001     5538
005     20180208224333.0
024 7 _ |2 DOI
|a 10.2136/vzj2008.0029
024 7 _ |2 WOS
|a WOS:000268871900026
037 _ _ |a PreJuSER-5538
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Environmental Sciences
084 _ _ |2 WoS
|a Soil Science
084 _ _ |2 WoS
|a Water Resources
100 1 _ |0 P:(DE-HGF)0
|a Mertens, J.
|b 0
245 _ _ |a Inverse Modeling of Pesticide Leaching in Lysimeters: Local versus Global and Sequential Single-Objective versus Multiobjective Approaches
260 _ _ |a Madison, Wis.
|b SSSA
|c 2009
300 _ _ |a 793 - 804
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 10301
|a Vadose Zone Journal
|v 8
|x 1539-1663
|y 3
500 _ _ |a We are grateful to Dr. Jasper Vrugt for kindly providing us with the SCEM MATLAB code. Th is research was supported by BASF SE and a research grant of the Katholieke Universiteit Leuven, Belgium (GOA-06-07-TBA).
520 _ _ |a This study used field lysimeter leachate and pesticide concentration data within an inverse modeling framework to estimate pesticide degradation and sorption on parameters. Experimental data comprising four pesticide applications during 3 yr were used to compare a local parameter estimation algorithm (Levenberg-Marquardt, LM) with a global algorithm (Shuffled Complex Evolution on Metropolis, SCEM). Good model fits (only marginally better model fits using SCEM) with respect to both the observed leachate volumes and corresponding pesticide concentrations were obtained using both algorithms. Parameter optima found with LM and SCEM were very similar, thus suggesting that LM correctly located the global optimum for our experimental data. Equally as important as the optimal parameter values, however, are the estimated parameter uncertainities. This study revealed that LM (using a Jacobian-based approach) provided too large parameter uncertainities. A logarithmic transformation of the parameter tended to decrease the uncertainty in most cases. The overestimation of parameter uncertainty by LM suggests that model sensitivity close to the optimal parameter set was relatively small and underestimated the sensitivity to large parameter changes. A multiobjective Pareto analysis was subsequently compared with a sequential single-objective approach to reveal the capability of the multiobjective approach to verify model structure and model concept. Our results indicate that a multiobjective SCEM approach is recommended when the objective is to estimate pesticide degradation and sorption parameters and their uncertainty.
536 _ _ |0 G:(DE-Juel1)FUEK407
|2 G:(DE-HGF)
|a Terrestrische Umwelt
|c P24
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Kahl, G.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Gottesbüren, B.
|b 2
700 1 _ |0 P:(DE-Juel1)129548
|a Vanderborght, J.
|b 3
|u FZJ
773 _ _ |0 PERI:(DE-600)2088189-7
|a 10.2136/vzj2008.0029
|g Vol. 8, p. 793 - 804
|p 793 - 804
|q 8<793 - 804
|t Vadose zone journal
|v 8
|x 1539-1663
|y 2009
856 7 _ |u http://dx.doi.org/10.2136/vzj2008.0029
909 C O |o oai:juser.fz-juelich.de:5538
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK407
|a DE-HGF
|b Erde und Umwelt
|k P24
|l Terrestrische Umwelt
|v Terrestrische Umwelt
|x 0
914 1 _ |y 2009
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)VDB793
|d 31.10.2010
|g ICG
|k ICG-4
|l Agrosphäre
|x 1
970 _ _ |a VDB:(DE-Juel1)113164
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-3-20101118


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21