001     55440
005     20200402210312.0
024 7 _ |2 pmid
|a pmid:17141806
024 7 _ |2 DOI
|a 10.1016/j.jmb.2006.11.013
024 7 _ |2 WOS
|a WOS:000243749600023
037 _ _ |a PreJuSER-55440
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
100 1 _ |a Schmidt, H.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB2063
245 _ _ |a Solution structure of a Hck SH3 domain ligand complex reveals novel interaction modes
260 _ _ |a Amsterdam [u.a.]
|b Elsevier
|c 2007
300 _ _ |a 1517 - 1532
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Molecular Biology
|x 0022-2836
|0 3552
|v 365
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We studied the interaction of hematopoietic cell kinase SH3 domain (HckSH3) with an artificial 12-residue proline-rich peptide PD1 (HSKYPLPPLPSL) identified as high affinity ligand (K(D)=0.2 muM). PD1 shows an unusual ligand sequence for SH3 binding in type I orientation because it lacks the typical basic anchor residue at position P(-3), but instead has a tyrosine residue at this position. A basic lysine residue, however, is present at position P(-4). The solution structure of the HckSH3:PD1 complex, which is the first HckSH3 complex structure available, clearly reveals that the P(-3) tyrosine residue of PD1 does not take the position of the typical anchor residue but rather forms additional van der Waals interactions with the HckSH3 RT loop. Instead, lysine at position P(-4) of PD1 substitutes the function of the P(-3) anchor residue. This finding expands the well known ligand consensus sequence +xxPpxP by +xxxPpxP. Thus, software tools like iSPOT fail to identify PD1 as a high-affinity HckSH3 ligand so far. In addition, a short antiparallel beta-sheet in the RT loop of HckSH3 is observed upon PD1 binding. The structure of the HckSH3:PD1 complex reveals novel features of SH3 ligand binding and yields new insights into the structural basics of SH3-ligand interactions. Consequences for computational prediction tools adressing SH3-ligand interactions as well as the biological relevance of our findings are discussed.
536 _ _ |a Funktion und Dysfunktion des Nervensystems
|c P33
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK409
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Amides
650 _ 2 |2 MeSH
|a Amino Acid Sequence
650 _ 2 |2 MeSH
|a Binding Sites
650 _ 2 |2 MeSH
|a Deuterium Oxide: metabolism
650 _ 2 |2 MeSH
|a Half-Life
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Kinetics
650 _ 2 |2 MeSH
|a Ligands
650 _ 2 |2 MeSH
|a Models, Molecular
650 _ 2 |2 MeSH
|a Molecular Sequence Data
650 _ 2 |2 MeSH
|a Nuclear Magnetic Resonance, Biomolecular
650 _ 2 |2 MeSH
|a Peptide Mapping
650 _ 2 |2 MeSH
|a Peptides: chemistry
650 _ 2 |2 MeSH
|a Peptides: metabolism
650 _ 2 |2 MeSH
|a Protein Binding
650 _ 2 |2 MeSH
|a Proto-Oncogene Proteins c-hck: analysis
650 _ 2 |2 MeSH
|a Proto-Oncogene Proteins c-hck: chemistry
650 _ 2 |2 MeSH
|a Proto-Oncogene Proteins c-hck: metabolism
650 _ 2 |2 MeSH
|a Protons
650 _ 2 |2 MeSH
|a Solutions
650 _ 2 |2 MeSH
|a Water: metabolism
650 _ 2 |2 MeSH
|a src Homology Domains
650 _ 7 |0 0
|2 NLM Chemicals
|a Amides
650 _ 7 |0 0
|2 NLM Chemicals
|a Ligands
650 _ 7 |0 0
|2 NLM Chemicals
|a Peptides
650 _ 7 |0 0
|2 NLM Chemicals
|a Protons
650 _ 7 |0 0
|2 NLM Chemicals
|a Solutions
650 _ 7 |0 7732-18-5
|2 NLM Chemicals
|a Water
650 _ 7 |0 7789-20-0
|2 NLM Chemicals
|a Deuterium Oxide
650 _ 7 |0 EC 2.7.10.2
|2 NLM Chemicals
|a HCK protein, human
650 _ 7 |0 EC 2.7.10.2
|2 NLM Chemicals
|a Proto-Oncogene Proteins c-hck
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a human Hck
653 2 0 |2 Author
|a SH3-ligand interaction
653 2 0 |2 Author
|a NMR
653 2 0 |2 Author
|a complex structure
700 1 _ |a Hoffmann, S.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB630
700 1 _ |a Tran, T.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Stoldt, M.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB21601
700 1 _ |a Stangler, T.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB8627
700 1 _ |a Wiesehan, K.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB15437
700 1 _ |a Willbold, D.
|b 6
|u FZJ
|0 P:(DE-Juel1)132029
773 _ _ |a 10.1016/j.jmb.2006.11.013
|g Vol. 365, p. 1517 - 1532
|p 1517 - 1532
|q 365<1517 - 1532
|0 PERI:(DE-600)1355192-9
|t Journal of molecular biology
|v 365
|y 2007
|x 0022-2836
856 7 _ |u http://dx.doi.org/10.1016/j.jmb.2006.11.013
909 C O |o oai:juser.fz-juelich.de:55440
|p VDB
913 1 _ |k P33
|v Funktion und Dysfunktion des Nervensystems
|l Funktion und Dysfunktion des Nervensystems
|b Gesundheit
|0 G:(DE-Juel1)FUEK409
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k INB-2
|l Molekulare Biophysik
|d 31.12.2008
|g INB
|0 I:(DE-Juel1)VDB805
|x 0
920 1 _ |k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|0 I:(DE-Juel1)VDB1045
|x 1
970 _ _ |a VDB:(DE-Juel1)86459
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ISB-2-20090406
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
981 _ _ |a I:(DE-Juel1)IBI-7-20200312
981 _ _ |a I:(DE-Juel1)ISB-2-20090406
981 _ _ |a I:(DE-Juel1)VDB1045
981 _ _ |a I:(DE-Juel1)ICS-6-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21