://dx.doi.org/10.1016/j.tsf.2005.12.167
909 C O |o oai:juser.fz-juelich.de:55302
|p VDB
913 1 _ |k P11
|v Erneuerbare Energien
|l Erneuerbare Energien
|b Energie
|0 G:(DE-Juel1)FUEK401
|x 0
914 1 _ |y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IPV
|l Institut für Photovoltaik
|d 31.12.2006
|g IPV
|0 I:(DE-Juel1)VDB46
|x 0
970 _ _ |a VDB:(DE-Juel1)86256
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-3-20101013
981 _ _ |a I:(DE-Juel1)IEK-5-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21