000055509 001__ 55509
000055509 005__ 20200423204424.0
000055509 0247_ $$2DOI$$a10.1063/1.2426890
000055509 0247_ $$2WOS$$aWOS:000243379900085
000055509 0247_ $$2Handle$$a2128/18083
000055509 037__ $$aPreJuSER-55509
000055509 041__ $$aeng
000055509 082__ $$a530
000055509 084__ $$2WoS$$aPhysics, Applied
000055509 1001_ $$0P:(DE-HGF)0$$aSekiguchi, T.$$b0
000055509 245__ $$aOne-dimensional ordering of Ge nanoclusters along atomically straight steps of Si(111)
000055509 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2007
000055509 300__ $$a013108
000055509 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000055509 3367_ $$2DataCite$$aOutput Types/Journal article
000055509 3367_ $$00$$2EndNote$$aJournal Article
000055509 3367_ $$2BibTeX$$aARTICLE
000055509 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000055509 3367_ $$2DRIVER$$aarticle
000055509 440_0 $$0562$$aApplied Physics Letters$$v90$$x0003-6951
000055509 500__ $$aRecord converted from VDB: 12.11.2012
000055509 520__ $$aGe nanostructures grown by molecular beam epitaxy on a vicinal Si(111) surface with atomically well-defined steps are studied by means of scanning tunneling microscopy and spectroscopy. When the substrate temperature during deposition is around 250 degrees C, Ge nanoclusters of diameters less than 2.0 nm form a one-dimensional array of the periodicity 2.7 nm along each step. This self-organization is due to preferential nucleation of Ge on the unfaulted 7 x 7 half-unit cells at the upper step edges. Scanning tunneling spectroscopy reveals localized electronic states of the nanoclusters. (c) 2007 American Institute of Physics.
000055509 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000055509 588__ $$aDataset connected to Web of Science
000055509 650_7 $$2WoSType$$aJ
000055509 7001_ $$0P:(DE-HGF)0$$aYoshida, S.$$b1
000055509 7001_ $$0P:(DE-HGF)0$$aItoh, K. M.$$b2
000055509 7001_ $$0P:(DE-Juel1)VDB9864$$aMyslivecek, J.$$b3$$uFZJ
000055509 7001_ $$0P:(DE-Juel1)VDB5601$$aVoigtländer, B.$$b4$$uFZJ
000055509 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.2426890$$gVol. 90, p. 013108$$p013108$$q90<013108$$tApplied physics letters$$v90$$x0003-6951$$y2007
000055509 8567_ $$uhttp://dx.doi.org/10.1063/1.2426890
000055509 8564_ $$uhttps://juser.fz-juelich.de/record/55509/files/1.2426890.pdf$$yOpenAccess
000055509 8564_ $$uhttps://juser.fz-juelich.de/record/55509/files/1.2426890.gif?subformat=icon$$xicon$$yOpenAccess
000055509 8564_ $$uhttps://juser.fz-juelich.de/record/55509/files/1.2426890.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000055509 8564_ $$uhttps://juser.fz-juelich.de/record/55509/files/1.2426890.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000055509 8564_ $$uhttps://juser.fz-juelich.de/record/55509/files/1.2426890.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000055509 909CO $$ooai:juser.fz-juelich.de:55509$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000055509 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000055509 9141_ $$y2007
000055509 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000055509 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000055509 9201_ $$0I:(DE-Juel1)VDB801$$d31.12.2010$$gIBN$$kIBN-3$$lGrenz- und Oberflächen$$x0
000055509 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000055509 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x2
000055509 970__ $$aVDB:(DE-Juel1)86552
000055509 980__ $$aVDB
000055509 980__ $$aConvertedRecord
000055509 980__ $$ajournal
000055509 980__ $$aI:(DE-Juel1)PGI-3-20110106
000055509 980__ $$aI:(DE-Juel1)VDB381
000055509 980__ $$aI:(DE-82)080009_20140620
000055509 980__ $$aUNRESTRICTED
000055509 9801_ $$aFullTexts
000055509 981__ $$aI:(DE-Juel1)PGI-3-20110106
000055509 981__ $$aI:(DE-Juel1)VDB381
000055509 981__ $$aI:(DE-Juel1)VDB881