000055971 001__ 55971
000055971 005__ 20200423204428.0
000055971 0247_ $$2DOI$$a10.1063/1.2710181
000055971 0247_ $$2WOS$$aWOS:000244420600051
000055971 0247_ $$2Handle$$a2128/18081
000055971 037__ $$aPreJuSER-55971
000055971 041__ $$aeng
000055971 082__ $$a530
000055971 084__ $$2WoS$$aPhysics, Applied
000055971 1001_ $$0P:(DE-Juel1)VDB37180$$aLezaic, M.$$b0$$uFZJ
000055971 245__ $$aFirst-principles prediction of high Curie temperature for ferromagnetic bcc-Co and bcc-FeCo alloys and its relevance to tunneling magnetoresistance
000055971 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2007
000055971 300__ $$a082504
000055971 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000055971 3367_ $$2DataCite$$aOutput Types/Journal article
000055971 3367_ $$00$$2EndNote$$aJournal Article
000055971 3367_ $$2BibTeX$$aARTICLE
000055971 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000055971 3367_ $$2DRIVER$$aarticle
000055971 440_0 $$0562$$aApplied Physics Letters$$v90$$x0003-6951
000055971 500__ $$aRecord converted from VDB: 12.11.2012
000055971 520__ $$aThe authors determine from first principles the Curie temperature T-C for bulk Co in the hcp, fcc, bcc, and body-centered-tetragonal (bct) phases, for FeCo alloys, and for bcc and bct Fe. For bcc Co, T-C=1420 K is predicted. This would be the highest Curie temperature among the Co phases, suggesting that bcc-Co/MgO/bcc-Co tunnel junctions offer high magnetoresistance ratios even at room temperature. The Curie temperatures are calculated by mapping ab initio results to a Heisenberg model, which is solved by a Monte Carlo method. (c) 2007 American Institute of Physics.
000055971 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000055971 588__ $$aDataset connected to Web of Science
000055971 650_7 $$2WoSType$$aJ
000055971 7001_ $$0P:(DE-Juel1)130823$$aMavropoulos, Ph.$$b1$$uFZJ
000055971 7001_ $$0P:(DE-Juel1)130548$$aBlügel, S.$$b2$$uFZJ
000055971 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.2710181$$gVol. 90, p. 082504$$p082504$$q90<082504$$tApplied physics letters$$v90$$x0003-6951$$y2007
000055971 8567_ $$uhttp://dx.doi.org/10.1063/1.2710181
000055971 8564_ $$uhttps://juser.fz-juelich.de/record/55971/files/1.2710181.pdf$$yOpenAccess
000055971 8564_ $$uhttps://juser.fz-juelich.de/record/55971/files/1.2710181.gif?subformat=icon$$xicon$$yOpenAccess
000055971 8564_ $$uhttps://juser.fz-juelich.de/record/55971/files/1.2710181.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000055971 8564_ $$uhttps://juser.fz-juelich.de/record/55971/files/1.2710181.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000055971 8564_ $$uhttps://juser.fz-juelich.de/record/55971/files/1.2710181.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000055971 909CO $$ooai:juser.fz-juelich.de:55971$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000055971 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000055971 9141_ $$y2007
000055971 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000055971 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000055971 9201_ $$0I:(DE-Juel1)VDB381$$d14.09.2008$$gCNI$$kCNI$$lCenter of Nanoelectronic Systems for Information Technology$$x1$$z381
000055971 9201_ $$0I:(DE-Juel1)VDB781$$d31.12.2010$$gIFF$$kIFF-1$$lQuanten-Theorie der Materialien$$x0
000055971 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x2
000055971 970__ $$aVDB:(DE-Juel1)87380
000055971 980__ $$aVDB
000055971 980__ $$aConvertedRecord
000055971 980__ $$ajournal
000055971 980__ $$aI:(DE-Juel1)VDB381
000055971 980__ $$aI:(DE-Juel1)PGI-1-20110106
000055971 980__ $$aI:(DE-Juel1)VDB1045
000055971 980__ $$aUNRESTRICTED
000055971 9801_ $$aFullTexts
000055971 981__ $$aI:(DE-Juel1)PGI-1-20110106
000055971 981__ $$aI:(DE-Juel1)VDB1045