001     56023
005     20200423204430.0
024 7 _ |a 10.1063/1.2349473
|2 DOI
024 7 _ |a WOS:000240876600037
|2 WOS
024 7 _ |a 2128/17183
|2 Handle
037 _ _ |a PreJuSER-56023
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Westerwaal, R. J.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Optical, structural, and electrical properties of Mg2NiH4 thin films in situ grown by activated reactive evaporation
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2006
300 _ _ |a 063518
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Applied Physics
|x 0021-8979
|0 3051
|v 100
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Mg2NiH4 thin films have been prepared by activated reactive evaporation in a molecular beam epitaxy system equipped with an atomic hydrogen source. The optical reflection spectra and the resistivity of the films are measured in situ during deposition. In situ grown Mg2NiH4 appears to be stable in vacuum due to the fact that the dehydrogenation of the Mg2NiH4 phase is kinetically blocked. Hydrogen desorption only takes place when a Pd cap layer is added. The optical band gap of the in situ deposited Mg2NiH4 hydride, 1.75 eV, is in good agreement with that of Mg2NiH4 which has been formed ex situ by hydrogenation of metallic Pd capped Mg2Ni films. The microstructure of these in situ grown films is characterized by a homogeneous layer with very small grain sizes. This microstructure suppresses the preferred hydride nucleation at the film/substrate interface which was found in as-grown Mg2Ni thin films that are hydrogenated after deposition. (c) 2006 American Institute of Physics.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Slaman, M.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Broedersz, C. P.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Borsa, D. M.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Dam, B.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Griessen, R.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Borgschulte, A.
|b 6
|0 P:(DE-HGF)0
700 1 _ |a Lohstroh, W.
|b 7
|0 P:(DE-HGF)0
700 1 _ |a Kooi, B.
|b 8
|0 P:(DE-HGF)0
700 1 _ |a ten Brink, G.
|b 9
|0 P:(DE-HGF)0
700 1 _ |a Tschersich, K. G.
|b 10
|u FZJ
|0 P:(DE-Juel1)VDB34109
700 1 _ |a Fleischhauer, H. P.
|b 11
|u FZJ
|0 P:(DE-Juel1)VDB66687
773 _ _ |a 10.1063/1.2349473
|g Vol. 100, p. 063518
|p 063518
|q 100<063518
|0 PERI:(DE-600)1476463-5
|t Journal of applied physics
|v 100
|y 2006
|x 0021-8979
856 4 _ |u https://juser.fz-juelich.de/record/56023/files/1.2349473.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/56023/files/1.2349473.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/56023/files/1.2349473.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/56023/files/1.2349473.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/56023/files/1.2349473.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:56023
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |a Nachtrag
|y 2006
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
920 1 _ |k ISG-4
|l Biologische Schichten
|d 31.12.2006
|g ISG
|0 I:(DE-Juel1)VDB421
|x 0
970 _ _ |a VDB:(DE-Juel1)87543
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312
981 _ _ |a I:(DE-Juel1)ICS-7-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21