001     55665
005     20180211164623.0
024 7 _ |2 DOI
|a 10.2136/vzj2006.0103
024 7 _ |2 WOS
|a WOS:000245811500010
037 _ _ |a PreJuSER-55665
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Environmental Sciences
084 _ _ |2 WoS
|a Soil Science
084 _ _ |2 WoS
|a Water Resources
100 1 _ |a Vanderborght, J.
|b 0
|u FZJ
|0 P:(DE-Juel1)129548
245 _ _ |a One-Dimensional Modeling of Transport in Soils with Depth-Dependent Dispersion, Sorption and Decay
260 _ _ |a Madison, Wis.
|b SSSA
|c 2007
300 _ _ |a 140 - 148
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Vadose Zone Journal
|x 1539-1663
|0 10301
|v 6
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Macroscopic spatial variations in advection velocity lead to an increase in dispersion with increasing travel distance or depth. In soils, this increase goes along with a decrease in decay and sorption of organic substances. We used three different one-dimensional models that make different assumptions about the dispersion process to compare predicted leaching in a 1-m-deep soil profile with layers with different sorption and decay parameters. The first two convective dispersive models assume that dispersion results from microscopic variations in solute particle velocities that are not correlated across soil layer boundaries. The third model, a stream tube model ( STM), assumes that the particle velocity remains constant along its trajectory and is perfectly correlated in different layers. The three models were parameterized to predict the same inert tracer breakthrough curve ( BTC) at 1-m depth. The first convective-dispersive model assumes a constant dispersion coefficient ("homogeneous'' convection-dispersion equation [CDE]). The second model uses different dispersion coefficients in the different layers ("layered'' CDE) to predict the same inert tracer BTCs as the STM at the layer boundaries. Despite similar predictions of inert tracer BTCs, the models predicted different BTCs of reactive substances at 1-m depth. The different predictions by the STM and layered CDE illustrate the importance of the correlation of solute particle velocities in different soil layers. They also point to a fundamental problem related to the use of a CDE with a depth-dependent dispersion to mimic a dispersion process caused by macroscopic variations in particle velocities.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Vereecken, H.
|b 1
|u FZJ
|0 P:(DE-Juel1)129549
773 _ _ |a 10.2136/vzj2006.0103
|g Vol. 6, p. 140 - 148
|p 140 - 148
|q 6<140 - 148
|0 PERI:(DE-600)2088189-7
|t Vadose zone journal
|v 6
|y 2007
|x 1539-1663
856 7 _ |u http://dx.doi.org/10.2136/vzj2006.0103
909 C O |o oai:juser.fz-juelich.de:55665
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.10.2010
|g ICG
|k ICG-4
|l Agrosphäre
|0 I:(DE-Juel1)VDB793
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l Jülich-Aachen Research Alliance - Energy
|g JARA
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1045
|k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)86827
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-3-20101118
981 _ _ |a I:(DE-Juel1)VDB1045
981 _ _ |a I:(DE-Juel1)VDB1047


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21