
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

Technical Report

Report on the Jülich
Blue Gene/L Scaling Workshop 2006

Wolfgang Frings, Marc-André Hermanns, Bernd Mohr,
Boris Orth (Editors)

FZJ-ZAM-IB-2007-02

February 2007

(last change: 16.2.2007)





Report on the J̈ulich Blue Gene/L Scaling Workshop 2006

Wolfgang Frings, Marc-André Hermanns,
Bernd Mohr, Boris Orth (Eds.)

John von Neumann Institute for Computing (NIC),
Research Centre Jülich

31. January 2007

Abstract

The John von Neumann Institute for Computing (NIC), IBM, andthe Blue Gene Consortium have
jointly sponsored the first ”Blue Gene/L Scaling Workshop” in Jülich, Germany, on December 5-7,
2006. The purpose of the workshop was to provide participantsthe chance to scale their codes across
an 8 rack Blue Gene/L system. Besides the hardware, appropriate software and support personnel
were provided to accomplish this task. Jülich provided about 800.000 CPU hours on the 8-rack Blue
Gene system JUBL (http://www.fz-juelich.de/zam/ibm-bgl) over a three day period
for the scaling runs.

The attendees of the workshop were selected by a peer review team. Selection criteria were
the confidence that the code would scale across 8 racks, if theJUBL infrastructure (OS, compilers,
libraries) support the user request, and the scientific impact that the code could produce. Members
selected were paired up with assigned advisors from ArgonneNational Laboratory, IBM, and NIC,
who assisted in administrative issues (log on, moving data,storing data), and scaling support.

This report presents the outcome of the workshop as a collection of the results of running, scaling
and optimizing the following seven application on Blue Gene/L:

1. Molecular Dynamics Studies of Radiation Hard Materials (page 2)
Ian J. Bush, Ilian T. Todorov, CCLRC Daresbury Laboratory, United Kingdom

2. Thermonuclear Supernovae: Simulations of Delayed Detonation with
Adaptive Mesh Refinement and Lagrangian Tracer Particles (page 5)
Anshu Dubey, Center for Astrophysical Thermonuclear Flashes, University of Chicago, USA

3. Large scale ab initio calculations of functional materials (page 7)
Markus E. Gruner, Sanjeev K. Nayak, and Peter Entel,
Theoretical Physics, University of Duisburg-Essen, Germany

4. Parallel Stabilized Finite Element Methods for Aero-, Hemo- and
Hydrodynamics (page 9)
Mike Nicolai, Markus Probst and Marek Behr,
Computational Analysis of Technical Systems, RWTH Aachen University

5. Development of Scalable Software Infrastructure on Blue Gene Systems (page 13)
Akira Nishida, Chuo University, Japan
Hisashi Kotakemori, Akira Nukada, Japan Science and Technology Agency, Japan
Akihiro Fujii, Kogakuin University, Japan

6. Turbulent convection for very large aspect ratios (page 15)
Jörg Schumacher, Department of Mechanical Engineering, Technische Universiẗat Ilmenau,
Matthias P̈utz, Deep Computing – Strategic Growth Business, IBM

7. Numerical simulations of QCD (page 19)
Hinnerk Sẗuben, Konrad-Zuse-Zentrum für Informationstechnik Berlin, Germany,
Thomas Streuer, Department of Physics and Astronomy, University of Kentucky, Lexington,
USA

1



1 Molecular Dynamics Studies of Radiation Hard Materials

Ian J. Bush, Ilian T. Todorov
CCLRC Daresbury Laboratory, Keckwick Lane, Daresbury, Cheshire, WA4 4AD, UK

The portability and performance ofDL POLY3 on Blue Gene (BG/L) has been examined at the Scaling
Workshop.DL POLY3 is a classical molecular dynamics package developed at CCLRC Daresbury Lab-
oratory [1]. It is a very widely used application, with a few thousand licenses being held worldwide, and
may be used to study a very wide range of systems due to the flexibility of the force field that it supports.
However, the code has never been run before on systems with appreciably more than 1000 processors.

The system chosen for the workshop was a model of radiation damage in a fluoritized Zirconium py-
rochlore. One of the native Gadolinium ions in the system wasreplaced by Uranium, which was then
given a velocity consistent with a 100 keV recoil after an alpha decay. Due to the very high velocity
of the Uranium ion it is necessary to study very large supercells, and the total system size we use is
approximately 14.6 million particles. It should be noted that this is the first attempt to model this system
with a realistic recoil, previous work having been carried out at appreciably lower energies [2,3,4]. Since
both the required size of system and the number of timesteps increases with the recoil energy it is only
on machines with power comparable to the Jülich BG/L that these calculations may be performed.

It was hoped that production runs could be performed as well as benchmarks. However, due to time
constraints and unforeseen problems around the large I/O demands of the code for systems of such size,
this proved not to be possible.

1.1 DL POLY3

DL POLY3 is a totally distributed memory code. The scaling of the timeto solution depends slightly
on the force field employed, but it is always approximately O(N). To achieve both the time and memory
scaling a link-cell algorithm [5] is used, which is essentially a domain decomposition method. The force
field used for the above simulations is relatively simple, but is not trivial. The various terms can be
generalised as

1. Short range repulsion
2. Van Der Waal’s (VDW) attraction
3. Coulomb forces

1 and 2 are both short range terms, and are handled together inDL POLY3. As such subsequent refer-
ences to VDW terms should be understood to include both theseterms. Due to the short range of these
forces they should scale very well with processor count due to their spatial locality (compare halo ex-
change algorithms). Previous experience suggested that for the test case the scaling of the VDW terms
should begin to fall away from perfect only when using the full size of the machine (16384 processors).

On the other hand Coulomb forces are long range terms, and have to be handled differently. As is
standard, the Ewald sum technique is used inDL POLY3. This splits the evaluation into two terms – one
short ranged, one long ranged. The former can be handled in a very similar way to the VDW terms, and
hence is evaluated in real space. The long range term, however, has to be handled differently.DL POLY3
uses the Smooth Particle Mesh Ewald (SPME) algorithm [6], the key feature of which is a Fast Fourier
Transform (FFT). For this DaFT is used, a package written at Daresbury. This has some features in
common with the various volumetric transforms that have been developed, but is novel in that it avoids
performing ’all-to-all’ operations by parallelising the individual 1D FFTs [7].

The use of an FFT implies a considerable amount of communication, so one would expect that the scaling
is ultimately controlled by this portion of the code. One of the main reasons for our attendance at the
workshop was to examine this.

2



1.2 PortingDL POLY3 to BG/L

As the code is written in standard conforming Fortran and MPIno major problems were experienced
in portingDL POLY3 to BG/L. The only issue that stopped the code running ”as is” was that at certain
points in the code very large numbers of messages were outstanding, causing the machine to run out
of memory due to the number of buffers required. This was veryeasily solved by introducing some
handshaking to cut down on the number of outstanding messages. This problem had not been observed
before due to the smaller number of processors on which the code had been run.

1.3 Results

Once ported, excepting one problem, described below, the code ran and scaled very well ”out of the box”.
The scaling for MD of the test system described above is shownbelow. The figure 1 shows speed-up
values which are calculated relative to 2048 processors as below that insufficient memory is available to
run the simulation. Note that the use of speed-up obscures the absolute time - clearly some components
are more important than others - for this see the table below.All jobs were run in virtual node mode.

Figure 1: Scaling of DL POLY3 on BG/L: ”MD” shows the scaling of the total computation time,
”Link” refers the time taken at each time step to implement the link-cell algorithm (and build the Verlet
neighbour list) and the remainder are the components of the force field terms outlined above.

It can be seen that the scaling for the various elements of theforce field is good. The VDW and short
range Ewald terms both scale almost perfectly, and at least for VDW terms the expected deviation from
ideal behaviour at 16384 processors is not very apparent.

As expected the long range Ewald terms, i.e. those terms thatrequire an FFT, scale less well. However,
given the comparatively small size of the FFT grid, 512*512*512, the scaling is still good.

3



The scaling of the time spent in implementing the link-cellsand the other parts of the calculation is
curious. There is very little deviation from straight line behaviour, but this line is less than perfect. The
reason for this requires more investigation.

Number of
Processors

MD Link VDW Ewald
Short Range

Ewald
Long Range

Other

2048 2.70 0.383 0.333 0.256 1.333 0.389
4096 1.50 0.220 0.163 0.136 0.751 0.230
8192 0.72 0.124 0.083 0.067 0.327 0.123
16384 0.49 0.067 0.043 0.037 0.270 0.069

The table above reports the time per timestep for each of the previously mentioned components of the
execution. It can be seen that, at these processor counts andfor this system, the dominant term is the
long range component of the Ewald summation. Whilst not totally unexpected the margin by which this
dominates is surprising, as for smaller systems it was foundthat the time taken for this term was roughly
comparable with that for the VDW and short ranged Ewald terms. The behaviour is probably a reflection
of the system size scaling of the long range Ewald term being O(NLog(N)), as compared to O(N) for the
other sections.

The most important time in the above table is that for an MD timestep on 16384 processors. This is
sufficiently small to allow full simulations to be performedin a realistic amount of time, or to put it
another way, the code runs fast enough to allow science to be done. This must be the ultimate criterion
of performance!

Xprofiler and explicit timings were used to examine the performance of the code that implements the
long range Ewald terms. It was found that most of the time taken is in just two areas:
1. The loop nest that interpolates the ionic charges onto theregular grid
2. The message passing time in the FFT
The latter may be extracted by taking the difference betweenthe measured times and those reported
by Xprofiler, since this tool reports only CPU time. These aretwo very short sections of code and are
obvious candidates for optimisation.

The one major problem that was experienced was I/O. Reading the input file took 10 minutes, and
dumping the final results1/2 hour. While these are not too bad, as each has only to be done once, it
was found impossible to perform periodic dumping of the atomic coordinates. To give an idea of how
bad this problem is it takes about 4 minutes to perform 500 time steps, and 10 minutes to dump the
coordinates. As a full simulation would take over 70,000 timesteps and require coordinate dumping
every 500 timesteps it is clear that the total time taken would be prohibitive. As such in all the above
figures the periodic dumping of coordinates has not been included, and the time reported is only for the
MD steps, not the initialization and finalization.

The reason for this bottleneck is probably in the way I/O is implemented inDL POLY3 rather than the
Blue Gene I/O subsystem, at least at present. InDL POLY3 all I/O is performed
1. in serial, i.e. all through one processor
2. to/from formatted files
The reasons that it is done in such a simple way are simplicityand portability of the files, and up until
now the time taken for I/O has just not been an issue in the development of the code as the time taken
has been small compared to the compute time. However it is nowvery clear that if such system sizes are
to be regularly simulated the I/O performance must be investigated.

4



1.4 Summary and Future Work

DL POLY3 has been shown to scale well out to 16384 processors on BG/L. Porting was very straight-
forward, and the code scaled very well ”out of the box”. It wasshown that the code runs fast enough on
16384 processors to allow a detailed scientific study of the system were time permitting. The one major
problem was I/O. Using a mixture of code instrumentation andXprofiler the three main areas for future
work to improve the scaling and performance are

1. As mentioned above, I/O
2. The interpolation of the ionic charges onto the regular grid
3. The message passing in the FFT

1.5 References

[1] Todorov I.T. and Smith W, 2004, Phil Trans R Soc Lond, A 362, 1835

[2] Todorov I.T., Purton, JA, Allan, NL, Dove M.T 2006 J. Phys. Cond. Mat. 18, 2217

[3] E.g., Trachenko K 2004 J. Phys. Condens. Matter 16 R1491 and references therein

[4] Trachenko K, Pruneda J M, Artacho E and Dove M T 2005 Phys. Rev. B 71 184104

[5] M.R.S. Pinches, D. Tildesley, W. Smith, 1991, Mol Simulation, 6, 51

[6] U. Essmann, L. Perera, M.L. Berkowtz, T. Darden, H. Lee and L.G. Pedersen, 1995,
J Chem Phys, 103, 8577

[7] Bush I.J., Todorov I.T., Smith W, Comp. Phys. Commun., 175, 323

2 Thermonuclear Supernovae: Simulations of Delayed Detonation with
Adaptive Mesh Refinement and Lagrangian Tracer Particles

Anshu Dubey
Center for Astrophysical Thermonuclear Flashes,
The University of Chicago, Chicago, IL 60637

The FLASH code was one of the early applications on the BG/L architecture, so there is a relatively long
history of the Flash center’s interaction with the BG/L machines. A couple of production runs had been
done with FLASH on large installations prior to the workshop. One of them was to investigate a deno-
tation mechanism in Type Ia Supernovae in two dimensions, called Gravitationally Confined Detonation
(GCD) proposed by the Flash Center. This run used Adaptive Mesh Refinement (AMR) to optimize
computing and memory resources, and was found to scale very well on the machine. The second pro-
duction run was that of a three dimensional driven turbulence problem, using the Uniform Grid. This
simulation also scaled very well, but that is expected from Uniform Grids. However, neither of the runs
had exploited the full complexity of the FLASH code as applied to problem of primary interest in the
center. The scientists at the center are currently most interested in investigating the GCD mechanism
in three dimensions, which adds several layers of complexity to the two runs described above. AMR is
more expensive, and potentially less scalable than the Uniform Grid, and the memory requirements in
3-D are significantly higher. Since the Flash Center has applied for a significant amount of computing
time on the next generation Blue Gene machine, we were highlymotivated to participate in the scaling
workshop. It would either verify for us that the code scales in more demanding situations, or give us
early warning of potential problems.

5



2.1 Experience

The workshop proved to be extremely useful for the Flash Center, even though the code did not scale as
expected. The workshop helped identify roadblocks and bottlenecks that FLASH can expect to face in
future BGL machines. We found out that the our current AMR package PARAMESH needs significant
optimization in its transient memory usage, otherwise it severely limits the problem size with small
memory. We also identified an IO performance bottleneck withthe parallel IO library Parallel-NetCDF;
one of two parallel IO libraries supported by FLASH. The cause for the performance bottleneck was
found during the course of the workshop, and a temporary workaround proved to be very successful.
We were able to do several experiments to test the scaling of individual components of FLASH using
simpler problem setups. Some of these components included the cost of regridding the mesh when
the refinement changes, global all-reduce operations in some of the physics modules in the code, and
performance comparison between managing the mesh with or without permanent guard cells. Most of
these experiments were instrumented with TAU.

The early detection of potential bottlenecks is extremely useful to us, since that gives us time to address
them without the pressure of an imminent production schedule. The workshop also helped us connect
with the research efforts at Argonne National Laboratory insingle PE performance optimization, which
is an important concern in a few of our physical solvers. Since FLASH is a public domain code with a
fairly large user base, platform specific optimizations cannot be applied to it. The current trend in using
code transformation tools to optimize for a specific platform is the best option for FLASH.

2.2 Conclusions

Participation in the Scaling Workshop has proven to be of immense value to the FLASH center, not
in terms of demonstrating the scaling of the code, which it does for simple problems, but for early
identification of potential trouple spots. The memory bottleneck in 3D GCD simulations persuaded
our PARAMESH colloborators to re-examine the communication machinery in their package. They
have, since then, significantly reduced the memory footprint of PARAMESH, which has also proven
to be useful on other platforms. During the workshop there was quick and easy access to expertise,
and the staff was exceptionally helpful. Several smaller hurdles in IO, and using profilers, were solved
very rapidly and we were able to collect meaningful data about the general code performance. The
experiments helped identify one design issue in Parallel-NetCDF, which was reported to the developers
of the library. It also lead to FLASH developers using Parallel-NetCDF more effectively.

6



3 Large scale ab initio calculations of functional materials

Markus E. Gruner, Sanjeev K. Nayak, and Peter Entel
Theoretical Physics, University of Duisburg-Essen

3.1 Overview

Aim of this project was to explore the limits for the employment of Density Functional Theory (DFT)
codes on massively parallel computers. Ab initio DFT codes have become a widely used tool for the ex-
planation of unusual materials properties and the prediction of novel functional materials. Unlike empiri-
cal and semi-empirical methods their accuracy is not hampered by simplifying assumptions about the in-
teratomic interactions, so that their use becomes inevitable where electronic and structural properties be-
come closely interrelated as it is often the case for modern functional materials. Off-the-shelf DFT codes
like VASP (Vienna Ab initio Simulation Package,http://cms.mpi.univie.ac.at/vasp) were
historically not designed to run large problems on a vast number of processors, but a redevelopment with
this goal in mind appears infeasible due to their complexity. So, the readiness of existing codes for mod-
ern massively parallel supercomputer architectures is pivotal for the question whetherab initio materials
science on the mesoscopic scale will become possible in nearfuture.

3.2 Test Cases

In previous tests, we could show that the code scales well on up to 1024 nodes. However, further scaling
was hampered by parts of the code which make heavy use of the scalapack eigensolverpdsyevx and
the parallel 3d fast Fourier transforms (FFT). One strategyto circumvent this limitation is the tackling of
larger systems, where the relative amount of time spent for interprocess communication will be reduced.
The option to optimize the communication structure in the code was not projected at this stage, but may
become a target for future efforts. Therefore, three questions were at the center of interest during the
scaling workshop:

1. Is the VASP code capable of running on 8k nodes?
2. How severe is the limitation of 512MB/node for larger problems on several thousand nodes?
3. And connected to the last point: What is the maximum systemsize that can be tackled on the Blue

Gene/L?

To answer these questions, we set up test calculations for realistic test systems. The first consisted of
super-cells of the magnetic shape alloy Ni2MnGa of various sizes (576, 672, 720, 768, 800, 896 and
1024 atoms) large enough to contain a martensitic twin boundary. These twin boundaries can be shifted
in realistic magnetic fields which gives rise to the so calledferromagnetic shape memory effect, which
makes these alloys interesting for a new class of magnetomechanical actuators. We also performed
calculations of large super-cells of the dilute magnetic semiconductor ZnO:Co and GaN:Gd. Three
different system sizes were categorized consisting of a total number of 432, 864 and 1296 atoms. In both
cases, due to the large super-cells, integration ink-space was restricted to theΓ-point.

3.3 Results

During our tests it became evident that the constrained memory of only 512MB/node is a severe lim-
itation and that much better scaling may be achieved on Blue Gene/L installations with 1GB/node.
Consequently, we were forced to use the Coprocessor mode throughout all of our calculations. An-
other drawback was the lengthy initialization procedure ofthe VASP code, which takes up to 30min for
the largest problems. This does not affect production runs,since the current scheduling system allows
runs for up to 24 h, but is inconvenient for test runs, which yield appropriate timing information (and
maximum memory allocation) only after the initialization stage.

7



The largest system we could run on one and two racks was a Ni2MnGa super-cell consisting of 672
atoms (6720 spin-polarized valence electrons). Here, we could achieve a speedup of 1.73 between one
and two racks, indicating that this system can run on two racks with reasonable efficiency.

Figure 2:Ni2MnGa super-cell with 800 atoms and a twin boundary as used in the calculations (black
for Ni, blue and magenta for Ga and Mn, respectively).

The largest system that could be successfully tested on 8 racks was an 800 atom Ni2MnGa supercell
comprising 8000 spin-polarized valence electrons (see figure). Here, we achieved a few selfconsistency
steps, which gave enough data for a timing analysis. On a cube(2 x 2 racks) this problem was brought
to complete self-consistency during the night testing time, proving that the VASP code can be used for
scientific calculations on several thousands of processors. The measured speedup between four and eight
racks, however, was only 1.22. Reasonable timing data couldnot be obtained for two racks and less due
to memory restrictions. However, for a previous test case (561 iron atoms), which was not hampered
by memory limitations down to 128 nodes, we achieved a speedup of 1.31 between one and two racks,
while measuring on 1024 nodes an efficiency of 70% of the idealperformance extrapolated from 128
nodes. So, it appears plausible to expect an overall efficiency of above 50% for the 800 atom super-cell
on the cube. For the doped ZnO the largest system calculated consisted of 864 (7725 valence electrons)
atoms which could be computed on one rack.

Based on our experience during the week we conclude that on a Blue Gene/L system with
512MB/node the maximum partition that can be used efficiently consists of four racks. The largest
problems that were manageable with VASP on such an installation contained 800- 900 atoms and up to
8000 (spin-polarized) valence electrons. On Blue Gene/L systems with 1GB/node larger systems can be
treated and efficient scaling will probably be achieved evenon 8 or 16 racks.

From the results of the scaling workshop two concepts for further improvement of the scaling behavior
of VASP emerged:

• Implementation of an improved memory monitoring system to find out whether the VASP code
performs significant memory allocations that are not distributed efficiently over the nodes. In
this case the memory consumption per processor may grow withthe size of the system setting
an upper limit to the system sizes which can be handled on the machine. A simple monitoring
scheme, keeping track of the minimum free memory using thesbrk(0) system call has already
been implemented and will be extended to return subroutine specific information. This may help
to localize possible unbalanced memory allocations in the VASP code.

• Detailed monitoring of the communication and improved timing of the FFT and linear algebra
calls. Here, it is planned in close cooperation with Dr. Pascal Vezolle of IBM to find out whether
improvements in the FFT communication scheme may result in asignificantly improved perfor-
mance.

8



4 Parallel Stabilized Finite Element Methods for Aero-, Hemo- and Hy-
drodynamics

Mike Nicolai, Markus Probst and Marek Behr
Chair for Computational Analysis of Technical Systems
RWTH Aachen University

For our group the workshop was very successful. We could significantly improve the performance of our
CFD code on JUBL for runs on 2048 and 4096 processors. The application shows an acceptable scaling
up to 4096 processors now and good scaling for a larger amountof processors can be expected. This was
achieved by splitting the communication into sends and receives.

4.1 The Testcase

For measuring the performance of the XNS CFD solver, a 3D space-time simulation of the MicroMed
DeBakey axial blood pump (see Figure 3) was run with the MPI version of the code. The mesh for the
pump consists of almost 4 million elements and is divided into subdomains that are then assigned to a
single processor. This partitioning is carried out by the METIS graph partitioning package.

The equation system resulting from the finite-element (FE) formulation of the incompressible Navier-
Stokes (NS) equations that describe the flow of the blood through the pump is solved with a GMRES
method. We typically carried out 3 timesteps with 4 Newton-Raphson iterations in the solver.

Figure 3:DeBakey blood pump

Before the workshop one could observe an acceptable scalingof XNS up to 1024 processors while there
was no significant speed-up above that. Here, the performance is always measured in time steps per hour
to exclude the effects of time-consuming initialization ordata output (see figure 5).

4.2 Analysis of the code

To find the bottleneck in the code the communication between the processes during the simulation run
was analyzed, both with the XNS-internal optiondebug comm and the SCALASCA package of FZ
Jülich. Later on, communication patterns were obtained bylinking theMPITRACE library to XNS.

This analysis showed that the poor scalability resulted from an increasing number of calls to the com-
munication routines in the EWD library and hence an increasing amount of time spent in those. More
precisely, this concerned the functionsewdgather1 andewdscatter2 which incorporate the tran-
sition from node-level (i.e., global) to partition-level (i.e., local on each processor), see figure 4a, and
make use ofMPI Sendrecv.

9



Figure 4:a) Interface between different levels b) Communication pattern as histogram

A communication matrix between the processes was created with debug comm option revealing that
there was communication from each process to each other process. The amount of communication was
then investigated with the help of a script provided by Markus Geimer. One could observe that an
increasing number of calls toMPI Sendrecv involved zero-sized messages. Also, the amount of data
actually transfered seemed to vary enormously from processto process.

To account for these variations in message size, XNS was built with MPITRACE. Running this version
records the communication and produces a log file that is supposed to suggest a more efficient mapping
of the partitions onto JUBL’s topology. A reduction of communication time can be expected by this
when processes that exchange bigger amounts of data are located physically close to each other. This
idea could not be realized during the short time of the workshop but will be followed up later on with the
help of Pascal Vezolle.

4.3 Modifications based on the analysis

The first observation suggested to simply eliminate zero-transfers from the communication routines. This
was done by splitting theMPI Sendrecv’s into seperateMPI Send’s andMPI Recv’s requiring that
number of bytes of the message sent/received was non-zero. This (minor) change turned out to be very
efficient reducing the time spent used in theewdgather/ewdscatter routines enormously especially
when using a large number of nodes. The comparison between the old and the modified version of XNS
is shown in Table 1 where communication times according to the XNS log file are listed.

number of XNS XNS modified XNS modified XNS
processes ewdgather ewdscatter ewdgather ewdscatter
256 11.51 11.69 5.25 6.16
512 12.99 13.55 4.33 6.18
1024 16.70 17.40 4.16 6.06
2048 27.99 29.09 3.73 7.01
4096 57.38 58.34 3.68 6.56

Table 1:Communication time in seconds

While there was communication among all processes, i.e., also among partitions that do not have a
common boundary in the mesh, Figure 4b shows a significantly reduced communication pattern for
1024 processes with the modified XNS version. The communication times were obtained using Markus
Geimer’s script (that also records the number of visits and the amount of bytes transfered).

The effects on the scaling of the code are documented in Figure 5. We can see that without the modifi-

10



cations there was nearly no speed-up any more above 1024; in fact, there was even a reduction of time
steps per hour for 4096 processes due to the increasing amount of communication. The modified version
of the code shows some speed-up for smaller amounts of nodes,but more importantly scales fine on both
a rack and a row on JUBL. We can expect a good scaling also for 8192 processes; this is to be analyzed
in future test runs.

Figure 5:Scaling after the workshop

Another modification in the communication routines that wastested involved non-blocking transfers.
This was expected to avoid waste of time caused by late senders. Unfortunately, usingMPI Irecv,
MPI Send andMPI Wait did not lead to an improved (or equal) performance for all partition sizes
which should have been the case. For 4096 processors the performance was slightly worse while there
was some speed-up for 2048, as seen in Figure 6. Brian Wylie will help us to follow this track and
has already performed further tests (e.g., executing all the MPI Irecv’s at once before any processor
transfers data).

128 256 512 1024 2048 4096
Processes

0

100

200

300

400

500

T
im

es
te

ps
/h

ou
r

MPI_Sendrecv (Original)
MPI_Send + MPI_Recv
MPI_Irecv + MPI_Send + MPI_Wait

XNS DeBakey simulation

Figure 6:Comparison of modifications in ewdcomm.F

11



4.4 Additional analysis

Since the main focus during the workshop had been on improvements in the communication routines,
there was little time left to look at the other parts of the code. What could be found is a load imbalance
in the ewdgmres routine, where the process with the highest rank seemed to be significantly overloaded.
This is shown in Figure 7 for a test run of XNS with 1024 processes. The GMRES solver uses up to 13%
of the total time spent (with 256 processes). Even if this percentage is decreasing to around 5% on 4096
processes, it could be worth investigating this imbalance and trying to reduce it.

Figure 7:Load imbalance in ewdgmres

5 Conclusions

As mentioned before, the workshop was very successful for our project. The performance was sig-
nificatly improved by optimizing the communication routines and some other promising tracks were
discovered that could lead to further improvements of the scaling. This refers particularly to reducing
the load imbalance in ewdgmres and to applying an improved mapping of the mesh partitions onto JUBL
that we are waiting to receive from Pascal Vezolle from IBM. Brian Wylie from FZJ has helped us a
lot testing the different modifications in ewdcomm.F and we will continue to test the efficiency of using
MPI Irecv.

Thanks to the improved scaling, we could run the code on 4096 processors which had not been done
before because of the bad performance for 2048 processors. Unfortunately, we also encountered some
obstacles when running XNS for the first time on a higher number of processors. We had to spend quite
some time creating the nprm file which holds information about the node renumbering on the different
mesh partitions created with the METIS package. For some reason that is still to be analyzed we did
not succeed in generating this file for 8192 processes which made it impossible to test the scaling of
the modified version of XNS on a cube. Strangely enough, the nprm generation also crashed for 3072
processors while the file could successfully be created on 4096 processors. This is to be examined later
on and can hopefully be cured.

Finally, we would like to thank the staff of Forschungszentrum Jülich, especially Brian Wylie (who had
already performed some analysis prior to the workshop to give us a head start), and the IBM crew, for
the nice atmosphere and the good cooperation.

12



6 Development of a Scalable Software Infrastructure on BlueGene Sys-
tems

Akira Nishida
21st Century COE Program, Chuo University / Core Research for Evolution Science and Technology
Program, Japan Science and Technology Agency
Hisashi Kotakemori
Core Research for Evolution Science and Technology Program, Japan Science and Technology Agency /
Department of Computer Science, the University of Tokyo
Akihiro Fujii
Department of Computer Science and Communication Engineering, Kogakuin University
Akira Nukada
Core Research for Evolution Science and Technology Program, Japan Science and Technology Agency /
Department of Computer Science, the University of Tokyo

6.1 Overview

Recent progress of science and technology has made numerical simulation an important approach for
studies in various fields. The object of the Scalable Software Infrastructure (SSI) project, funded by the
Japan Science and Technology Agency since 2002, is the development of a basic library of solutions and
algorithms required for large scale scientific simulations, which have been developed separately in each
field, and its integration into a scalable software infrastructure.

The components include a scalable iterative solvers library Lis, having a number of solvers, precondition-
ers, and matrix storage formats that are flexibly combinable, and a fast Fourier transform library FFTSS
for various superscalar architectures with SIMD instructions, which outperforms some vendor-provided
FFT libraries.

For this workshop, we have posed two problems:

1. As a preconditioner for iterative linear system solvers,is the algebraic multigrid scalable enough
to beat the traditional preconditioners, such as the incomplete LU factorization?

2. For the scalable implementation of large scale fast Fourier transforms, is the volumetric 3D FFT
the best choice? In Section 2 and 3, we describe the results ofour tests on the Blue Gene systems.

6.2 Algebraic Multigrid Preconditioning

During the first run of our linear solvers library Lis on Blue Gene Watson in October 2005, we observed
the linear scalability up to 8,192 nodes, and successfully run up to 16,384 nodes. The bottleneck which
limited the scalability was its memory requirement to make the communication tables to manage the
distributed sparse matrix data.

After the run, we implemented a new data structure to reduce the table size by keeping only the infor-
mation on nonzero blocks, and a new parallel I/O methodologyto dramatically reduce the data access
to the global storage, which was the main bottleneck of the pre and post processes. In March 2006, we
observed linear scalability up to 16,384 nodes on BGW with our new code.

Our group proposed the multigrid preconditioned conjugategradient method (MGCG) in 1992, and the
algebraic multigrid preconditioned conjugate gradient method (AMGCG), an expansion of the MGCG
for unstructured meshes in 2001, which has shown to be the most effective general purpose iterative
solver for symmetric linear systems. After the second run, we ported our parallel AMG preconditioner

13



into Lis, which dramatically boosts the performance of the conjugate gradient method on 512 nodes of
the Blue Gene system at NIWS Corporation.

In this workshop, we had hard time to pinpoint the remaining bugs in AMGCG, which were finally found
to be related to the notation of memory allocation, and we rewrote the Fortran 90 based AMG codes for
the new version of IBM XL compiler. As of today, we can run bothof the symmetric and nonsymmetric
versions on Blue Gene systems, the result of which on 1,024 nodes is shown below. They are to be
included in the next update of Lis. (Akira Nishida, Hisashi Kotakemori, and Akihiro Fujii)

6.3 Volumetric 3D FFT

In this workshop, we computed 3-D FFT on the Blue Gene system.Previously, Eleftheriou, et al. showed
the efficiency of the volumetric FFT using 3-D decomposition, for small data sizes. We examined its
performance with large data.

In our project, we have developed a high performance FFT library ’FFTSS’. It supports many kinds of
processor architectures including SIMOMD instructions ofPowerPC 440 FP2. In this time, 1-D FFT
routine was integrated into the volumetric FFT. The volumetric FFT requires all-to-all communications
for each direction of the 3-D Torus network. In our implementation, MPI communicators are created
and are simply passed to MPIAlltoall() functions. The all-to-all communications are essentially not
scalable on the Torus network. For this reason, the communications occupy large percentages of the total
execution time.

In computing 3-D FFT of40963, we have achieved the performance of about 850 GFLOPS with eight
racks. But this is only about four times the performance withone rack.

The ratio is theoretically correct. The number of nodes is doubled to each direction. The average dis-
tance of the all-to-all communication is also doubled. As a result, the throughput of the communication
becomes half. The message size becomes 1/8, therefore the execution time becomes 1/4.

The performance with 64 racks is estimated to be about 3 TFLOPS. (Akira Nukada)

Figure 8: Execution time of symmetric and nonsymmetric version of AMG(left) and execution time
of 3D FFT (right) on Blue Gene/L

14



7 Turbulent convection for very large aspect ratios

Jörg Schumacher
Department of Mechanical Engineering, Technische Universität, D-98684 Ilmenau, Germany

Matthias Pütz
Deep Computing – Strategic Growth Business, IBM Deutschland GmbH, D-55131 Mainz,
Germany

Scaling and runtime tests of a pseudospectral code on up to 16384 CPUs of the Blue Gene/L system
JUBL of the John von Neumann-Institute for Computing Jülich are reported.

7.1 Physical motivation

Turbulence appears frequently in geometries for which the lateral dimensions exceed the vertical dimen-
sion by orders of magnitude. Examples appear in planetary and stellar astrophysics or in atmospheric
and oceanographic science. For example, atmospheric mesoscale layers typically have lateral extensions
of up to 1000 km and are characterized by aspect ratiosL : W : H = 1000 : 1000 : 1. It is clear that
the turbulent transport in the lateral dimensions will differ from that in the remaining vertical dimen-
sion. Which aspect ratios of such systems are necessary to observe features that are characteristic for
two-dimensional turbulence as frequently used in geophysical fluid dynamics? When do we observe the
formation of an inverse cascade for which smaller vortices feed their kinetic energy into larger structures?
In addition, the turbulent motion of the air is affected by rotation, stratification, and thermal convection.
Radiation and moisture play an important role as well. A bigger uncertainty for larger scale atmospheric
models arises from strongly variable cloud coverage. The rapid time scales of cloud formation are still
not completely understood. Recent studies suggest that thecoalescence and clustering of small sub-
Kolmogorov scale sized droplets is triggered by the smallest turbulent flow scales at which the inertial
particles are advected. In summary, it is very challenging and practically (almost) impossible to include
all effects within a single numerical simulation.

In the following, we want to study one particular process in such mesoscale layers, turbulent Rayleigh-
Bénard convection. The three-dimensional pseudospectral simulation code advances the Boussinesq
equations for an incompressible fluid in time by means of a second-order predictor-corrector scheme.
Lateral boundary conditions are periodic; vertical boundary conditions are free-slip. The program runs
in single precision and is implemented on the Blue Gene/L system.

7.2 3D-FFT packages

One of the main building blocks of the numerical method is thefast Fourier transform (FFT). The classi-
cal parallel implementation of three-dimensional FFTs uses a slabwise decomposition of the simulation
domain. For a simulation withN3 grid points, the method allows a parallelization on up toN proces-
sors. Due to the rather small memory size per core, the Blue Gene/L requires avolumetricFFT which
decomposes the three-dimensional volume into cuboid-likerods and hence allows a parallelization de-
gree ofN2. The prime requirement for being able to run a simulation with a large grid is that the domain
fractions of the grid (including buffers and temporary storage) fit into the 512 MB of memory on a single
Blue Gene/L node. At the same time, of course, the FFT algorithm should also be scalable, i.e. increasing
the number of CPUs to solve the problem should also substantially decrease the time-to-answer.

In order to check this, we compared three FFT packages on a small test case: (i) the old slabwise method,
(ii) the BGL3DFFT package by M. Eleftheriouet al. (IBM J. Res. & Dev.49, (2005)), (iii) the P3DFFT
package by D. Pekurovsky (http://www.sdsc.edu/userservices/applications/fft3d.html). Package (ii) is
written in C++ and contains complex-to-complex FFTs only (Fortran- and C-bindings are available from

15



IBM). Packages (i) and (iii) are available in Fortran. The results on strong scaling are summarized
in Figure 9. For the latter two packages we have varied the mapping of the MPI tasks onto the torus
grid network of the Blue Gene/L machine. By default, Blue Gene/L maps MPI tasks on all primary
cores of a partition first (BGLMPIMAPPING = XYZT. Beside the fact that the P3DFFT interface and
implementation supports our needs in an optimal way (real-to-complex/complex-to-real), it also turned
out to be the best solution in terms of performance. For example, the symmetryu(k) = u

∗(−k) for
real-to-complex transforms is explicitely implemented already and they allow for the storage of physical
space and Fourier space fields into the same array (in-place transformation).

10
1

10
2

10
3

10
−1

10
0

10
1

#CPU

tim
e

 

 

Slabwise (TXYZ)
Bgl3dfft (TXYZ)
Bgl3dfft (Other Mapping)
P3dfft (TXYZ)
P3dfft (Other Mapping)
Ideal scaling

Figure 9: Strong scaling tests for up to 1024 CPUs. The test function is f(x, y, z) =
sin(x) cos(2y) sin(z) which is resolved on an equidistant1283 cubic grid of sidelength2π.

7.3 Scaling tests for the convection code

The inclusion of the P3DFFT package into the convection codegave the following scaling on one rack
(2048 CPUs) for a512 × 512 × 64 system with an aspect ratioΓ = L/H = 16. Figure 10 shows the
results. All tests have been done in the virtual node mode. The following improvements of the code
performance should be mentioned:

• For numbers of CPUs≥ 256 the mpirun option for the processor topology BGLMAPPING =
XYZT brought the shortest computation times.

• Splitting the loops for the calculation of the r.h.s. of the Boussinesq equations brought an accelera-
tion of the code. This option avoids an if-then command for thek = 0 case which would otherwise
inhibit code vectorization.

• The use of non-blocking point-to-point communication instead of MPIReduce and MPIBcast
caused a gain of 10% in total time.

The analysis of the code with the mpitracelib indicated thatafter all these improvements had been made
almost all of the communication overhead remained in the MPIAlltoallv communication task which is

16



required in the FFT algorithm for the transposition of the cuboid-like rods and is hence the only factor
which limits strong scaling. Future improvements of the implemenation of MPIAlltoallv will therefore
have an immediate impact on the performance of our code.

10
1

10
2

10
3

10
0

10
1

10
2

10
3

#CPU

tim
e

N
x
=512, N

y
=512, N

z
=64

 

 

Data
Ideal scaling

Figure 10: Strong scaling tests for the code on up to 2048 CPUs.

Table 7.3 summarizes our findings for grid resolutions that we intend to use for the production runs, i.e.
Nx ×Ny ×Nz = 4096× 4096× 256 atΓ = 32 given the present ressources at the NIC Jülich. For such
large grids it became necessary to implement some internal summation loops in double precision. All of
these loops are used to calculate the ride-hand-side (RHS) of the equations of motion. The number of
grid points per MPI task was of the order of106 which is simply to large to sum over with 32-bit floating
point precision.

We have studied the two modes in which one dual core CPU (whichis denoted as one node) can be
operated on Blue Gene/L, the virtual node mode (VN) and the co-processor mode (CO). The parameters
iproc andjproc in the table represent the two dimensions of the processor grid that has to be generated
for the volumetric FFTs. Note, that the aspect ratio ofiproc : jproc can be tuned as long asiproc ×
jproc < Ncpu. In general, an aspect ratio of 1 would be best, but other choices can be better, if they
improve the mapping of the MPI tasks onto the partition grid.For the large problem we observe that
the differences between the VN and CO modes are small. This results from the fact that large local
grid fractions do no longer fit into the L3 cache of a Blue Gene/L node and have to be streamed from
memory. If the second core is used for computation (VN mode) the two cores are actually competing
for the memory bandwidth of the node and the gain in computingtime is fairly small. Additionally, the
communication time in VN mode is bigger than in CO mode, such that these two effects almost cancel
each other. The table indicates that for≥ 8192 CPUs runtime starts to saturate. There is no chance to
improve the cache locality of the code to avoid this, becausethe FFTs will always require the full grid.
There may however be some further optimization potential byusing explicit task mappings. The main
problem here is to find an embedding of a 2d grid decompositioninto a 3d torus communication grid,
such that no communication hot spots occur on the point-to-point network of the Blue Gene/L. In general
this is a hard problem.

17



CPUs processor mode iproc × jproc time

2048 vn 32 × 64 183.3 s

1024 co 32 × 32 205.7 s

4096 vn 64 × 64 118.6 s

4096 vn 128 × 32 109.6 s

8192 vn 128 × 64 77.8 s

4096 co 64 × 64 90.66 s

16384 vn 128 × 128 62.6 s

8192 co 128 × 64 60.5 s

8192 co 512 × 16 74.0 s

Table 2: Runtime tests for the aspect ratioΓ = 32. The CPU time was measured with MPIWtime() task
for a loop of 5 time steps.

7.4 Summary and outlook

The use of the P3DFFT package and a number of further improvements in the communication overhead
improved significantly the performance of our code on the Blue Gene/L system. These efforts allow us to
run production jobs on at least two racks. Since the CPU time of our code is memory bandwidth limited
for problem sizes of interest, VN mode does not give a significant speedup over CO mode.

18



8 Numerical simulations of QCD

Hinnerk Stüben
Konrad-Zuse-Zentrum für Informationstechnik Berlin, Berlin, Germany

Thomas Streuer
Department of Physics and Astronomy, University of Kentucky,Lexington, KY, USA
– QCDSF collaboration –

The scientific aim of current projects of the QCDSF collaboration is to better constrain the extrapolation
of the lattice results to the chiral and continuum limits by performing simulations at more realistic quark
masses and at smaller lattice spacings. This has become possible now due to substantial improvements
of the Hybrid Monte-Carlo (HMC) algorithm and a significant increase in computing power.

At the BlueGene/L Scaling Workshop we studied the scaling ofour production code BQCD (Berlin quan-
tum chromodynamics programme) up to the full machine. BQCD is a Hybrid Monte-Carlo programme
that simulates quantum chromodynamics (QCD) with Wilson gauge action and non-perturbativelyO(a)
improved Wilson fermions. The overall programme was written in Fortran 90 and parallelised with MPI.
For the BlueGene the most compute intensive part was implemented in assembler.

In computational QCD the theory is defined on a four-dimensional regular lattice with (anti-) periodic
boundary conditions. The kernel of BQCD is a standard conjugate gradient solver with even/odd pre-
conditioning. Typically, 80 % of the execution time is spentin that solver. The dominant operation in
the solver is the matrix times vector multiplication. In thecontext of QCD the matrix is calledfermion
matrix. The fermion matrix is sparse. It has eight entries per row. The entries in rowi are the nearest
neighbours of entryi of the vector.

The entries of the fermion matrix are3 × 3 complex matrices and the entries of the vector are3 × 4
complex matrices. The experience on current machines is that the performance of the Fortran code for
the matrix times vector multiplication is about 10 % of peak and that the performance approximately
doubles for the assembler version. On the Hitachi SR8000-F1which was one of the main production
machine for the QCDSF collaboration from 2000–2006 the Fortran code ran at about 40 % of peak.

machine dimensions total lattice volume
323 × 64 483 × 96

# racks # cores network torus local volume local volume
1 2048 8 × 8 × 16 × 2 16 × 4 × 4 × 4 24 × 6 × 6 × 6
2 4096 8 × 16 × 16 × 2 16 × 4 × 4 × 2 24 × 6 × 6 × 3
4 8192 16 × 16 × 16 × 2 16 × 4 × 2 × 2 24 × 6 × 3 × 3
8 16384 32 × 16 × 16 × 2 16 × 2 × 2 × 2 24 × 3 × 3 × 3

Table 3: Lattice volumes per core. The network torus dimension “2” corresponds to the two cores of a
node.

The programme is parallelised by a domain decomposition. Inthe parallelisedcg-kernel ghost cells of
the input vector have to be exchanged before the vector can bemultiplied with the fermion matrix. In
order to scale QCD programmes to high numbers of processes anexcellent communication network is
required because the lattice volume per core becomes small (see Table 3). On the other hand small lattice
volumes per core improve the utilisation of data caches and hence improve performance.

19



8.1 Details on the assembler code

For the floating point operations of the femion matrix multiplication we use the SIMD(double hummer)
instructions of the floating point units, which can perform four floating point operations per clock cycle.
The communication is done in parallel to the computation, sothat in principle computation and commu-
nication can overlap. For the communication between nearest neighbours in three of the four directions
we use the torus network. The network is accessed from the nodes via memory-mapped fifos. Each node
has six injection fifos, which can receive outgoing packets in any direction. Each of the two cores in one
node uses three of these fifos, so that packets going into forward and backward directions have to share
one fifo. The packet size must be a multiple of 32 bytes, including an eight-byte header, so that we use
packets of 128 bytes for one projected spinor. Incoming packets arrive in one of twelve reception fifos:
there are two fifos for each of the six nearest neighbours of a node. These two fifos are assigned to the
two cores in a node. Because of the simple communication pattern (of nearest neighbour data exchange
only), no dynamical routing is necessary. Furthermore, each node receives the data packets in the order
in which they are needed, so that no reordering of packets is necessary. Each node sends a packet to its
neighbour one iteration before the neighbouring node needsthe data, so that the network latency can be
hidden.

In the fourth direction, which corresponds to the x-direction of the lattice, the lattice is split between the
two CPUs in one node, so that the communication can be done viathe shared memory. However, since
the L1 caches are not coherent, the straightforward approach of simply reading data from the other CPUs
memory does not work. At present, we use a memory region in theL3 cache (the scratchpad area), which
is marked L1-caching inhibited for data exchange between the two cores.

implementation: Fortran/MPI lattice:483 × 96

#racks MFlop/s per core overall TFlop/s speed-up efficiency

1 280 0.57 1.00 1.00

2 292 1.20 2.09 1.04

4 309 2.53 4.41 1.10

8 325 5.32 9.29 1.16

implementation: Fortran/MPI lattice:324 × 64

#racks MFlop/s per core overall TFlop/s speed-up efficiency

1 337 0.69 1.00 1.00

2 321 1.32 1.91 0.95

4 280 2.30 3.33 0.83

8 222 3.65 5.28 0.66

implementation: assembler lattice:323 × 64

#racks MFlop/s per core overall TFlop/s speed-up efficiency

1 535 1.10 1.00 1.00

2 537 2.20 2.01 1.00

8 491 8.05 7.34 0.92

Table 4: Performance of thecg-kernel for two implementations and two lattices.

20



8.2 Results

In scaling tests the performance of thecg-kernel was measured. For performance measurements the code
was instrumented with timer calls and for the kernel all floating point operations were counted manually.

In order to get good performance it is important that the lattice fits the physical torus of the machine.
In order to achieve this, MPI process ranks have to be assigned properly. On the BlueGene/L this can
be accomplished by setting the environment variableBGLMPI MAPPING appropriately. The settings of
that variable wereTXYZ on 1, 2, and 4 racks andTYZX on 8 racks.

Performance results are given in Table 4. In Figure 11 the results are shown on double logarithmic plots
(the dotted lines indicate linear scaling).

One can see from the table and the plots that the Fortran/MPI version exposes super-linear scaling on the
483 × 96 lattice. Even the323 × 64 lattice scales quite well given the fact that the lattice volumes per
core are tiny.

The scaling of the assembler version is excellent. For the same tiny local lattices the scaling is consider-
ably better than for the Fortran/MPI version. This means that in the assembler version computation and
communication really overlap.

Conclusion. We found that our code scales up to the whole Blue Gene/L at NIC/ZAM. The highest
performance measured was 8.05 TFlop/s on the whole machine.The high performance could be obtained
by usingdouble hummerinstructions and techniques to overlap communication and computation.

Figure 11: Scaling of the cg-kernel of BQCD for the Fortran 90/MPI version (left) and for the
assembler version (right).

21


