001     55869
005     20240610121114.0
024 7 _ |a 10.1063/1.2408382
|2 DOI
024 7 _ |a WOS:000243890800059
|2 WOS
024 7 _ |a 2128/17185
|2 Handle
037 _ _ |a PreJuSER-55869
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Mlynarczyk, M.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB66420
245 _ _ |a Surface layer of SrRuO3 epitaxial thin films under oxidizing and reducing conditions
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2007
300 _ _ |a 023701 - 0237011
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Applied Physics
|x 0021-8979
|0 3051
|y 2
|v 101
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Imperfect stoichiometry and heterogeneity of a surface layer of SrRuO3 epitaxial thin films, grown on SrTiO3 substrates, are presented with the help of various methods. Rutherford backscattering spectroscopy, x-ray photoemission spectroscopy (XPS), and time of flight secondary ion mass spectrometry are used to obtain information about the stoichiometry and uniformity of the SrRuO3 structure. The temperature of chemical decomposition is first determined for polycrystalline samples under different conditions using thermogravimetry analysis. Then the determined values are used for thin film annealings in high and low oxygen pressure ambients, namely, air, vacuum, and hydrogen. The surface deterioration of the thin film together with changes in its electronic structure is investigated. O1s and Sr3d core lines measured by XPS for as-made samples obviously consist of multiple components indicating different chemical surroundings of atoms. Thanks to different incident beam angle measurements it is possible to distinguish between interior and surface components. Valence band spectra of the interior of the film are consistent with theoretical calculations. After annealing, the ratio of the different components changes drastically. Stoichiometry near the surface changes, mostly due to ruthenium loss (RuOX) or a segregation process. The width and position of the Ru3p line for as-made samples suggest a mixed oxidation state from metallic to fully oxidized. Long annealing in hydrogen or vacuum ambient leads to a complete reduction of ruthenium to the metallic state. Local conductivity atomic force microscopy scans reveal the presence of nonconductive adsorbates incorporated in the surface region of the film. Charge transport in these measurements shows a tunneling character. Scanning tunneling microscopy scans show some loose and mobile adsorbates on the surface, likely containing hydroxyls. These results suggest that an adequate description of a SrRuO3 thin film should take into account imperfections and high reactivity of its surface region. (c) 2007 American Institute of Physics.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
536 _ _ |a Terrestrische Umwelt
|c P24
|0 G:(DE-Juel1)FUEK407
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Szot, K.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB2799
700 1 _ |a Petraru, A.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB5557
700 1 _ |a Poppe, U.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB21377
700 1 _ |a Breuer, U.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB2782
700 1 _ |a Waser, R.
|b 5
|u FZJ
|0 P:(DE-Juel1)131022
700 1 _ |a Tomala, K.
|b 6
|0 P:(DE-HGF)0
773 _ _ |a 10.1063/1.2408382
|g Vol. 101, p. 023701 - 0237011
|p 023701 - 0237011
|q 101<023701 - 0237011
|0 PERI:(DE-600)1476463-5
|t Journal of applied physics
|v 101
|y 2007
|x 0021-8979
856 7 _ |u http://dx.doi.org/10.1063/1.2408382
856 4 _ |u https://juser.fz-juelich.de/record/55869/files/1.2408382.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/55869/files/1.2408382.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/55869/files/1.2408382.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/55869/files/1.2408382.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/55869/files/1.2408382.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:55869
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 1
914 1 _ |y 2007
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |d 31.12.2010
|g IFF
|k IFF-6
|l Elektronische Materialien
|0 I:(DE-Juel1)VDB786
|x 0
920 1 _ |d 14.09.2008
|g CNI
|k CNI
|l Center of Nanoelectronic Systems for Information Technology
|0 I:(DE-Juel1)VDB381
|x 1
|z 381
920 1 _ |d 31.12.2010
|g IFF
|k IFF-8
|l Mikrostrukturforschung
|0 I:(DE-Juel1)VDB788
|x 2
920 1 _ |0 I:(DE-Juel1)ZCH-20090406
|k ZCH
|l Zentralabteilung für Chemische Analysen
|g ZCH
|x 3
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 4
970 _ _ |a VDB:(DE-Juel1)87190
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB381
981 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)ZEA-3-20090406
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21