001     55664
005     20190625111043.0
024 7 _ |2 DOI
|a 10.2136/vzj2006.0096
024 7 _ |2 WOS
|a WOS:000245811500002
024 7 _ |a altmetric:21816629
|2 altmetric
037 _ _ |a PreJuSER-55664
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Environmental Sciences
084 _ _ |2 WoS
|a Soil Science
084 _ _ |2 WoS
|a Water Resources
100 1 _ |a Vanderborght, J.
|b 0
|u FZJ
|0 P:(DE-Juel1)129548
245 _ _ |a Review of Dispersivities for Transport Modeling in Soils
260 _ _ |a Madison, Wis.
|b SSSA
|c 2007
300 _ _ |a 29 - 52
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Vadose Zone Journal
|x 1539-1663
|0 10301
|v 6
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The one-dimensional convection-dispersion equation is often used to estimate the risk of nonpoint source groundwater contamination and the dispersivity in this equation is known to be a sensitive parameter for predicting the mass that leaches through the vadose zone to the groundwater. We derived a database of dispersivities from leaching studies in soils. Besides dispersivities, the database contains information about experimental parameters: transport distance, scale of the experiment, flow rate, boundary conditions, soil texture, pore water velocity, transport velocity, and measurement method. Dispersivities were found to increase with increasing transport distance and scale of the experiment. Considerably larger dispersivities were observed for saturated than for unsaturated flow conditions. No significant effect of soil texture on dispersivity was observed, but the interactive effects of soil texture, lateral scale of the experiment, and flow rate on dispersivity were significant. In coarse-textured soils, lateral water redistribution may take place across relatively larger distances, which explains the larger dependency of dispersivity on lateral scale of the experiment in coarse-than in fine-textured soils. The activation of large interaggregate pores may explain the increase in dispersivity with increasing flow rate in fine-textured soils, which was not observed in soils with a coarser texture. The distribution of dispersivities was positively skewed and better described with a lognormal than a normal distribution. Different experimental factors explained 25% of the total variability of log(e)-transformed dispersivities. The unexplained variance of the dispersivity was large and its coefficient of variation was 100%.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Vereecken, H.
|b 1
|u FZJ
|0 P:(DE-Juel1)129549
773 _ _ |a 10.2136/vzj2006.0096
|g Vol. 6, p. 29 - 52
|p 29 - 52
|q 6<29 - 52
|0 PERI:(DE-600)2088189-7
|t Vadose zone journal
|v 6
|y 2007
|x 1539-1663
856 7 _ |u http://dx.doi.org/10.2136/vzj2006.0096
909 C O |o oai:juser.fz-juelich.de:55664
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.10.2010
|g ICG
|k ICG-4
|l Agrosphäre
|0 I:(DE-Juel1)VDB793
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l Jülich-Aachen Research Alliance - Energy
|g JARA
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1045
|k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)86826
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-3-20101118
981 _ _ |a I:(DE-Juel1)VDB1045
981 _ _ |a I:(DE-Juel1)VDB1047


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21