FORSCHUNGSZENTRUM JULICH GmbH
Zentralinstitut fur Angewandte Mathematik
D-52425 Jiilich, Tel. (02461) 61-6402

Technical Report

Report on the Jilich
Blue Gene/L Scaling Workshop 2006

Wolfgang Frings, Marc-André Hermanns, Bernd Mohr,
Boris Orth (Editors)

FZJ-ZAM-IB-2007-02

February 2007
(last change: 16.2.2007)

Report on theilich Blue Gene/L Scaling Workshop 2006

Wolfgang Frings, Marc-André Hermanns,
Bernd Mohr, Boris Orth (Eds.)

John von Neumann Institute for Computing (NIC),
Research Centre Julich

31. January 2007

Abstract

The John von Neumann Institute for Computing (NIC), IBM, &nelBlue Gene Consortium have
jointly sponsored the first "Blue Gene/L Scaling Workshop'Jillich, Germany, on December 5-7,
2006. The purpose of the workshop was to provide particigaetshance to scale their codes across
an 8 rack Blue Gene/L system. Besides the hardware, apptemoftware and support personnel
were provided to accomplish this task. Jilich providedat300.000 CPU hours on the 8-rack Blue
Gene system JUBLh¢ t p: // www. f z-j uel i ch. de/ zam i bm bgl) over a three day period
for the scaling runs.

The attendees of the workshop were selected by a peer reg@w. t Selection criteria were
the confidence that the code would scale across 8 racks, B infrastructure (OS, compilers,
libraries) support the user request, and the scientific ainfieat the code could produce. Members
selected were paired up with assigned advisors from Argdai®nal Laboratory, IBM, and NIC,
who assisted in administrative issues (log on, moving agataing data), and scaling support.

This report presents the outcome of the workshop as a dolteat the results of running, scaling
and optimizing the following seven application on Blue Giéne

1. Molecular Dynamics Studies of Radiation Hard Materials (page 3
lan J. Bush, llian T. Todorov, CCLRC Daresbury Laboratorpitedd Kingdom

2. Thermonuclear Supernovae: Simulations of Delayed Detonain with
Adaptive Mesh Refinement and Lagrangian Tracer Particles (page §
Anshu Dubey, Center for Astrophysical Thermonuclear Fdaskiniversity of Chicago, USA

3. Large scale ab initio calculations of functional materials (page j
Markus E. Gruner, Sanjeev K. Nayak, and Peter Entel,
Theoretical Physics, University of Duisburg-Essen, Geryna

4, Parallel Stabilized Finite Element Methods for Aero-, Heme and
Hydrodynamics (page 9
Mike Nicolai, Markus Probst and Marek Behr,
Computational Analysis of Technical Systems, RWTH Aacheretsity

5. Development of Scalable Software Infrastructure on Blue Gee Systems (page 13
Akira Nishida, Chuo University, Japan
Hisashi Kotakemori, Akira Nukada, Japan Science and TdolggdAgency, Japan
Akihiro Fujii, Kogakuin University, Japan

6. Turbulent convection for very large aspect ratios (page 15
Jorg Schumacher, Department of Mechanical Engineeringhifische Universiit Imenay
Matthias Ritz, Deep Computing — Strategic Growth Business, IBM

7. Numerical simulations of QCD (page 19
Hinnerk Stiben, Konrad-Zuse-Zentruriarfinformationstechnik Berlin, Germany
Thomas Streuer, Department of Physics and Astronomy, téitiveof Kentucky, Lexington,
USA

1 Molecular Dynamics Studies of Radiation Hard Materials

lan J. Bush, llian T. Todorov
CCLRC Daresbury Laboratory, Keckwick Lane, Daresbury, $bive, WA4 4AD, UK

The portability and performance 8L_POLY3 on Blue Gene (BG/L) has been examined at the Scaling
Workshop.DL_POLY3 is a classical molecular dynamics package developed at @Ib&esbury Lab-
oratory [1]. Itis a very widely used application, with a felotisand licenses being held worldwide, and
may be used to study a very wide range of systems due to thbifigxof the force field that it supports.
However, the code has never been run before on systems vpiteagbly more than 1000 processors.

The system chosen for the workshop was a model of radiatiomada in a fluoritized Zirconium py-
rochlore. One of the native Gadolinium ions in the system keataced by Uranium, which was then
given a velocity consistent with a 100 keV recoil after anhalglecay. Due to the very high velocity
of the Uranium ion it is necessary to study very large supistcand the total system size we use is
approximately 14.6 million particles. It should be noteditttiis is the first attempt to model this system
with a realistic recoil, previous work having been carried at appreciably lower energies [2,3,4]. Since
both the required size of system and the number of timestepsadses with the recoil energy it is only
on machines with power comparable to the Jilich BG/L theséhcalculations may be performed.

It was hoped that production runs could be performed as veelemchmarks. However, due to time
constraints and unforeseen problems around the large Wtuegs of the code for systems of such size,
this proved not to be possible.

1.1 DL_POLY3

DL_POLY3 is a totally distributed memory code. The scaling of the timeolution depends slightly
on the force field employed, but it is always approximatel|ND{o achieve both the time and memory
scaling a link-cell algorithm [5] is used, which is esselhtia domain decomposition method. The force
field used for the above simulations is relatively simplet isunot trivial. The various terms can be
generalised as

1. Short range repulsion
2. Van Der Waal's (VDW) attraction
3. Coulomb forces

1 and 2 are both short range terms, and are handled togetber ROLY3. As such subsequent refer-
ences to VDW terms should be understood to include both tieeses. Due to the short range of these
forces they should scale very well with processor count duihir spatial locality (compare halo ex-
change algorithms). Previous experience suggested thttddest case the scaling of the VDW terms
should begin to fall away from perfect only when using thé $ide of the machine (16384 processors).

On the other hand Coulomb forces are long range terms, argl toabe handled differently. As is
standard, the Ewald sum technique is useDLnPOLY3. This splits the evaluation into two terms — one
short ranged, one long ranged. The former can be handledéryssimilar way to the VDW terms, and
hence is evaluated in real space. The long range term, hoviageto be handled differentlial _POLY3
uses the Smooth Particle Mesh Ewald (SPME) algorithm [@ kidy feature of which is a Fast Fourier
Transform (FFT). For this DaFT is used, a package written aieBbury. This has some features in
common with the various volumetric transforms that havenla®veloped, but is novel in that it avoids
performing 'all-to-all' operations by parallelising thedividual 1D FFTs [7].

The use of an FFT implies a considerable amount of commuaigato one would expect that the scaling
is ultimately controlled by this portion of the code. One log tmain reasons for our attendance at the
workshop was to examine this.

1.2 Porting DL_POLY3 to BG/L

As the code is written in standard conforming Fortran and M&Imajor problems were experienced
in porting DL_POLY3 to BG/L. The only issue that stopped the code running "as &3 that at certain
points in the code very large numbers of messages were odits¢a causing the machine to run out
of memory due to the number of buffers required. This was easily solved by introducing some
handshaking to cut down on the number of outstanding messdgps problem had not been observed
before due to the smaller number of processors on which tthe lsad been run.

1.3 Results

Once ported, excepting one problem, described below, tthe @ and scaled very well "out of the box”.
The scaling for MD of the test system described above is shHwslow. The figure 1 shows speed-up
values which are calculated relative to 2048 processorglag/tihat insufficient memory is available to
run the simulation. Note that the use of speed-up obscueeslitolute time - clearly some components
are more important than others - for this see the table beMhjobs were run in virtual node mode.

18000
16000 _
14000 - _—MD
o 10000 . VDW
2 8000 b Ewald - Short Range
3 6000 // —— Ewald - Long Range
Q
n %/ —— Other
4000
2000 / — Perfect
O I | I
0 5000 10000 15000
Processors

Figure 1: Scaling of DL_POLY3 on BG/L: "MD” shows the scaling of the total computation time,
"Link” refers the time taken at each time step to implemestlthk-cell algorithm (and build the Verlet
neighbour list) and the remainder are the components obitee fiield terms outlined above.

It can be seen that the scaling for the various elements dbtice field is good. The VDW and short
range Ewald terms both scale almost perfectly, and at leasMDW terms the expected deviation from
ideal behaviour at 16384 processors is not very apparent.

As expected the long range Ewald terms, i.e. those termsebaire an FFT, scale less well. However,
given the comparatively small size of the FFT grid, 512*3P2, the scaling is still good.

The scaling of the time spent in implementing the link-celigl the other parts of the calculation is
curious. There is very little deviation from straight lineHaviour, but this line is less than perfect. The
reason for this requires more investigation.

Number of | MD Link VDW Ewald Ewald Other
Processors Short Range| Long Range

2048 2.70 0.383 0.333 0.256 1.333 0.389
4096 1.50 0.220 0.163 0.136 0.751 0.230
8192 0.72 0.124 0.083 0.067 0.327 0.123
16384 0.49 0.067 0.043 0.037 0.270 0.069

The table above reports the time per timestep for each ofréngqusly mentioned components of the
execution. It can be seen that, at these processor countemtids system, the dominant term is the
long range component of the Ewald summation. Whilst notliotenexpected the margin by which this

dominates is surprising, as for smaller systems it was falatithe time taken for this term was roughly
comparable with that for the VDW and short ranged Ewald terfiie behaviour is probably a reflection
of the system size scaling of the long range Ewald term beif,Og(N)), as compared to O(N) for the

other sections.

The most important time in the above table is that for an MDettap on 16384 processors. This is
sufficiently small to allow full simulations to be performéd a realistic amount of time, or to put it
another way, the code runs fast enough to allow science t@he. d'his must be the ultimate criterion
of performance!

Xprofiler and explicit timings were used to examine the penfance of the code that implements the
long range Ewald terms. It was found that most of the timeriagén just two areas:

1. The loop nest that interpolates the ionic charges ontoetipalar grid

2. The message passing time in the FFT

The latter may be extracted by taking the difference betwhermeasured times and those reported
by Xprofiler, since this tool reports only CPU time. These tave very short sections of code and are
obvious candidates for optimisation.

The one major problem that was experienced was 1/0. Reatimgnput file took 10 minutes, and
dumping the final result$/2 hour. While these are not too bad, as each has only to be dae ibn
was found impossible to perform periodic dumping of the atoooordinates. To give an idea of how
bad this problem is it takes about 4 minutes to perform 50@ tateps, and 10 minutes to dump the
coordinates. As a full simulation would take over 70,000etiteps and require coordinate dumping
every 500 timesteps it is clear that the total time taken ddnd prohibitive. As such in all the above
figures the periodic dumping of coordinates has not beended, and the time reported is only for the
MD steps, not the initialization and finalization.

The reason for this bottleneck is probably in the way I/O iplemented irDL_POLY3 rather than the
Blue Gene I/O subsystem, at least at presenbUrPOLY3 all I/O is performed

1. in serial, i.e. all through one processor

2. to/from formatted files

The reasons that it is done in such a simple way are simpkgity portability of the files, and up until
now the time taken for I/O has just not been an issue in thelolerent of the code as the time taken
has been small compared to the compute time. However it isveoyvclear that if such system sizes are
to be regularly simulated the 1/0 performance must be inyat&d.

1.4 Summary and Future Work

DL_POLY3 has been shown to scale well out to 16384 processors on B@/(ting was very straight-
forward, and the code scaled very well "out of the box”. It veaswn that the code runs fast enough on
16384 processors to allow a detailed scientific study of yiséesn were time permitting. The one major
problem was 1/0. Using a mixture of code instrumentation dptbfiler the three main areas for future
work to improve the scaling and performance are

1. As mentioned above, 1/0
2. The interpolation of the ionic charges onto the regulat gr
3. The message passing in the FFT

1.5 References

1
2
[3
4
5
[6

Todorov I.T. and Smith W, 2004, Phil Trans R Soc Lond, A 36235
Todorov I.T., Purton, JA, Allan, NL, Dove M.T 2006 J. Phy@ond. Mat. 18, 2217
E.g., Trachenko K 2004 J. Phys. Condens. Matter 16 R14@8lreferences therein
Trachenko K, Pruneda J M, Artacho E and Dove M T 2005 Phes. B 71 184104
M.R.S. Pinches, D. Tildesley, W. Smith, 1991, Mol Sintida, 6, 51

U. Essmann, L. Perera, M.L. Berkowtz, T. Darden, H. Led brG. Pedersen, 1995,
J Chem Phys, 103, 8577

[7] Bush 1.J., Todorov I.T., Smith W, Comp. Phys. Commun5,1323

el b bd bd bd b

2 Thermonuclear Supernovae: Simulations of Delayed Detorimn with
Adaptive Mesh Refinement and Lagrangian Tracer Particles

Anshu Dubey
Center for Astrophysical Thermonuclear Flashes,
The University of Chicago, Chicago, IL 60637

The FLASH code was one of the early applications on the BGehitgcture, so there is a relatively long
history of the Flash center’s interaction with the BG/L miaels. A couple of production runs had been
done with FLASH on large installations prior to the worksh@mne of them was to investigate a deno-
tation mechanism in Type la Supernovae in two dimensiorgd&ravitationally Confined Detonation
(GCD) proposed by the Flash Center. This run used AdaptivehM@efinement (AMR) to optimize
computing and memory resources, and was found to scale vahowthe machine. The second pro-
duction run was that of a three dimensional driven turbidepiblem, using the Uniform Grid. This
simulation also scaled very well, but that is expected fronif&m Grids. However, neither of the runs
had exploited the full complexity of the FLASH code as applie problem of primary interest in the
center. The scientists at the center are currently mogsteisited in investigating the GCD mechanism
in three dimensions, which adds several layers of complégithe two runs described above. AMR is
more expensive, and potentially less scalable than theotmifGrid, and the memory requirements in
3-D are significantly higher. Since the Flash Center hasieghibr a significant amount of computing
time on the next generation Blue Gene machine, we were higblyvated to participate in the scaling
workshop. It would either verify for us that the code scalesniore demanding situations, or give us
early warning of potential problems.

2.1 Experience

The workshop proved to be extremely useful for the Flash €&geatven though the code did not scale as
expected. The workshop helped identify roadblocks andevattks that FLASH can expect to face in
future BGL machines. We found out that the our current AMRkpae PARAMESH needs significant
optimization in its transient memory usage, otherwise ¥esgly limits the problem size with small
memory. We also identified an IO performance bottleneck thighparallel 10 library Parallel-NetCDF;
one of two parallel 10 libraries supported by FLASH. The @afar the performance bottleneck was
found during the course of the workshop, and a temporary avorkad proved to be very successful.
We were able to do several experiments to test the scalingdofilual components of FLASH using
simpler problem setups. Some of these components incldteddst of regridding the mesh when
the refinement changes, global all-reduce operations iresafnthe physics modules in the code, and
performance comparison between managing the mesh withtbowtipermanent guard cells. Most of
these experiments were instrumented with TAU.

The early detection of potential bottlenecks is extremealgful to us, since that gives us time to address
them without the pressure of an imminent production scleedlihe workshop also helped us connect
with the research efforts at Argonne National Laboratorgiimgle PE performance optimization, which
is an important concern in a few of our physical solvers. SIREASH is a public domain code with a
fairly large user base, platform specific optimizationsredrbe applied to it. The current trend in using
code transformation tools to optimize for a specific platfas the best option for FLASH.

2.2 Conclusions

Participation in the Scaling Workshop has proven to be of émse value to the FLASH center, not
in terms of demonstrating the scaling of the code, which gsdfor simple problems, but for early
identification of potential trouple spots. The memory lartdck in 3D GCD simulations persuaded
our PARAMESH colloborators to re-examine the communicatiwachinery in their package. They
have, since then, significantly reduced the memory foatmfrPARAMESH, which has also proven
to be useful on other platforms. During the workshop there gaick and easy access to expertise,
and the staff was exceptionally helpful. Several smalledlas in 10, and using profilers, were solved
very rapidly and we were able to collect meaningful data aloe general code performance. The
experiments helped identify one design issue in ParalltZI®F, which was reported to the developers
of the library. It also lead to FLASH developers using PatalletCDF more effectively.

3 Large scale ab initio calculations of functional materiaé

Markus E. Gruner, Sanjeev K. Nayak, and Peter Entel
Theoretical Physics, University of Duisburg-Essen

3.1 Overview

Aim of this project was to explore the limits for the employmef Density Functional Theory (DFT)
codes on massively parallel computers. Ab initio DFT codisetbecome a widely used tool for the ex-
planation of unusual materials properties and the prexdtiaif novel functional materials. Unlike empiri-
cal and semi-empirical methods their accuracy is not haetpley simplifying assumptions about the in-
teratomic interactions, so that their use becomes indeitahere electronic and structural properties be-
come closely interrelated as it is often the case for moderational materials. Off-the-shelf DFT codes
like VASP (Vienna Ab initio Simulation Packaget t p: // cns. npi . uni vi e. ac. at/ vasp)were
historically not designed to run large problems on a vasthenof processors, but a redevelopment with
this goal in mind appears infeasible due to their comple8ty, the readiness of existing codes for mod-
ern massively parallel supercomputer architectures @alvor the question whethab initio materials
science on the mesoscopic scale will become possible infuteae.

3.2 Test Cases

In previous tests, we could show that the code scales welpdo 1024 nodes. However, further scaling
was hampered by parts of the code which make heavy use of alepack eigensolvggdsyevx and
the parallel 3d fast Fourier transforms (FFT). One strategyrcumvent this limitation is the tackling of
larger systems, where the relative amount of time spennhferprocess communication will be reduced.
The option to optimize the communication structure in théecavas not projected at this stage, but may
become a target for future efforts. Therefore, three qomestivere at the center of interest during the
scaling workshop:

1. Is the VASP code capable of running on 8k nodes?

2. How severe is the limitation of 512MB/node for larger geshs on several thousand nodes?

3. And connected to the last point: What is the maximum sysiemthat can be tackled on the Blue
Gene/L?

To answer these questions, we set up test calculations dbstie test systems. The first consisted of
super-cells of the magnetic shape alloy,MnGa of various sizes (576, 672, 720, 768, 800, 896 and
1024 atoms) large enough to contain a martensitic twin bagnd hese twin boundaries can be shifted
in realistic magnetic fields which gives rise to the so caftsdomagnetic shape memory effect, which
makes these alloys interesting for a new class of magnetumnémal actuators. We also performed
calculations of large super-cells of the dilute magnetimisenductor ZnO:Co and GaN:Gd. Three
different system sizes were categorized consisting ofed tatmber of 432, 864 and 1296 atoms. In both
cases, due to the large super-cells, integratioinr$pace was restricted to thepoint.

3.3 Results

During our tests it became evident that the constrained mewioonly 512MB/node is a severe lim-
itation and that much better scaling may be achieved on Bleeref installations with 1GB/node.
Consequently, we were forced to use the Coprocessor modegthout all of our calculations. An-
other drawback was the lengthy initialization procedur¢hef VASP code, which takes up to 30min for
the largest problems. This does not affect production raimge the current scheduling system allows
runs for up to 24 h, but is inconvenient for test runs, whioklg/iappropriate timing information (and
maximum memory allocation) only after the initializatiomage.

7

The largest system we could run on one and two racks wasriGa super-cell consisting of 672
atoms (6720 spin-polarized valence electrons). Here, wklaxhieve a speedup of 1.73 between one
and two racks, indicating that this system can run on twosadgkh reasonable efficiency.

Figure 2:NisMnGa super-cell with 800 atoms and a twin boundary as usedtie talculations (black
for Ni, blue and magenta for Ga and Mn, respectively).

The largest system that could be successfully tested onk3 raas an 800 atom MInGa supercell
comprising 8000 spin-polarized valence electrons (seedjgidere, we achieved a few selfconsistency
steps, which gave enough data for a timing analysis. On a @ike racks) this problem was brought
to complete self-consistency during the night testing fipreving that the VASP code can be used for
scientific calculations on several thousands of proces3tis measured speedup between four and eight
racks, however, was only 1.22. Reasonable timing data cutle obtained for two racks and less due
to memory restrictions. However, for a previous test caéd (Bon atoms), which was not hampered
by memory limitations down to 128 nodes, we achieved a sgeetit.31 between one and two racks,
while measuring on 1024 nodes an efficiency of 70% of the idediormance extrapolated from 128
nodes. So, it appears plausible to expect an overall eftigiehabove 50% for the 800 atom super-cell
on the cube. For the doped ZnO the largest system calculatesisted of 864 (7725 valence electrons)
atoms which could be computed on one rack.

Based on our experience during the week we conclude that ornlua Bene/L system with
512MB/node the maximum patrtition that can be used effigfeatinsists of four racks. The largest
problems that were manageable with VASP on such an instedlabntained 800- 900 atoms and up to
8000 (spin-polarized) valence electrons. On Blue Genegtesys with 1GB/node larger systems can be
treated and efficient scaling will probably be achieved eweB8 or 16 racks.

From the results of the scaling workshop two concepts fah&rrimprovement of the scaling behavior
of VASP emerged:

e Implementation of an improved memory monitoring system i but whether the VASP code
performs significant memory allocations that are not disted efficiently over the nodes. In
this case the memory consumption per processor may growthgtlsize of the system setting
an upper limit to the system sizes which can be handled on #whime. A simple monitoring
scheme, keeping track of the minimum free memory usingtirek (0) system call has already
been implemented and will be extended to return subroupeeific information. This may help
to localize possible unbalanced memory allocations in #h8R/ code.

e Detailed monitoring of the communication and improved tighiof the FFT and linear algebra
calls. Here, it is planned in close cooperation with Dr. Ba%ezolle of IBM to find out whether
improvements in the FFT communication scheme may resultsigrficantly improved perfor-
mance.

4 Parallel Stabilized Finite Element Methods for Aero-, Heno- and Hy-
drodynamics

Mike Nicolai, Markus Probst and Marek Behr
Chair for Computational Analysis of Technical Systems
RWTH Aachen University

For our group the workshop was very successful. We couldfgigntly improve the performance of our
CFD code on JUBL for runs on 2048 and 4096 processors. Th&apph shows an acceptable scaling
up to 4096 processors now and good scaling for a larger anobpnbcessors can be expected. This was
achieved by splitting the communication into sends andivese

4.1 The Testcase

For measuring the performance of the XNS CFD solver, a 3Desfiae simulation of the MicroMed
DeBakey axial blood pump (see Figure 3) was run with the MPsive of the code. The mesh for the
pump consists of almost 4 million elements and is divided Bubdomains that are then assigned to a
single processor. This partitioning is carried out by theTWEgraph partitioning package.

The equation system resulting from the finite-element (FEntlation of the incompressible Navier-
Stokes (NS) equations that describe the flow of the bloodutitahe pump is solved with a GMRES
method. We typically carried out 3 timesteps with 4 NewtapRson iterations in the solver.

Figure 3:DeBakey blood pump

Before the workshop one could observe an acceptable sazlXS up to 1024 processors while there
was no significant speed-up above that. Here, the perforenaradways measured in time steps per hour
to exclude the effects of time-consuming initializationdata output (see figure 5).

4.2 Analysis of the code

To find the bottleneck in the code the communication betwherptocesses during the simulation run
was analyzed, both with the XNS-internal optidebug command the SCALASCA package of FZ
Julich. Later on, communication patterns were obtainetiniyng the MPl TRACE library to XNS.

This analysis showed that the poor scalability resultechfem increasing number of calls to the com-
munication routines in the EWD library and hence an increasimount of time spent in those. More
precisely, this concerned the functiomedgat her 1 andewdscat t er 2 which incorporate the tran-
sition from node-level (i.e., global) to partition-levelg(, local on each processor), see figure 4a, and
make use oPl _Sendr ecv.

node-level partition-level element-level

100

200

300

400

500

600

700

800

Q00

1000

OOoOOOoOoOoooooo

200 400 600 800 1000

Figure 4:a) Interface between different levels b) Communication pattern as histogram

A communication matrix between the processes was creatidddebug conmoption revealing that
there was communication from each process to each otheeggo@ he amount of communication was
then investigated with the help of a script provided by Marliseimer. One could observe that an
increasing number of calls &Pl _Sendr ecv involved zero-sized messages. Also, the amount of data
actually transfered seemed to vary enormously from promegsocess.

To account for these variations in message size, XNS waswitiii MPI TRACE. Running this version
records the communication and produces a log file that isaagupto suggest a more efficient mapping
of the partitions onto JUBL's topology. A reduction of commication time can be expected by this
when processes that exchange bigger amounts of data atedq@aysically close to each other. This
idea could not be realized during the short time of the warskdbut will be followed up later on with the
help of Pascal Vezolle.

4.3 Modifications based on the analysis

The first observation suggested to simply eliminate zeansfiers from the communication routines. This
was done by splitting thBPI _Sendr ecv’s into seperatd/Pl _Send’s andMPI _Recv’s requiring that
number of bytes of the message sent/received was non-zhi®(rinor) change turned out to be very
efficient reducing the time spent used in thedgat her /ewdscat t er routines enormously especially
when using a large number of nodes. The comparison betweasidland the modified version of XNS
is shown in Table 1 where communication times accordingaddNS log file are listed.

number of XNS XNS modified XNS | modified XNS
processes| ewdgat her | ewdscatter | ewdgat her | ewdscatter
256 11.51 11.69 5.25 6.16
512 12.99 13.55 4.33 6.18
1024 16.70 17.40 4.16 6.06
2048 27.99 29.09 3.73 7.01
4096 57.38 58.34 3.68 6.56

Table 1:Communication time in seconds

While there was communication among all processes, i.8g ainong partitions that do not have a
common boundary in the mesh, Figure 4b shows a significaptiyaed communication pattern for
1024 processes with the modified XNS version. The commuait#éitmes were obtained using Markus
Geimer’s script (that also records the number of visits &ecaimount of bytes transfered).

The effects on the scaling of the code are documented in &lgukVe can see that without the modifi-
10

cations there was nearly no speed-up any more above 1024ctirttiere was even a reduction of time
steps per hour for 4096 processes due to the increasing amforommunication. The modified version

of the code shows some speed-up for smaller amounts of noatasore importantly scales fine on both
arack and a row on JUBL. We can expect a good scaling also i pdocesses; this is to be analyzed
in future test runs.

Scaling Workshop Blue Gene Juelich 5.December 2006 - 7.December 2006

3584 ! Il before workshop

| e werkshey |
Y T e s S s S
P e s e aass ety I (N LA S

ot i i + i i i T i t i T ; i i T i i i
tsthr 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475

ts/hr
Figure 5:Scaling after the workshop

Another modification in the communication routines that wested involved non-blocking transfers.
This was expected to avoid waste of time caused by late sendérfortunately, using/Pl _I r ecv,
MPI _Send and MPlI Wi t did not lead to an improved (or equal) performance for altipan sizes
which should have been the case. For 4096 processors tlwrparice was slightly worse while there
was some speed-up for 2048, as seen in Figure 6. Brian Wyliehelp us to follow this track and
has already performed further tests (e.g., executing @lM® _I r ecv’s at once before any processor
transfers data).

XNS DeBakey simulation

500 T T T T
3 W MPI_Sendrecv (Original)
MPI_Send + MPI_Recv

400 B MPI_Irecv + MPI_Send + MPI_Walt
5
2 300
@
Q.
8 -
0
£
iZ 200

) d

0 J | I | I I
128 256 512 1024 2048 4096
Processes

Figure 6:Comparison of modifications in ewdcomm.F

11

4.4 Additional analysis

Since the main focus during the workshop had been on imprewm&syin the communication routines,
there was little time left to look at the other parts of theeoWhat could be found is a load imbalance
in the ewdgmres routine, where the process with the highaegt seemed to be significantly overloaded.
This is shown in Figure 7 for a test run of XNS with 1024 proesssShe GMRES solver uses up to 13%
of the total time spent (with 256 processes). Even if thie@etage is decreasing to around 5% on 4096
processes, it could be worth investigating this imbalamzbteying to reduce it.

8 66 \| CUBE: epik_old_co1024.cube
File View Help
Metrics ‘ Call Tree ‘ Flat Profile | System Tree Topalogy View
Absolute /) [Absolute /] [Peer percent /]
~=—[] 0.00 Time: —o_-:E ;;; ;Lm:myu» iy K
(2] 1623087 Execution atl ;
T [613253 <<initializations> s
R 12673935 1P| 77,15
e =[] 0.00<<time step loop>>
——[] 22761.08 Overhead | [0.00 updatedt F 77 (7,7,14)
[1552096738 Visits P £z
{0 G680 updatex T e 7,719
(@@ 79841 updateien FTT
#+-{] 0.00 gene 7 F 77 (1,%.12)
3 00 <<iteration lnop>> T
poe 2 F27 77 07,11)
r] 0.00 genu 777
t [] 000 genh 7,7,10)
£ [] 0.00 newd Fz =
& 140313 ewdtimerstan e
[] 0.00 ewdmoreioc_ L 77— 7,7.8)
@[] 0.00 blkins3dst .
[0.00 blkrhs Zi o7 BT

{0 6262.08 ewdscatter2 p
[0 0.20 ewdstatrhs

i 2
=[] 0.00 ewdbsrgetdiag L7 7780 1,5)
@[] 0.00 ewdmakesy e
] 0.00 ewdmuit
i | 245 ymr

[0 7865.72 ewdgather
] 0.00 ewdbsrmatvec o
—] 0.00 ewdeopy e Lk
—e+—{] 5683 updated -z
—+—{2] 16513 recoverstress

L[] 18533 checkd
L] 0.00 ewdtimerstamp

——] 0.00_ewdmsy /
| I_F =l AL I
[26,793348 @07%) | 6565e«04| [248.933 (05%) 6585004 ~ 5270e-01

[[HRET] I BRSO .

Figure 7:Load imbalance in ewdgmres

5 Conclusions

As mentioned before, the workshop was very successful forponject. The performance was sig-

nificatly improved by optimizing the communication routinand some other promising tracks were
discovered that could lead to further improvements of tlairsg. This refers particularly to reducing

the load imbalance in ewdgmres and to applying an improvaaping of the mesh partitions onto JUBL

that we are waiting to receive from Pascal Vezolle from IBMiaB Wylie from FZJ has helped us a

lot testing the different modifications in ewdcomm.F and wi eontinue to test the efficiency of using

MPI I recv.

Thanks to the improved scaling, we could run the code on 4086egsors which had not been done
before because of the bad performance for 2048 processaoifertuhately, we also encountered some
obstacles when running XNS for the first time on a higher nunoberocessors. We had to spend quite
some time creating the nprm file which holds information dtiba node renumbering on the different
mesh partitions created with the METIS package. For somsorethat is still to be analyzed we did
not succeed in generating this file for 8192 processes whiattenit impossible to test the scaling of
the modified version of XNS on a cube. Strangely enough, then mgeneration also crashed for 3072
processors while the file could successfully be created 86 #focessors. This is to be examined later
on and can hopefully be cured.

Finally, we would like to thank the staff of ForschungszantrJilich, especially Brian Wylie (who had
already performed some analysis prior to the workshop te g#&/a head start), and the IBM crew, for
the nice atmosphere and the good cooperation.

12

6 Development of a Scalable Software Infrastructure on Blu&ene Sys-
tems

Akira Nishida

21st Century COE Program, Chuo University / Core ResearctEfmlution Science and Technology
Program, Japan Science and Technology Agency

Hisashi Kotakemori

Core Research for Evolution Science and Technology Progdapan Science and Technology Agency /
Department of Computer Science, the University of Tokyo

Akihiro Fuijii

Department of Computer Science and Communication Endgimgdfogakuin University

Akira Nukada

Core Research for Evolution Science and Technology Progdapan Science and Technology Agency /
Department of Computer Science, the University of Tokyo

6.1 Overview

Recent progress of science and technology has made nuhwntdation an important approach for
studies in various fields. The object of the Scalable Softviafrastructure (SSI) project, funded by the
Japan Science and Technology Agency since 2002, is theagierreht of a basic library of solutions and
algorithms required for large scale scientific simulatiomkich have been developed separately in each
field, and its integration into a scalable software infractire.

The components include a scalable iterative solvers ltires; having a number of solvers, precondition-
ers, and matrix storage formats that are flexibly combinadnéd a fast Fourier transform library FFTSS
for various superscalar architectures with SIMD instiutsi, which outperforms some vendor-provided
FFT libraries.

For this workshop, we have posed two problems:

1. As a preconditioner for iterative linear system solvesshe algebraic multigrid scalable enough
to beat the traditional preconditioners, such as the indet®mp.U factorization?

2. For the scalable implementation of large scale fast Eotransforms, is the volumetric 3D FFT
the best choice? In Section 2 and 3, we describe the resuwits désts on the Blue Gene systems.

6.2 Algebraic Multigrid Preconditioning

During the first run of our linear solvers library Lis on Blue@ Watson in October 2005, we observed
the linear scalability up to 8,192 nodes, and successfutiyup to 16,384 nodes. The bottleneck which
limited the scalability was its memory requirement to mahke tommunication tables to manage the
distributed sparse matrix data.

After the run, we implemented a new data structure to redoedable size by keeping only the infor-
mation on nonzero blocks, and a new parallel I/O methodotogyramatically reduce the data access
to the global storage, which was the main bottleneck of tleegmid post processes. In March 2006, we
observed linear scalability up to 16,384 nodes on BGW withrnaw code.

Our group proposed the multigrid preconditioned conjugggalient method (MGCG) in 1992, and the
algebraic multigrid preconditioned conjugate gradienthnd (AMGCG), an expansion of the MGCG
for unstructured meshes in 2001, which has shown to be the¢ effestive general purpose iterative
solver for symmetric linear systems. After the second rumparted our parallel AMG preconditioner

13

into Lis, which dramatically boosts the performance of tbajagate gradient method on 512 nodes of
the Blue Gene system at NIWS Corporation.

In this workshop, we had hard time to pinpoint the remainingsin AMGCG, which were finally found
to be related to the notation of memory allocation, and waatmnthe Fortran 90 based AMG codes for
the new version of IBM XL compiler. As of today, we can run boftthe symmetric and nhonsymmetric
versions on Blue Gene systems, the result of which on 1,08éa& shown below. They are to be
included in the next update of Lis. (Akira Nishida, Hisashit&kemori, and Akihiro Fuijii)

6.3 Volumetric 3D FFT

In this workshop, we computed 3-D FFT on the Blue Gene sysBmviously, Eleftheriou, et al. showed
the efficiency of the volumetric FFT using 3-D decompositifor small data sizes. We examined its
performance with large data.

In our project, we have developed a high performance FFamb=FTSS'. It supports many kinds of
processor architectures including SIMOMD instructionsPofverPC 440 FP2. In this time, 1-D FFT
routine was integrated into the volumetric FFT. The volumetFT requires all-to-all communications
for each direction of the 3-D Torus network. In our implensian, MPI communicators are created
and are simply passed to MRllltoall() functions. The all-to-all communications aresentially not
scalable on the Torus network. For this reason, the comratioics occupy large percentages of the total
execution time.

In computing 3-D FFT 010962, we have achieved the performance of about 850 GFLOPS wgtit ei
racks. But this is only about four times the performance wiik rack.

The ratio is theoretically correct. The number of nodes ighdled to each direction. The average dis-
tance of the all-to-all communication is also doubled. Assuit, the throughput of the communication
becomes half. The message size becomes 1/8, thereforecitigtiox time becomes 1/4.

The performance with 64 racks is estimated to be about 3 TRR.@%kira Nukada

‘ —— AMGCG —s—ILUCG Execution times of 2048x2048x2048 3D FFT
8
T OTrans. for Z axis
’3 ’: g : B Trans. for Y axis :
@ a O Trans. for X axis
N/ < 4 — e £l
ot g
a O
& 2
] [H FF
0 2000 4000 6000 0 ! ' '
8x8x16 8x16x16 16x16x16 32x16x16
Problem Size (x10%)
Number of Nodes

Figure 8: Execution time of symmetric and nonsymmetric version of AM{&ft) and execution time
of 3D FFT (right) on Blue Gene/L

14

7 Turbulent convection for very large aspect ratios

Jorg Schumacher
Department of Mechanical Engineering, Technische UnitérsD-98684 limenau, Germany

Matthias Ptz
Deep Computing — Strategic Growth Business, IBM DeutschfambH, D-55131 Mainz,
Germany

Scaling and runtime tests of a pseudospectral code on up3®416PUs of the Blue Gene/L system
JUBL of the John von Neumann-Institute for Computing Jukce reported.

7.1 Physical motivation

Turbulence appears frequently in geometries for whichdterél dimensions exceed the vertical dimen-
sion by orders of magnitude. Examples appear in planetadystellar astrophysics or in atmospheric
and oceanographic science. For example, atmospheric casdasyers typically have lateral extensions
of up to 1000 km and are characterized by aspect rdtio$V : H = 1000 : 1000 : 1. It is clear that
the turbulent transport in the lateral dimensions will giffrom that in the remaining vertical dimen-
sion. Which aspect ratios of such systems are necessarystwvebfeatures that are characteristic for
two-dimensional turbulence as frequently used in geogly$iuid dynamics? When do we observe the
formation of an inverse cascade for which smaller vortieesliftheir kinetic energy into larger structures?
In addition, the turbulent motion of the air is affected byaten, stratification, and thermal convection.
Radiation and moisture play an important role as well. A biggncertainty for larger scale atmospheric
models arises from strongly variable cloud coverage. The&lrime scales of cloud formation are still
not completely understood. Recent studies suggest thatalescence and clustering of small sub-
Kolmogorov scale sized droplets is triggered by the smiallebulent flow scales at which the inertial
particles are advected. In summary, it is very challengimg) @actically (almost) impossible to include
all effects within a single numerical simulation.

In the following, we want to study one particular processuntsmesoscale layers, turbulent Rayleigh-
Bénard convection. The three-dimensional pseudospesitraulation code advances the Boussinesq
equations for an incompressible fluid in time by means of as@order predictor-corrector scheme.
Lateral boundary conditions are periodic; vertical bougdaonditions are free-slip. The program runs
in single precision and is implemented on the Blue Gene/lesys

7.2 3D-FFT packages

One of the main building blocks of the numerical method isfdst Fourier transform (FFT). The classi-
cal parallel implementation of three-dimensional FFTssusslabwise decomposition of the simulation
domain. For a simulation wittv3 grid points, the method allows a parallelization on up\groces-
sors. Due to the rather small memory size per core, the Blue/Gaequires avolumetricFFT which
decomposes the three-dimensional volume into cuboidrbkis and hence allows a parallelization de-
gree of N2. The prime requirement for being able to run a simulatiomwaitarge grid is that the domain
fractions of the grid (including buffers and temporary ag®) fit into the 512 MB of memory on a single
Blue Gene/L node. Atthe same time, of course, the FFT algorghould also be scalable, i.e. increasing
the number of CPUs to solve the problem should also subaligntiecrease the time-to-answer.

In order to check this, we compared three FFT packages onlatestaase: (i) the old slabwise method,
(ii) the BGL3DFFT package by M. Elefthericet al. (IBM J. Res. & Dev.49, (2005)), (iii) the P3DFFT

package by D. Pekurovsky (http://www.sdsc.edu/tsawices/applications/fft3d.html). Package (ii) is
written in C++ and contains complex-to-complex FFTs onlgr{Fan- and C-bindings are available from

15

IBM). Packages (i) and (iii) are available in Fortran. Theulés on strong scaling are summarized
in Figure 9. For the latter two packages we have varied thepingpof the MPI tasks onto the torus
grid network of the Blue Gene/L machine. By default, Blue &&nmaps MPI tasks on all primary
cores of a partition first (BGLMPMAPPING = XYZT. Beside the fact that the P3DFFT interface and
implementation supports our needs in an optimal way (@&bmplex/complex-to-real), it also turned
out to be the best solution in terms of performance. For exantpe symmetryu(k) = u*(—k) for
real-to-complex transforms is explicitely implementegtally and they allow for the storage of physical
space and Fourier space fields into the same array (in-placsformation).

) —=— Slabwise (TXYZ)
—A— Bgl3dfft (TXYZ) _
—+— Bgl3dfft (Other Mapping)
10t | —e— P3dfft (TXYZ) |
—k— P3dfft (Other Mapping)
~ < |- - - Ideal scaling
Q
£
100 -]
-1
10 —_ —_
10" 10° 10°
#CPU

Figure 9: Strong scaling tests for up to 1024 CPUs. The testtion is f(z,y,z) =
sin(z) cos(2y) sin(z) which is resolved on an equidistar28? cubic grid of sidelengti2r.

7.3 Scaling tests for the convection code

The inclusion of the P3DFFT package into the convection gale the following scaling on one rack
(2048 CPUs) for &12 x 512 x 64 system with an aspect ratio = L/H = 16. Figure 10 shows the
results. All tests have been done in the virtual node modee folowing improvements of the code
performance should be mentioned:

e For numbers of CPU% 256 the mpirun option for the processor topology BMAPPING =
XYZT brought the shortest computation times.

e Splitting the loops for the calculation of the r.h.s. of theuBsinesq equations brought an accelera-
tion of the code. This option avoids an if-then command ferkh= 0 case which would otherwise
inhibit code vectorization.

e The use of non-blocking point-to-point communication @ast of MPLReduce and MPBcast
caused a gain of 10% in total time.

The analysis of the code with the mpitracelib indicated #ftdr all these improvements had been made
almost all of the communication overhead remained in the_MRballv communication task which is

16

required in the FFT algorithm for the transposition of théaid-like rods and is hence the only factor
which limits strong scaling. Future improvements of the lienpenation of MPIAlltoallv will therefore
have an immediate impact on the performance of our code.

N =512, N =512, N_=64
X y z

10 T T
—— Data
- — —Ideal scaling

time

#CPU

Figure 10: Strong scaling tests for the code on up to 2048 CPUs

Table 7.3 summarizes our findings for grid resolutions thaintend to use for the production runs, i.e.
N, x Ny x N, = 4096 x 4096 x 256 atI" = 32 given the present ressources at the NIC Julich. For such
large grids it became necessary to implement some inteunaigtion loops in double precision. All of
these loops are used to calculate the ride-hand-side (RHB8& @quations of motion. The number of
grid points per MPI task was of the orderif® which is simply to large to sum over with 32-bit floating
point precision.

We have studied the two modes in which one dual core CPU (wikiclkenoted as one node) can be
operated on Blue Genel/L, the virtual node mode (VN) and thprooessor mode (CO). The parameters
iproc andjproc in the table represent the two dimensions of the proces@btlwat has to be generated
for the volumetric FFTs. Note, that the aspect ratiamfoc : jproc can be tuned as long @groc x
jproc < Ngpy. In general, an aspect ratio of 1 would be best, but otherceSsatan be better, if they
improve the mapping of the MPI tasks onto the partition gifidr the large problem we observe that
the differences between the VN and CO modes are small. Thigtsefrom the fact that large local
grid fractions do no longer fit into the L3 cache of a Blue Genedde and have to be streamed from
memory. If the second core is used for computation (VN mole)tivo cores are actually competing
for the memory bandwidth of the node and the gain in comptiiing is fairly small. Additionally, the
communication time in VN mode is bigger than in CO mode, sheth these two effects almost cancel
each other. The table indicates that for8192 CPUs runtime starts to saturate. There is no chance to
improve the cache locality of the code to avoid this, becdlied-FTs will always require the full grid.
There may however be some further optimization potentialising explicit task mappings. The main
problem here is to find an embedding of a 2d grid decomposititma 3d torus communication grid,
such that no communication hot spots occur on the pointtotmetwork of the Blue Gene/L. In general
this is a hard problem.

17

CPUs | processor mode iproc x jproc | time

2048 vn 32 x 64 183.3s
1024 co 32 x 32 205.7s
4096 vn 64 x 64 118.6s
4096 vn 128 x 32 109.6 s
8192 vn 128 x 64 778s
4096 co 64 x 64 90.66 s
16384 vn 128 x 128 62.6 s
8192 co 128 x 64 60.5s
8192 co 512 x 16 740s

Table 2: Runtime tests for the aspect rdtie= 32. The CPU time was measured with MRItime() task
for a loop of 5 time steps.

7.4 Summary and outlook

The use of the P3DFFT package and a number of further imprertanin the communication overhead
improved significantly the performance of our code on theeBhene/L system. These efforts allow us to
run production jobs on at least two racks. Since the CPU tiflmeiocode is memory bandwidth limited
for problem sizes of interest, VN mode does not give a sigamficpeedup over CO mode.

18

8 Numerical simulations of QCD

Hinnerk Stiiben
Konrad-Zuse-Zentrumilf Informationstechnik Berlin, Berlin, Germany

Thomas Streuer
Department of Physics and Astronomy, University of Kentuekington, KY, USA
— QCDSF collaboration —

The scientific aim of current projects of the QCDSF collakiorais to better constrain the extrapolation
of the lattice results to the chiral and continuum limits lgyfprming simulations at more realistic quark
masses and at smaller lattice spacings. This has becomblpasswv due to substantial improvements
of the Hybrid Monte-Carlo (HMC) algorithm and a significantiease in computing power.

Atthe BlueGene/L Scaling Workshop we studied the scalinguofroduction code BQCD (Berlin quan-
tum chromodynamics programme) up to the full machine. BQEB Hybrid Monte-Carlo programme
that simulates quantum chromodynamics (QCD) with Wilsomggeaction and non-perturbatively(a)
improved Wilson fermions. The overall programme was wmifteFortran 90 and parallelised with MPI.
For the BlueGene the most compute intensive part was impitrden assembler.

In computational QCD the theory is defined on a four-dimemaigegular lattice with (anti-) periodic
boundary conditions. The kernel of BQCD is a standard caipigradient solver with even/odd pre-
conditioning. Typically, 80 % of the execution time is spanthat solver. The dominant operation in
the solver is the matrix times vector multiplication. In ttentext of QCD the matrix is calleférmion
matrix. The fermion matrix is sparse. It has eight entries per rote &ntries in row are the nearest
neighbours of entry of the vector.

The entries of the fermion matrix aBex 3 complex matrices and the entries of the vector dare 4
complex matrices. The experience on current machines tightbgerformance of the Fortran code for
the matrix times vector multiplication is about 10 % of peakl dhat the performance approximately
doubles for the assembler version. On the Hitachi SR8000Aki&th was one of the main production
machine for the QCDSF collaboration from 2000-2006 therkortode ran at about 40 % of peak.

machine dimensions total lattice volume
323 x 64 483 x 96
#racks #cores network torus local volume local volume
1 2048 8x 8x16x2 16x4x4x4 24x6x6x6
2 4096 8x16x16x2 16x4x4x2 24x6x6x3
4 8192 16 x16x16x2 16x4x2x2 24x6x3x3
8 16384 32 x16x16x2 16 x2x2x2 24x3x3x3

Table 3. Lattice volumes per core. The network torus din@n&2” corresponds to the two cores of a
node.

The programme is parallelised by a domain decompositiothdmarallelisedcg-kernel ghost cells of
the input vector have to be exchanged before the vector canultglied with the fermion matrix. In
order to scale QCD programmes to high numbers of processescatient communication network is
required because the lattice volume per core becomes saalll@ble 3). On the other hand small lattice
volumes per core improve the utilisation of data caches amddnimprove performance.

19

8.1 Details on the assembler code

For the floating point operations of the femion matrix muitigtion we use the SIM@double hummer)
instructions of the floating point units, which can perforuif floating point operations per clock cycle.
The communication is done in parallel to the computatiorthabin principle computation and commu-
nication can overlap. For the communication between neasghbours in three of the four directions
we use the torus network. The network is accessed from thesndd memory-mapped fifos. Each node
has six injection fifos, which can receive outgoing packetsny direction. Each of the two cores in one
node uses three of these fifos, so that packets going intafdrand backward directions have to share
one fifo. The packet size must be a multiple of 32 bytes, iroly@n eight-byte header, so that we use
packets of 128 bytes for one projected spinor. Incoming @@cérrive in one of twelve reception fifos:
there are two fifos for each of the six nearest neighbours afdg.nThese two fifos are assigned to the
two cores in a node. Because of the simple communicatioenpaibf nearest neighbour data exchange
only), no dynamical routing is necessary. Furthermoreh eacle receives the data packets in the order
in which they are needed, so that no reordering of packetsdessary. Each node sends a packet to its
neighbour one iteration before the neighbouring node neetdata, so that the network latency can be
hidden.

In the fourth direction, which corresponds to the x-directof the lattice, the lattice is split between the
two CPUs in one node, so that the communication can be dorteevishared memory. However, since
the L1 caches are not coherent, the straightforward apprafegimply reading data from the other CPUs
memory does not work. At present, we use a memory region ib3teache (the scratchpad area), which
is marked L1-caching inhibited for data exchange betweerwo cores.

implementation: Fortran/MPI |latticet8? x 96
#racks MFlop/s per core overall TFlop/s speed-up efficiency
1 280 0.57 1.00 1.00
2 292 1.20 2.09 1.04
4 309 2.53 4.41 1.10
8 325 5.32 9.29 1.16
implementation: Fortran/MPI latticeg2? x 64
#racks MFlop/s per core overall TFlop/s speed-up efficiency
1 337 0.69 1.00 1.00
2 321 1.32 1.91 0.95
4 280 2.30 3.33 0.83
8 222 3.65 5.28 0.66
implementation: assembler lattice2> x 64
#racks MPFlop/s per core overall TFlop/s speed-up efficiency
1 535 1.10 1.00 1.00
2 537 2.20 2.01 1.00
8 491 8.05 7.34 0.92

Table 4: Performance of theg-kernel for two implementations and two lattices.

20

8.2 Results

In scaling tests the performance of ttggkernel was measured. For performance measurements the cod
was instrumented with timer calls and for the kernel all flegapoint operations were counted manually.

In order to get good performance it is important that thedatfits the physical torus of the machine.
In order to achieve this, MPI process ranks have to be agsigraperly. On the BlueGene/L this can
be accomplished by setting the environment vari&ike MPlI _MAPPI NGappropriately. The settings of
that variable werd@XYZ on 1, 2, and 4 racks andyZX on 8 racks.

Performance results are given in Table 4. In Figure 11 thdteeare shown on double logarithmic plots
(the dotted lines indicate linear scaling).

One can see from the table and the plots that the Fortran/Ei8lon exposes super-linear scaling on the
483 x 96 lattice. Even the32? x 64 lattice scales quite well given the fact that the latticeuobs per
core are tiny.

The scaling of the assembler version is excellent. For theegiy local lattices the scaling is consider-
ably better than for the Fortran/MPI version. This meansithéhe assembler version computation and
communication really overlap.

Conclusion. We found that our code scales up to the whole Blue Gene/L aidlI. The highest
performance measured was 8.05 TFlop/s on the whole macHieechigh performance could be obtained
by usingdouble hummeinstructions and techniques to overlap communication ancpcitation.

10 5 35 e 10 - 5

Tflop/s 1 I Tflop/s

o a
T T
° kel
[} [}
[} Q
oy @
& 48% x 96 lattice
1 0_5? 0.69 O 32% x 64 lattice _ 1 110 O 32% x 64 lattice
| | | | | | I S| | | | | | |
1 10 1 10
number of BlueGene/L racks number of BlueGene/L racks

Figure 11: Scaling of the cg-kernel of BQCD for the Fortran 90/MPI version (left) and for the
assembler version (right).

21

