000055901 001__ 55901
000055901 005__ 20240709081816.0
000055901 0247_ $$2pmid$$apmid:16853601
000055901 0247_ $$2DOI$$a10.1021/jp052974p
000055901 0247_ $$2WOS$$aWOS:000232959800012
000055901 037__ $$aPreJuSER-55901
000055901 041__ $$aeng
000055901 082__ $$a530
000055901 1001_ $$0P:(DE-Juel1)VDB32996$$aShiratori, Y.$$b0$$uFZJ
000055901 245__ $$aPolymorphism in micro-, submicro-, and nanocrystalline NaNbO3
000055901 260__ $$aWashington, DC$$bSoc.$$c2005
000055901 300__ $$a20122 - 20130
000055901 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000055901 3367_ $$2DataCite$$aOutput Types/Journal article
000055901 3367_ $$00$$2EndNote$$aJournal Article
000055901 3367_ $$2BibTeX$$aARTICLE
000055901 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000055901 3367_ $$2DRIVER$$aarticle
000055901 440_0 $$03694$$aJournal of Physical Chemistry B$$v109$$x1520-6106$$y43
000055901 500__ $$aRecord converted from VDB: 12.11.2012
000055901 520__ $$aNaNbO(3) powders with various particle sizes (ranging from 30 nm to several microns) and well-controlled stoichiometry were obtained through microemulsion-mediated synthesis. The effect of particle size on the phase transformation of the prepared NaNbO(3) powders was studied using X-ray powder diffraction, Raman spectroscopy, and nuclear site group analysis based on these spectroscopic data. Coarsened particles exhibit an orthorhombic Pbcm (D(2h)(11), no. 57) structure corresponding to the bulk structure, as observed for single crystals or powders prepared by conventional solid-state reaction. The crystal symmetry of submicron powders was refined with the space group Pmc2(1) (C(2v)(2), no. 26). The reduced perovskite cell volumes of these submicron powders were most expanded compared to all the other structures. Fine particles with a diameter of less than 70 nm as measured from SEM observations showed an orthorhombic Pmma (D(2h)(5), no. 51) crystal symmetry. The perovskite formula cell of this structure was pseudocubic and was the most compact one. A possible mechanism of the phase transformation is suggested.
000055901 536__ $$0G:(DE-Juel1)FUEK257$$2G:(DE-HGF)$$aChemie und Dynamik der Geo-Biosphäre$$cU01$$x0
000055901 588__ $$aDataset connected to Pubmed
000055901 7001_ $$0P:(DE-Juel1)VDB22119$$aMagrez, A.$$b1$$uFZJ
000055901 7001_ $$0P:(DE-Juel1)129189$$aDornseiffer, J.$$b2$$uFZJ
000055901 7001_ $$0P:(DE-HGF)0$$aHaegel, F.-H.$$b3
000055901 7001_ $$0P:(DE-Juel1)130894$$aPithan, C.$$b4$$uFZJ
000055901 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b5$$uFZJ
000055901 773__ $$0PERI:(DE-600)2006039-7$$a10.1021/jp052974p$$gVol. 109, p. 20122 - 20130$$p20122 - 20130$$q109<20122 - 20130$$tThe @journal of physical chemistry <Washington, DC> / B$$v109$$x1520-6106$$y2005
000055901 8567_ $$uhttp://dx.doi.org/10.1021/jp052974p
000055901 909CO $$ooai:juser.fz-juelich.de:55901$$pVDB
000055901 9131_ $$0G:(DE-Juel1)FUEK257$$bEnvironment (Umwelt)$$kU01$$lChemie und Dynamik der Geo-Biosphäre$$vChemie und Dynamik der Geo-Biosphäre$$x0
000055901 9141_ $$y2005
000055901 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000055901 9201_ $$0I:(DE-Juel1)VDB321$$d31.12.2006$$gIFF$$kIFF-IEM$$lElektronische Materialien$$x1
000055901 9201_ $$0I:(DE-Juel1)VDB48$$d31.12.2006$$gICG$$kICG-II$$lTroposphäre$$x2
000055901 970__ $$aVDB:(DE-Juel1)87240
000055901 980__ $$aVDB
000055901 980__ $$aConvertedRecord
000055901 980__ $$ajournal
000055901 980__ $$aI:(DE-Juel1)PGI-7-20110106
000055901 980__ $$aI:(DE-Juel1)IEK-8-20101013
000055901 980__ $$aUNRESTRICTED
000055901 981__ $$aI:(DE-Juel1)ICE-3-20101013
000055901 981__ $$aI:(DE-Juel1)PGI-7-20110106
000055901 981__ $$aI:(DE-Juel1)IEK-8-20101013