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Abstract

In magnetic systems lacking spatial inversion symmetry it is observed that the Dzyaloshinskii-Moriya interaction can
entail long-ranged spin spirals with a unique sense of rotation. Here, we present a computationally efficient scheme
to calculate these large magnetic structures within density functional theory and extract the interaction parameters
using perturbative approaches of different order. We analyze the accuracy of these methods by investigating thin

Fe films on W(110) and Mo(110) substrates.
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1. Introduction

For the prediction and understanding of magnetic
structures from first-principles calculations, a system-
atic investigation of magnetic interactions like ex-
change or the magnetocrystalline anisotropy (MCA)
is crucial. The determination of the MCA requires
relativistic (often collinear) total energy calculations.
Exchange interactions can be extracted from energy
differences between different magnetic structures.
Here, the calculation of spiral spin-density waves (SS-
DWs) turned out to be an efficient approach since
(i) SSDWs are solutions of the classical Heisenberg
model and (ii) the generalized Bloch theorem can be
exploited in the calculations [1,2].

Unfortunately, in this procedure a type of magnetic
interactions is completely missed: the antisymmetric
exchange or Dzyaloshinskii-Moriya (DM) interaction.
In the past few years we have shown the particular
importance of this interaction for magnetic nanostruc-
tures, e.g. ultrathin films on surfaces, where it can
give rise to cycloidal SSDWs with a unique sense of
rotation [3,4]. These SSDWs are induced by a rela-
tivistic effect (spin-orbit coupling, SOC) in inversion-
asymmetric structures and typically have a long spa-
tial period. Since SOC and the use of the generalized
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Bloch theorem are mutually exclusive, the relativistic
description of these spin spirals requires noncollinear
calculations on the basis of huge magnetic unit cells.
As the performance of these calculation with sufficient
accuracy is a true challenge, we present here a scheme
which reduces the computational costs of such calcu-
lations drastically. Furthermore, we analyze the effect
of the involved approximations and indicate how this
scheme can be used for a detailed analysis of the re-
sults.

2. Ansatz

If the magnetic structure spatially varies on the
mesoscopic scale, it can be described with a micromag-
netic model where the atoms’ magnetic moments are
replaced by a continuous function M(r). The energy
is a functional, E[M(r)], containing the magnetic in-
teractions mentioned above. When the magnetization
direction is confined to a plane and varies only along
one spatial direction r, we describe the magnetization
by a function of a single angle ¢(r) and the energy
functional has the form [5,6]

E[cp]:/dr{A(i—fY—&-Di—f—&-K(cp) A (1)
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Here, the spin stiffness A depends mainly on the non-
relativistic exchange interactions, whereas the param-
eter D, induced by the DM-interaction, and the MCA
term K are due to the spin-orbit coupling. In the fol-
lowing, we present a method to calculate the parame-
ters of this energy functional from first principles.

In order to obtain the model parameters A and D by
density functional theory (DFT), we calculate homo-
geneous SSDWs (i.e. spatially rotating magnetic struc-
tures with %f = const. ) with different spatial period
lengths A = 27 (i—f)71 . Then, Eq. (1) yields
E(A):A(2—”)2+D2—”+k )

A A

with an anisotropy energy K averaged over the pitch of
the spiral. A and D can be obtained from quadratic and
linear fits to the dispersion curve E(A™") in Eq. (2). It
can be useful to split this curve into an even and an
odd part before performing the linear fit, as the odd
(linear) term typically is very small, whereas the even
part can require higher numerical cutoffs for the same
accuracy.

Of course, the method can also be applied for more
than one spatial extension and general magnetization
directions: From calculations of homogeneous SSDWs
with different spatial propagation directions and differ-
ent spin-rotation axes, all components of the vector D,
that describes the DM-interaction [7], can be obtained.
One should keep in mind, that our approach is useful
to obtain the exchange parameters of Eq. (1) but can-
not be used to determine the magnetic structure di-
rectly from the electronic-structure calculations: The
true Dzyaloshinskii spirals (that minimize the func-
tional (1)) are not homogeneous [5,6], whereas our
method relies on homogeneity. Nevertheless, with the
parameters obtained by this method one can describe
more complex magnetic states such as inhomogeneous
SSDWs in the context of a micromagnetic model. This
approach has been used successfully to describe e.g.
domain walls [8].

3. Electronic structure of spin spirals

If spin-space and crystal lattice are not coupled, we
can apply a generalized Bloch theorem that allows us to
describe any homogeneous SSDW by using the chemi-
cal unit cell (instead of the magnetic one). Since spin-
orbit coupling distinguishes between different magne-
tization directions with respect to the lattice in the
chemical unit cells that make up the magnetic unit
cell, using the generalized Bloch theorem is no longer
possible and the computational expenses can increase
dramatically. To circumvent this problem we exploit
the fact that SOC is usually a weak effect and can be

included in a perturbative way: First we neglect spin-
orbit coupling and calculate the homogeneous SSDWs
within one chemical unit cell and periodic boundary
conditions, and then the action of the spin-orbit oper-
ator on these solutions will be considered in a second
step.

3.1. Generalized Bloch theorem

Introducing spherical coordinates for the magneti-
zation, m, and the exchange-correlation B-field,

m =m (sind cos p &, +sind sinp &, + cosy €;) ,
B =B (sin? cosp &, +sind sinp &, + cosv &) ,

we can characterize the homogeneous SSDW underly-
ing Eq. (2) by

m(r+R)=m(r), B(r+R)=B(),
J(r+R)=9(r), ¢r+R)=¢r)+q-R.

Here, R is a lattice vector of the chemical lattice and
the g-vector determines the direction of spatial propa-
gation of the SSDW as well as the period length |A| =
‘%‘r . The spiral’s rotational direction depends on the
sign of q.

The generalized Bloch theorem [1,2] states, that the
eigenstates of a Schrodinger-type Hamiltonian

1
2Me

Ho = ——p’ + V(r)+ o - B(x) (4)
with a lattice periodic scalar potential V and a spiraling
B-field as given in Eq. (3) can be written in the form

) i(k—3q)r (T)( )
f e Uy T
Yiej(rlg) = | 7 =< I ) (5)

1 i (k+1q)r
)~ s

with lattice-periodic functions ul(:’]) (r) = ul(f]) (r+R).

The g-dependent phase factor, that is not present in
the ordinary Bloch theorem, corresponds to a spin ro-
tation around the z-axis. This theorem allows to deter-
mine the full solution of the Kohn-Sham Schrédinger
equation by restricting the calculation to the chemical
unit cell and the first Brillouin zone.

3.2. Spin-orbit operator and force theorem

After determining the selfconsistent solution of the
Kohn-Sham Schrodinger equation with spiral bound-
ary conditions, the spin-orbit coupling operator Hs, is
added. This operator can be approximated [9,10] by a
sum over individual atoms, u,

7:[50 _ Z 5(#) (r(“)) o LW 7 (6)
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where L™ is the orbital momentum operator with re-
spect to the position of the uth nucleus and .5(“)(7"(“))
describes the spin-orbit coupling strength as a function
of the distance r*) from the pth nucleus [11].

Note, that Eq. (3) implies a spin rotation axis par-
allel to .. As long as SOC was neglected, this did
not restrict the generality of our approach, but at this
point we might want to include a different direction of
this axis. Then, the functions of Eq. (5) have to be ro-
tated with a spin rotation matrix U or, equivalently,
we assume that a rotated spin-orbit operator, Hso =
Ut 'Flso U, is used.

For the Hamiltonian Ho + Hso, we exploit the fact
that SOC is a relatively small effect and can be treated
as a perturbation. We use Andersen’s force theo-
rem [12-14], where the change of the total electronic
energy due to a small perturbation is considered in a
density functional theory context. In our case, we can
apply it to the known selfconsistent solution of the
unperturbed Kohn-Sham equation

HO[n(h m()] wO,u = €0,v ¢0,V (7)

and the corresponding total energy Ey: According to
the force theorem, the total energy E in presence of
the perturbation can be approximated by

occ. occ.

E—Fy~ Z Eft,y — 250,7/ . (8)

Thereby, {eft,y} represents the spectrum of a Hamilto-
nian that is constructed from the unperturbed densi-
ties:

(Ho + Hso) [0, mo] tee, = €5e,0 Yie, - 9)

Thus, we have to determine the single-electron eigen-
values of the secular equation (9) only once.

Although our method allows for selfconsistent calcu-
lations of the unperturbed SSDWs, for small g-vectors
it is usually possible to treat the spiral boundary con-
dition as well as the spin-orbit coupling as a perturba-
tion. In this case, selfconsistent calculations have to be
done only for q = 0.

3.3. First-order perturbation theory

The easiest way to estimate the effect of the spin-
orbit coupling operator Hs, on the band energies is
first-order perturbation theory, i.e. the corrections to
the band energies are approximated by the expectation
values (1o,.|Hso|tho,.) of the spin-orbit operator and
the unperturbed states 19,,. These expectation values
vanish for states with collinear magnetic order (and,
therefore, give no contribution to the magnetocrys-
talline anisotropy), but they can be a good approxi-

mation for the antisymmetric exchange in noncollinear
configurations.

The antisymmetric exchange interaction is expected
to be largest in planar SSDWs, i.e. in spirals whose
magnetization is confined to a plane normal to the ro-
tation axis (cone angle ¥ = Z in Eq. (3)) [5,6]. In such
magnetic structures (1o, |Hso|%0,,) describes only the
odd part of the dispersion curve (2) and, therefore, the
antisymmetric exchange interactions:

Assume, that the magnetization is confined to the
(z, z)-plane, i.e. my, = 0, which implies that B, = 0
and Hp is real. In a crystal potential this real Hamil-
tonian has always two degenerate solutions, namely
and ¥*. All components of the spin-orbit operator

ﬂsozfaxfx-l—fayfy-&-ﬁazfzZZ«ﬁaw&U (10)

are Hermitian, which implies that (¥|€ 0w £ |1)) is real.
For w € {z, z}, the operator £ o, £ is purely imagi-
nary and we obtain

(W |E 0w bwlp™) = = (Wl ow Luw|¥))" = —(P|§ 0w Lwl).

Thus, the expectation values of £ 0, £, and 0, £, can-
cel for each eigenspace of {1, %"} and we have to con-
sider £ oy £, only.

While this result was derived for m, = 0, analogous
relations hold for m, = 0, too. This corresponds to
a SSDW as described in Eq. (3) with ¢ = 7. Now,
we will show that changing the sign of q also changes
the sign of the matrix element (¢q|€ 0. €.]1)q). Here,
we exploit the fact that @ — —q implies my — —my,
By, — —By, and Ho — Hp. If ¢ is an eigenstate of
Ho and can be described with Eq. (5), then ¢gq = 1_q
is a corresponding eigenstate of Hg. Thus, we obtain

<w—q|§az £z|w—q> <¢q|(§az 62)*|wq>* =
*<7/’q|£‘72£2|7/’q>* —(ql€os La]ihg) -

Note, that the first-order corrections to all bands
can influence the sum of eigenvalues of occupied states.
This is different for the higher-order corrections that
determine the MCA, that depends mainly on the states
in the vicinity of the Fermi energy. Therefore, the spin-
orbit induced changes in the occupation numbers are
less important for the antisymmetric exchange than
for the magnetocrystalline anisotropy. The example in
Section 4 illustrates that it is not necessary to recalcu-
late the Fermi energy but sufficient to determine the
occupied states before applying Hs, and to sum up the
spin-orbit expectation values of these states.

3.4. Diagonalization of the perturbed Hamiltonian

If it is necessary to go beyond the previously dis-
cussed first-order perturbation and to solve the ac-



tual secular equation (9), an option is to expand the
wavefunctions in the eigenfunctions of the unperturbed
Hamiltonian Ho. As these functions constitute a basis
set that is well adopted for the studied problem, one
needs relatively few basis functions (typically less than
twice as many as occupied states) to describe the per-
turbed solution. This makes it feasible to set up and
diagonalize a Hamiltonian matrix H including the ma-
trix elements (g 7 |Hso|to,.) of the spin-orbit opera-
tor with the eigenfunctions {40, } of the unperturbed
Hamiltonian Ho. In the following we drop the index 0
and label the SSDW eigenfunctions of Ho as in Eq. (5)
with their crystal momentum k and band index j, and
we introduce the spin index o. The matrix elements
of these functions with the spin-orbit operator can be
written as

S W HE ) (11)

oo

(i [ Hso [, 5) =

When the (lattice periodic) operator Hso acts on a
Bloch function, it will leave the Bloch factor (includ-
ing the +q/2) unchanged, but transforms the lattice
periodic part u(r) to another lattice periodic function
4(r). Since a product of two lattice periodic functions
can always be expanded in reciprocal lattice vectors of
the (chemical) lattice, {G},

Z cae' T, (12)

we can write the matrix elements as

e 1 (1) e, (¢

/dr (& F Ty, )7 (e DT ) (13)

= Z ca /drez(GJrk k/+———) r

with q' = £q. Considering that limr .o & fORdr etz
vanishes for any x # 0, we obtain

(T) |H(T T)W}(T)

k/ !
wkT,)_l|H(T7l)|w(l)
d’fj) ,|'H(l T)W}(T)
wkl,) , |H(l L) |,¢(l)

= k-k €{G},
= k-k'+qe{G},
= k-k'—qec{G},
= k-k' € {G}.

(14)

/\/\/\/\
\/\/\/\/

According to Eq. (14), the Hamiltonian matrix is not
block diagonal in k, but there are non-vanishing ma-
trix elements between states whose k-vectors are con-
nected by q. If the g-vector is a fraction of a recipro-
cal lattice vector G (i.e. ¢ = = G, n integer) then the
Hamiltonian matrix can be partitioned in blocks of the
form as indicated in Fig. 1. The size of the submatri-
ces (named A; and B; in Fig. 1) depends on the num-
ber of basis functions (i.e. unperturbed states) that are

k+q
k+2q
k+3q
k+(n—1)q

-~
Ay B;r B, k
By | Ay | Bf O k+q

By | A3 | Bf k+2q

_ Bs
Hk,q =
Bl | k+(n-2)q

B} Bn_1| Ap k+(n—1)q

Fig. 1. Block of the Hamiltonian matrix H = 5,/’,,/ €o0,v + Hso
for a the k-point set {k,k+q,...}. Only the submatrices
marked with B mix between spin-] and spin-|. For large n,
most matrix elements are zero.

used to expand the eigenfunctions of the full Hamilto-
nian Ho + Hso. The number of these submatrices de-
pends on the g-vector: n corresponds to the number of
chemical unit cells that are required to fill a magnetic
unit cell that is commensurate with the chemical lat-
tice. Thus, q cannot be chosen arbitrarily. The optimal
ratio of matrix size to spiral period length is achieved
for q = %G with integer n and a primitive recipro-
cal lattice vector G. In this case, one spiral period is
a multiple of the chemical lattice and the size of the
matrix block shown in Fig. 1 is proportional to the spi-
ral period length. Note, that the reciprocal unit cell of
the chemical lattice is n times larger than the recipro-
cal unit cell of the commensurate magnetic lattice and
the n different k-vectors which contribute to the block
matrix in Fig. 1 correspond to only one point in the
reciprocal magnetic unit cell.

In order to compare the energies of different mag-
netic configurations, one should calculate all these en-
ergies with the same k-point set. Thus, to determine
the g-dependent spin-orbit corrections to the SSDW
energies (and hence D) special care has to be taken to
choose the k- and g-grid accordingly in order to allow
for the calculation of the matrix elements (14).

In the case of large spiral periods the Hamiltonian
matrix H gets very large and it is not always feasible to
diagonalize it exactly. Fortunately, one does not need
the entire spectrum but the sum of eigenvalues of the
occupied states (cf. Eq. (8) ). In Appendix A we present
a method to approximate this sum without diagonaliz-
ing the full matrix. When this method is applied, most
computational resources are needed to determine the
eigenstates {¢x_; } of the unperturbed Hamiltonian Ho,
as this has to be done for many k-vectors. Here, we ex-
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Fig. 2. Schematic drawing of the magnetization profile of the
calculated SSDWs. In the right figure, the orientation of the
conventional surface unit cell is indicated.

pect some improvement from an interpolation scheme
like the one described in Ref. [15].

In the case of small g-vectors and accordingly
large n, the sparseness of the Hamiltonian matrix H
considerably reduces the number of matrix elements
to be calculated and stored in the computer memory.

4. Example: Fe/W(110) and Fe/Mo(110)

To demonstrate the power of the outlined approach,
we investigate here two model systems: a Fe-monolayer
deposited on the W(110) and Mo(110)-surface, respec-
tively. While W and Mo are chemically and struc-
turally very similar, the spin-orbit coupling strength (&
in Eq. (6)) is much larger in W than in Mo. In our cal-
culations only three layers of W (Mo) are used as sub-
strate, which might be too few for a realistic simulation
but sufficient for our analysis. To suppress the effects of
the artificially introduced substrate-vacuum interface
(opposite to the Fe-layer), we exclude the spin-orbit
effects in this substrate-layer from the Hamiltonian.

The calculated magnetic configurations are homo-
geneous SSDWs with the g-vectors pointing in [001]-
direction (remember, that q determines the propaga-
tion direction, the period length and the rotational di-
rection, Fig. 2). In this geometry, we expect the highest
contribution to the Dzyaloshinskii-Moriya interaction
for SSDWs with a spin rotation axis along [110] (nor-
mal to the propagation direction) and a magnetization
confined to the plane normal to [110] (cone angle ¥ =
% in Eq. (3)).

We employ the local density approximation and
the full-potential linearized augmented planewave
method as implemented in the FLEUR code [16,17].

Fe/W(110) Fe/Mo(110)
matrix diag.: D?‘X\g = 7.8 % D(@filz\;{; =-1.2 %
1st-order pert.:

Fe-layer DEWV = 3.6 meV DaMe = 4.0 meV
1st sub. layer DY =-10.9 % DgMe = —4.6 %
Fe 4 2 sub.layers Dﬁ\x =-10.2 % DSL-I\r/IcO —_14 %

Table 1

Dzyaloshinskii parameters obtained by linear fits to the data
shown in Fig. 3. In the case of the first-order perturbation,
the occupation numbers are determined for the unperturbed
system only (fix occ. in the left panel of Fig. 3).

| Fe/Mo ]

AE [meV per Fe atom]

-4 ] T
-.04 0 .04

Fig. 3. Spin-orbit induced corrections to the SSDW energy.
The data in the upper (lower) panel is obtained for a Fe-mono-
layer deposited on three W- (Mo-)layers, details of the setup
are given in the text. The spiral period || = % is given with
respect to the substrate lattice constant a, for q||/[001] the an-
tiferromagnetic configuration corresponds to |A\| = a. Left pan-
els: The odd part of the dispersion E()\fl) obtained by matrix
diagonalization, cf. Section 3.4 (diag.); the sum of eigenvalues
obtained by accounting for the first-order corrections to the
band energies and the resulting changes in the Fermi energy
and occupation numbers (new occ.); the sum of first-order cor-
rections to the occupied states of the unperturbed SSDWs (fix
occ.). Right panels: Contribution of the Fe and 1st and 2nd
substrate layer to the corrections to the occupied states of the
unperturbed SSDWs. The solid lines represent linear fits to
the DFT data.

We use a planewave cutoff of 7A~! and the muffin-tin
radii 1.11 A (Fe) and 1.32 A (substrate). The poten-
tial is calculated selfconsistently for the ferromagnetic
configuration with 484 k|-points and the perturba-
tive scheme is carried out with 3780 k-points in the
two-dimensional Brillouin zone that corresponds to
the chemical unit cell. The SOC Hamiltonian is con-
structed from 108 SSDW states per submatrix A; (cf.
Fig. 1). It is diagonalized in the interval given by eg =
2.7eV (cf. Appendix A). The resulting values for AE
differ for Fe/W(110) by 4 peV from AE obtained by
diagonalizing the full Hamiltonian for |a/A| > 0.022.
The lattice constants are aw = 3.16 A and anmo =
3.16 A7 the surface relaxations are dpe—w = 1.92 A and
dre—Mo = 1.94 A,

The results are shown in Fig. 3. Here, we consider
only the odd part of the dispersion curves E(A™!) for
large A. The slopes of these curves correspond to D
in the micromagnetic model (1). In the left panels of
the figure, we compare the different perturbative ap-
proaches: it can be seen that the contributions beyond
first-order perturbation theory are rather small. Also
changes in the occupation numbers are of minor im-



portance.

In the right panels, we compare the contributions
of the different atoms. This analysis is done for first-
order perturbation theory only, and in Eq. (6) only the
terms belonging to the selected atom are taken into
account. The linear fits to the ab initio data are sum-
marized in Table 1. Note, that the atom-resolved spin-
orbit matrix elements of atoms with equivalent valence
band configurations increase rapidly with the atomic
number Z [12]. The Dzyaloshinskii parameter depends
linearly and the MCA depends quadratically on these
matrix elements. We obtain DEY /Dg° = 0.9 and
DSV /DgMe = 2.4 (with Zw = 74 and Zyo = 42, and
aradially averaged ratio £w /Enmo = 3.6 in Ref. [12]). In
the W-case, the substrate gives a larger contribution to
D than the Fe-layer although the corresponding mag-
netic moments are 0.1 u (1st W) and 2.3 up (Fe). In
the Mo-case, the contribution of the substrate is almost
compensated by the Fe-contribution and the magnetic
moments are 0.1 up (1st Mo) and 2.4 up (Fe).

5. Summary

We presented a computationally efficient method to
determine the strength of the DM-interaction from the
spin-orbit induced corrections to the energy of long-
ranged spin spirals. Our calculations show that the in-
clusion of SOC by first-order perturbation theory is
reasonably accurate. Application of our method in the
investigation of realistic magnetic nanostructures can
provide deeper understanding of the role of antisym-
metric exchange interactions that remained rather un-
explored up to now.

Appendix A. Perturbative approach for the
sum of eigenvalues

Here, we present a method that allows to estimate
the changes of the sum of eigenvalues of the occu-
pied states (due to the perturbation Hso) beyond
first-order perturbation theory. The ordinary second-
order Raleigh-Schrédinger perturbation theory very
accurately describes the energy corrections due to the
interactions of states that are well (more than ea)
separated in energy, but is not feasible if the interact-
ing states are close in energy. Since we are interested
only in the sum of eigenvalues of the occupied states,
we can diagonalize a (relatively small) Hamiltonian
submatrix H; that mixes only among the states in the
vicinity of the Fermi level er, and treat the remaining
interactions between occupied and unoccupied states
in second-order perturbation theory. The effects due

1
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Fig. A.1. Sketch illustrating the defined energies and sets. The
upper part represents the eigenfunctions of (Ho + H1), the
lower part the changes obtained when applying H2. The hori-
zontal axis represents the energy intervals. M7 + % (No< +N0>)

denotes states of the form |¢,) + Zbcbwb) , with |¢e) € My,

[p) € (N UNG ), and |cp| < a/ea . Hz does not mix among
states that are closer in energy than ea.

to the interactions among states, that are low enough
in energy to remain entirely occupied, mutually cancel
and have no effect on the eigenvalue sum.

Let us introduce a quantity a so that |(1|Hso|1)| <
o for all states v’,7. We develop a perturbative ex-
pansion, where terms of the order o / €2 are truncated.
Thereby, the energy difference ea determines the ac-
curacy of our treatment. Further, we introduce the en-
ergy es: If any Hamiltonian with a spectrum confined
in the interval [€min, €max] is perturbed by SOC, we
assume that the spectrum of the resulting perturbed
Hamiltonian is confined in [emin — €5, €max + €5] -

The Schrédinger-type Hamiltonian (4) and its eigen-
states and eigenvalues are denoted with Ho, 1o, and
€o,v , respectively. At first, we divide the set {to,,} in
states with eigenvalues €, close to, well below, and
well above the Fermi level ep:

MO = {wo,l/ | |607l, — €F| S 60} R
N = {0, | €0,y < €F — €0} ,
N0> = {wo,u | €0,v > €F + 60} .

We introduce the notation

HX,Y) = Y W)@ [Heol) (W] + hec.

P'eX P ey

and define H1 = H (Mo, Myp). For sufficiently small eg,
(Ho + H1) can be treated by exact diagonalization. Its
eigenstates and eigenvalues are denoted with 11, and
€1, . In order to treat (Hso — H1), we choose e; (with
2es +ea < e1 < eg —ea ) and split span My (i.e. the
linear combinations of the elements of My) according
to the eigenvalues {e1,, } of (Ho + H1):

My = {41, € span Mo I ler,, —er| < e},
Nl< = {¢1,, € span Mo | €1, < €r —e1r},
Ni = {¢1,, € span My | €1, > e + €1}

(cf. Fig. A.1). With these sets, we define



Ha= H(N;,NT)+H(Ng, M)
+H(Ng , Ny) + H(Ng , M1) + H(Ny, No')

+H(Ng, N©™) +H(Ng , NT)

Noting that vo,., & Mo implies 1o, = 11, , we obtain
for the remaining perturbation

Heo — H1 = H(Ng, Mo) + H(Ng , Mo) + H(Ns, Ny )
+H(Ng, Ng*) +H(Ng', Ny
=H2+Hs .
The corrections to {e1,, } due to Hz can be estimated

in 2nd-order perturbation theory, as all energy denom-
inators are larger than min{2e1, e —e1} > ea:

€20 = €10+ (V1,u|[Ha|th1,)
43 L Maliun) (A1)

€y — €yt

Hereby, the numerical effort is reduced by exploit-
ing the sparseness of Hs,. The corrections to the
states {¥1,,} due to Ha are of the order o/ea, the
corrected states are

N

1,0 [Haltbr,v)

a0 = 1)+ 3 ) +o(s).

2
€10 — €10/ A
In the next step, we define

Hy = > W)W Hslw) (] + hec.

PLPENS

with Ny* = {42, | €2, < €r — €5}, and an equivalent
nomenclature for “>”. If neither (11, € N5 UN; and
1, € NS UNT ) nor (¢1,, € Ny UN{ and ¢,/ €
Ng UNY ), then (s, [Hs|th2,,) is of the order o /ea .
Due to our choice e; > 2es + ea , either <w2,ur|'H3 —
H5 — Hi|w2,.) is of the order o® /€3 or |eg,r — €2, >
ea (cf. Fig. A.1). Therefore, a matrix element of (Hs —
H3 — H5) can either be neglected in the Hamiltonian
or its effect on the eigenvalue spectrum (Eq. (A.1) ) can
be neglected.

We still have to account for the perturbation (Hz +
‘H5) on the energies {€2,}. The operator Hs mixes
only among unoccupied states, whose energies are
higher than er + es . According to our definition of es ,
these states remain unoccupied when their energies are
perturbed by H3 . Their energies do not influence the
sum of energies of occupied states. The operator Hs
mixes only among occupied states, whose energies are
lower than ep — e5. According to our definition of es ,
these states remain occupied when their energies are

perturbed by Hs . The influence of H5 on the sum of
energies of occupied states is given by the trace of the
perturbation:

tr (W, [HE 20 ) = Y (W[ Haol)) + O(%) . (A.2)

P
A
YENS

Thus, we have to choose eg, diagonalize (Ho + H1),
choose e1 (e.g. half the value of e), evaluate Eq. (A.1),
update er and evaluate the sum in Eq. (A.2).
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