000005535 001__ 5535
000005535 005__ 20180208201844.0
000005535 0247_ $$2DOI$$a10.2136/vzj2008.0138
000005535 0247_ $$2WOS$$aWOS:000268871900022
000005535 037__ $$aPreJuSER-5535
000005535 041__ $$aeng
000005535 082__ $$a550
000005535 084__ $$2WoS$$aEnvironmental Sciences
000005535 084__ $$2WoS$$aSoil Science
000005535 084__ $$2WoS$$aWater Resources
000005535 1001_ $$0P:(DE-Juel1)129440$$aBogena, H. R.$$b0$$uFZJ
000005535 245__ $$aHybrid Wireless Underground Sensor Networks: Quantification of Signal Attenuation in Soil
000005535 260__ $$aMadison, Wis.$$bSSSA$$c2009
000005535 300__ $$a755 - 761
000005535 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000005535 3367_ $$2DataCite$$aOutput Types/Journal article
000005535 3367_ $$00$$2EndNote$$aJournal Article
000005535 3367_ $$2BibTeX$$aARTICLE
000005535 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000005535 3367_ $$2DRIVER$$aarticle
000005535 440_0 $$010301$$aVadose Zone Journal$$v8$$x1539-1663$$y3
000005535 500__ $$aWe gratefully acknowledge financial support by the SFB/TR 32 "Pattern in Soil-Vegetation-Atmosphere Systems: Monitoring, Modelling, and Data Assimilation'' funded by the Deutsche Forschungsgemeinschaft (DFG).
000005535 520__ $$aWireless sensor network technology allows real-time soil water content monitoring with a high spatial and temporal resolution for observing hydrological processes in small watersheds. The novel wireless soil water content network SoilNet uses the low-cost ZigBee radio network for communication and a hybrid topology with a mixture of underground end devices each wired to several soil sensors and aboveground router devices. Data communication between the end and router devices occurs partially through the soil, and this causes concerns with respect to the feasibility of data communication due to signal attenuation by the soil. In this study, we determined the impact of soil depth, soil water content, and soil electrical conductivity on the signal transmission strength of SoilNet. In a first step, we developed a laboratory experimental setup to measure the impact of soil water content and bulk electrical conductivity on signal transmission strength. The laboratory data were then used to validate a semi-empirical model that simulates signal attenuation due to soil adsorption and reflection and transmission at the soil boundaries. With the validated model, it was possible to show that in the case of a soil layer of 5 cm, sufficient power will remain to ensure data communication over longer distances for most soil conditions. These calculations are fairly simplified and should be considered as a first approximation of the impact of attenuation. In actual field situations, signal transmission may be more complex. Therefore, a field evaluation of signal attenuation is a crucial next step.
000005535 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000005535 588__ $$aDataset connected to Web of Science
000005535 650_7 $$2WoSType$$aJ
000005535 7001_ $$0P:(DE-Juel1)129472$$aHuisman, J. A.$$b1$$uFZJ
000005535 7001_ $$0P:(DE-HGF)0$$aMeier, H.$$b2
000005535 7001_ $$0P:(DE-Juel1)VDB72368$$aWeuthen, A.$$b3$$uFZJ
000005535 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2008.0138$$gVol. 8, p. 755 - 761$$p755 - 761$$q8<755 - 761$$tVadose zone journal$$v8$$x1539-1663$$y2009
000005535 8567_ $$uhttp://dx.doi.org/10.2136/vzj2008.0138
000005535 909CO $$ooai:juser.fz-juelich.de:5535$$pVDB
000005535 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000005535 9141_ $$y2009
000005535 9131_ $$0G:(DE-Juel1)FUEK407$$aDE-HGF$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000005535 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000005535 970__ $$aVDB:(DE-Juel1)113160
000005535 980__ $$aVDB
000005535 980__ $$aConvertedRecord
000005535 980__ $$ajournal
000005535 980__ $$aI:(DE-Juel1)IBG-3-20101118
000005535 980__ $$aUNRESTRICTED
000005535 981__ $$aI:(DE-Juel1)IBG-3-20101118