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Mg,NiH, thin films have been prepared by activated reactive evaporation in a molecular beam
epitaxy system equipped with an atomic hydrogen source. The optical reflection spectra and the
resistivity of the films are measured in situ during deposition. In situ grown Mg,NiH, appears to be
stable in vacuum due to the fact that the dehydrogenation of the Mg,NiH, phase is kinetically
blocked. Hydrogen desorption only takes place when a Pd cap layer is added. The optical band gap
of the in situ deposited Mg,NiH, hydride, 1.75 eV, is in good agreement with that of Mg,NiH,
which has been formed ex situ by hydrogenation of metallic Pd capped Mg,Ni films. The
microstructure of these in situ grown films is characterized by a homogeneous layer with very small
grain sizes. This microstructure suppresses the preferred hydride nucleation at the film/substrate

interface which was found in as-grown Mg,Ni thin films that are hydrogenated after deposition.
© 2006 American Institute of Physics. [DOIL: 10.1063/1.2349473]

I. INTRODUCTION

In recent years the complex metal hydrides Mg,MH,
(M =Ni, Co, Fe, etc.) gained attention due to their potential
as hydrogen storage materials and the fascinating change in
optical properties upon hydrogenation. Upon hydrogen ab-
sorption Mg, Ni transforms into Mg,NiH, and contains up to
3.6 wt % of hydrogen. Mg,MH, thin films also show revers-
ible optical switching at RT between a shiny metallic and a
transparent semiconducting state."” Between these two states
we discovered a third optical state. This state is characterized
by a low reflection (<<25%) over the whole visible spectrum
when measured from the substrate side, while the transmis-
sion (<0.01%) is negligible. This state is called the optical
black state, since the optical absorption is at least 75%. As
one can tune the hydrogen concentration and thus can switch
between a reflective metal, an absorbing black and a trans-
parent semiconducting state, these thin films are very attrac-
tive for smart coating applications,3 or hydrogen sensors.”

The optical black state originates from the fact that the
Mg,NiH, nucleates at the substrate interface upon hydrogen
absorption.s’6 As we have shown, this results from the pecu-
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liar double layer microstructure of these Mg—Ni thin films.”
This led us to the idea of changing the thin film microstruc-
ture by growing the film in situ in the hydride phase. In all
previous studies the hydride phase is formed by ex situ hy-
drogenation using Pd as a catalytic cap layer. Here, we
present a method to prepare complex metal hydride thin
films in situ using activated reactive evaporation. Schoenes
et al. reported on the optical properties of single-crystalline
YH, thin films prepared by molecular beam epitaxy in the
presence of atomic hydrogen.8 Hayoz et al. also report the in
situ growth of Y dihydride by Y evaporation under a H,
partial pressure of 5% 107* Pa.’ So far, the activated reactive
evaporation technique has not been applied for the formation
of complex metal hydride systems. We demonstrate that it is
possible to deposit Mg,NiH, from the atomic constituents
using an atomic hydrogen source, a Knudsen source for Mg,
and an electron gun for Ni. The reliable growth of semicon-
ducting Mg,NiH, requires in situ monitoring of the growth
process. For this, we measure the optical properties and the
resistivity during deposition. We find that the use of an
atomic hydrogen source is essential to grow a complex hy-
dride. During the deposition, the hydrogen pressure in the
deposition chamber rises to about 2 X 1072 Pa. This pressure
is far below the equilibrium molecular hydrogen pressure of
Mg,NiH,. The stability of the hydride phase both in vacuum

© 2006 American Institute of Physics
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FIG. 1. (Color online) Schematic representation of the thin film deposition
chamber together with the fiber setup to measure in situ the reflection. The
film is deposited onto the freshly cleaved fiber surface.

and in air is remarkable. It shows that the dehydrogenation
process has a high activation barrier.

The in situ growth technique opens the way for con-
trolled doping and for constructing multilayered films of dif-
ferent hydride phases during deposition. In addition, it is a
tool to change the thin film microstructure. Indeed, we find
that the in situ grown films display a totally different micro-
structure. The self-organized bilayer segregation and the as-
sociated optically black state are absent. Both the engineer-
ing of the microstructure and the possibility of in situ doping
are interesting from a hydrogen storage perspective.

Il. DEPOSITION OF MG,NIH,; THIN FILMS

Mg,Ni thin films are prepared by coevaporation of Mg
from a Knudsen cell (purity 99.98%) and Ni by means of an
electron gun (purity 99.98%) in an UHV system (base pres-
sure <1078 Pa). The deposition rate during evaporation is
monitored using two separate quartz-crystal monitors. Dur-
ing deposition the resistivity of the film is continuously
monitored in a four point van der Pauw geometry.10 For
ex situ experiments the samples can be protected from oxi-
dation by a thermally evaporated Pd cap layer (purity
99.98%). This layer catalyzes the hydrogen absorption and
desorption. The chemical composition and the thickness of
the as-deposited films is determined by Rutherford back-
scattering spectrometry (RBS). Atomic force microscopy
(AFM) measurements of the surface morphology are per-
formed ex situ with a Digital Instruments Nanoscope III
AFM. The ex situ optical reflection and transmission spectra
are obtained using a Bruker Fourier transform infrared
(FTIR) spectrometer IFS 66/S equipped with a reflection and
transmission unit.

Instead of the resistivity we can also measure in sifu the
reflection spectra during deposition, using a high temperature
(HT) fiber (see Fig. 1). These types of fibers have a low
degassing of the fiber jacket. Core and cladding diameter of
the fiber are 200 and 230 um, respectively. The fiber end is
cleaved by using a Vytran LDC-200 autocleaver. Cleaving
the fiber results in a flat and clean substrate surface. The
probe fiber is clamped in a holder so that it is in line of sight

J. Appl. Phys. 100, 063518 (2006)

with the various sources. The other end of the fiber is glued
with an UHV epoxy in a fiber-optic SubMiniature version
(SMA) connector that is mounted in a feedthrough of the
load lock. A bifurcator in combination with a splice bushing
is used to guide the light from a tungsten-halogen source to
the end of the fiber (see Fig. 1). Reflected light is guided via
the second path of the bifurcator to an Ocean Optics USB
2000 charge coupled device (CCD) spectrometer. This spec-
trometer covers the range from 1.2 to 3.1 eV and records
periodically the spectra of the reflected light during the depo-
sition from the end of the fiber. The spectra are normalized to
the corresponding calculated thin film spectrum. This tech-
nique is tested for several metallic thin films and results in a
good agreement between the calculated spectrum and the in
situ measured spectrum.

The reflection and transmission spectra of the complete
optical system (fiber, fiber-film interface, film, film-vacuum
interface, etc.) is calculated using a transfer matrix method
that considers the Fresnel reflectance and transmittance co-
efficients at each interface and the absorption in each
material.'"'? For this calculation the values of n and k of the
involved materials are taken from Palik’s book of optical
constants."?

The optimization of the deposition conditions during in
situ growth of Mg,NiH, and tuning of the atomic hydrogen
source will be discussed in the next section.

lll. ACTIVATED REACTIVE EVAPORATION
(ARE) OF MG;NIH4 THIN FILMS

When growing a Mg,NiH, complex metal hydride from
the constituents Mg, Ni, and H atoms, the rates are tuned in
such a way that the particle arrival rates at the substrate
surface are optimal for hydride formation. For Mg a deposi-
tion rate of 9.9 X 10" at./cm? s and for the Ni atoms a rate of
4.6X 10" at./cm? s is used. The partial pressure of contami-
nating elements, e.g., H,O, O,, and CHy, is below 1078 Pa
and no contamination of the thin films is expected, which is
confirmed by RBS measurements.

Hydrogen atoms are provided by a source comprising a
hot Capillary.M’15 Hydrogen gas passing the hot capillary is
partly dissociated and leaves the capillary with an angular
distribution peaked along the capillary axis. The hydrogen
atom intensity can be controlled by the gas flow rate and the
heating power of the capillary which determines its tempera-
ture. Quantitative data are given in Ref. 14. In the present
experiments the gas flow rate is usually held constant and
results in a hydrogen pressure at the source inlet and in the
deposition chamber of 2.2X10% and 2X 1072 Pa, respec-
tively. In reactive deposition conditions, the heating power is
around 130 W rising the capillary temperature to about
2100 K. The distance from the capillary orifice to the sub-
strate is around 15 cm. From the quantitative data mentioned
above we estimate the ratio of the hydrogen to metal atom
arrival rate at the substrate being around 4 which is in the
order of the hydrogen to metal ratio in the Mg,NiH, film
(1.3). Accordingly, every third impinging atom is incorpo-
rated into the growing film.

We measure the resistivity during deposition to deter-
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FIG. 2. In situ resistivity measurement for activated reactive evaporation of
Mg,NiH, thin films. Each point in the figure represents another
200-nm-thick Mg,NiH, film deposited at the corresponding capillary power
(see text). The horizontal line at 12.9 m{) cm indicates the resistivity of an
ex situ hydrogenated film. Point 1: resistivity of a metallic Mg,Ni thin film
deposited at 5X 1077 Pa. Points 2-7: resistivity at an increasing heating
power of the atomic hydrogen source capillary. The resistivity increases
from 1.45X 1075 to 0.34 Q cm.

mine the dependence of the hydride growth on the flux of
atomic hydrogen provided by the hydrogen source. Given the
five orders of magnitude higher resistivity of the hydride
phase, the change in electrical properties is a good indication
for the amount of hydride formed.'®

We plot the film resistivity versus heating power of the
H source capillary (see Fig. 2). Each point in the figure rep-
resents a fresh 200-nm-thick Mg,NiH, film deposited at the
corresponding capillary power. Point 1 indicates the resistiv-
ity of a metallic Mg,Ni film prepared at a background pres-
sure of 2 X 1077 Pa (vacuum conditions). Under these condi-
tions, films with a resistivity of p=1.45X 1075 Qcm are
obtained. This measured resistivity is usually found in me-
tallic Mg,Ni films.>®1° Using hydrogen, i.e., supplying mo-
lecular hydrogen at a pressure of 2X 1072 Pa through the
source without heating the capillary, results in a slightly
higher resistivity (point 2 in Fig. 2). This means that the film
contains only a very small amount of hydrogen. Obviously
the growth of the hydride phase is impossible simply by
using molecular hydrogen since we operate below the hydro-
gen equilibrium pressure of 50 Pa. Keeping the gas flow rate
constant and increasing the amount of atomic hydrogen by
increasing the heating power to 128 W (2100 K), we ob-
serve an increase of the resistivity to 0.34 () cm (point 7 in
Fig. 2). The resistivity of the exposing film increases almost
by five orders of magnitude indicating the formation of a
semiconducting phase, Mg,NiH, or MgH,. As we will show
optically, we can identify the film as Mg,NiH,. Reducing the
deposition rate of the Mg and Ni atoms, to obtain a larger
H/M ratio, does not result in a higher resistivity value. Once
a 200 nm hydride thin film is grown; the deposition of Mg
and Ni as well as the gas flow through the source is termi-
nated; the deposition chamber is pumped down to 2
X 1077 Pa. Remarkably, the resistivity does not change. Ap-
parently, the hydride is stable and does not loose hydrogen
although the pressure is much below the hydrogen equilib-
rium pressure of Mg,NiH,. This means that the dehydroge-
nation reaction is kinetically blocked.

Enache et al reported a detailed investigation of the
electronic transport properties of Mg,NiH, thin films
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FIG. 3. (Color online) Reflectance of Ni, Pd, Mg, Y, and Mg,Ni films at an
energy of 1.95 eV as a function of thickness as measured by a QCM. The
beginning of the spectra is characterized by a minimum in reflectance for all
the measured elements at a certain thickness. Above a certain thickness the
reflectance reaches a constant value and the films become optically closed.

(capped with a discontinuous 2 nm Pd layer).'® For ex situ
hydrided films they found a resistivity of 12.9 m{} cm and
concluded that Mg,NiH, behaves as a heavily doped semi-
conductor. This resistivity value is an order of magnitude
lower than for our in situ grown Mg,NiH, thin films. As we
will see later, the grain boundary density of these in situ
grown films is much higher than those prepared by ex situ
hydrogenation of Mg,Ni films. This observation may explain
the difference between the resistivity value found by Enache
et al. and our in situ grown films.

In the next sections the optical characterization of the
films both during and after deposition substantiates our claim
that we indeed form Mg,NiH,. Before we describe our re-
sults on in situ grown Mg,NiH, thin films, we briefly discuss
the optical reflection spectra obtained during deposition of
elemental metallic thin films.

IV. FIBER SPECTROSCOPY OF THIN METAL FILMS

The reflection at an energy of 1.95 eV as a function of
the film thickness [measured with a quartz-crystal monitor
(QCM)] is shown for Ni, Pd, Mg, Y, and Mg,Ni in Fig. 3.
The reflection starts with a decrease in reflection within
10 nm thickness for all the elements except Mg, resulting in
a temporary minimum. Upon further deposition the thin film
becomes optically closed and the reflection reaches a con-
stant value. The reason for the anomalous behavior of Mg is
probably the low sticking of Mg atoms on a bare substrate/
fiber compared to the measured thickness by the QcMm.’

Caranto et al. also observe this reflection minimum in
their measurements but they do not give a proper explanation
of the formation of the minimum in reflectance.'” Emmerson
et al. argue that this effect can result from a change in elec-
tronic structure'® of both the growing layer and the substrate.
Furthermore, a decrease in the free carrier density will also
result in a decrease in reflectance.'® Butler and Buss assume
that the minimum of the reflectance is typical for noble
metals.””?' Heavens points out that the minimum in reflec-
tance is precisely in accordance with the theory of a thin
homogeneous film and is observed for many metallic layers.
Although they describe thin film optics quite extensively for
several kinds of films, the origin of this effect is not ex-
plained explicitly. Furthermore, they state that the position of
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FIG. 4. (Color online) Reflectance (R) as calculated by Eq. (1). The imagi-
nary part of ry; and ry, [Im(ry;),Im(ri,)] and the real part of ry; and riy
[Re(rg;),Re(riy)] are shown. It is clear that rg,; is constant and negative (this
is due to the phase change when reflecting at an interface). R, is positive
and decreases monotonically (as one expects due to the higher absorption in
the layer with increasing thickness). The interference of ry, and ry, is de-
structive for all d because the two contributions are out of phase. The de-
structive interference is obviously largest when |ry;+7;,| has a minimum
value.

the minimum is wavelength dependent for gold, silver, and
iron but not for platinum and that there is a discrepancy
between the theoretical calculated reflection and experiment
due to the thin film microstructure, which influences the n
and k values of thin films.

To establish the the physical origin of this behavior, we
calculate the reflectance for a single film with Eq. (1),'""?

R(w)
_ | o exp[—i8(d)(n, + iky)] + 15 expli&d) (n, + ik;)] | *
| expl=i8(d)(ny + iky)]+ royryp exp(id(d)(ny + iky) |
(1)

in which r;; is the reflection at the interface ij. The film
thickness enters Eq. (1) implicitly through the dimensionless
parameter &(d) that governs the phase shift and the damping
of the wave upon crossing the entire film, n; is the refractive
index, and k; the extinction coefficient. Equation (1) predicts
a reflectance minimum at a thickness of 2.1 nm for a fiber/
Ni/vacuum system (we find similar values for the other
metals/alloys Pd, Mg,Ni, Y, etc.). This means that the char-
acteristic minimum we observe is a direct consequence of
Eq. (1). Since this calculation does not make use of a varia-
tion of n and k as function of deposited thickness or film
microstructure, this implies that the minimum is due to the
thickness dependence of the reflectance described by this
equation.”’12 Equation (1) can be rewritten as Eq. (2),

rp(1 - 7(2)1)3XP[2i5(d)(”1 +iky)] :
1+ royryp exp[2i8(d)(ny + ik,)] |

R(w) = | ro1 + 2)

There are two terms: ry; is the reflectance from the fiber/
film interface and the second term, in this paper indicated as
Fines 1S the contribution from multiple internal reflections in-
side the growing film. In Fig. 4 the magnitude of the real and
imaginary part of ry, and r;, are plotted versus film thick-
ness. The real and imaginary part of ry; (Re ro; and Im rg,
respectively) are constant and negative (which is due to the
phase change accompanying the reflection at the fiber-film
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FIG. 5. (Color online) Reflectance at 1.95 eV vs deposited Mg,NiH, thick-
ness (red curve). The simulated reflectance of a Mg,NiH, thin film (black
curve) and of a Mg,Ni thin film (green curve) are also shown. The good
agreement between the measured reflectance and simulated reflectance indi-
cates that Mg,NiH, is synthesized in situ.

interface). The real part and imaginary part of ry, (Re ry, and
Im ry,, respectively) are positive and decrease monotoni-
cally. This is what one expects for the absorption of a layer
which increases in thickness. The interference of ry; and r;,,
is destructive for all d because the two contributions are out
of phase. As the contribution of r;, is larger than that of r(,
for thicknesses <<2.1 nm, the sum of rq; and ry, is positive.
Since r;, is decreasing as function of thickness, the destruc-
tive interference is obviously largest when |rg; +7;,| is mini-
mal (R is minimal and in this case at d=2.1 nm, as indicated
by the arrow). As ry, dies out, the sum of ry; and ry, be-
comes more negative. However, due to the fact that R is
defined as R=|ry,+r,,/*, R becomes more and more positive
as rj, dies out. This means that the dip in reflection origi-
nates from the destructive interference due to the phase
change upon reflection from the surface of the growing layer
combined with an increase of absorption due to the growing
film thickness.

Our calculations show that we can explain the minimum
in reflection by a complete theoretical description without
assuming changes in n and k values as function of thickness
or microstructure. Therefore the result is true for all materials
and the position of the minimum is wavelength sensitive
(depends on n and k).

V. IDENTIFICATION OF IN SITU GROWN MG,NIH,

The phase of the growing film can be identified via
in situ measurement of the reflection. Figure 5 shows the
reflectance versus thickness of an as-grown Mg,Ni and a
Mg,NiH, as well as the numerical simulation of a Mg,NiH,
film at 1.95 eV. The reflectance measured during activated
reactive evaporation exhibits a well defined interference pat-
tern. This pattern arises from the reflections of the fiber/film
and film/vacuum interfaces and indicates the growth of a
transparent film. Apart from a small overshoot at the inter-
ference maximum and minimum, the measured reflection
spectrum is identical to the calculated spectrum for a homog-
enous Mg,NiH, thin film. This indicates that we indeed grow
a Mg,NiH, hydride phase from the individual elements Mg,
Ni, and H. The reflectance measured in situ as function of
energy and the corresponding calculated reflectance spec-
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FIG. 6. (Color online) Reflection spectrum vs energy for a 200 nm
Mg,NiH, thin film (red curve). The simulated spectrum of Mg,NiH, (black
curve) indicates that we indeed grow the hydride phase. It is shifted by
0.15 eV as compared with the measured spectrum.

trum are shown in Fig. 6. Except for a small redshift in
energy of 0.15 eV, the measured and calculated spectra are
very similar in shape.

The reflection and transmission spectra of the in situ
grown Mg,NiH, hydride film were also measured ex situ
using a Bruker spectrometer (see Figs. 7 and 8). It is remark-
able that the film remains stable when it is taken out of the
vacuum system. The resistivity and optical measurements do
not change when exposing the in situ grown film to air/
oxygen. From experiments we know that if we bring this film
in contact with air there is still no dehydrogenation. Even
after depositing subsequently a Pd cap layer on the film, the
film does not unload anymore up to temperatures of 373 K
(films capped with Pd directly after deposition can be
loaded-unloaded at RT). This shows that on exposure to air/
oxygen a passivated surface layer forms on top of the hy-
dride, which is limited in thickness (no optical effect is ob-
served) and blocks the desorption of hydrogen. Probably an
oxide skin develops on top of the film which prevents dehy-
drogenation, but we could not yet identify its nature. The ex
situ measured reflection spectrum is very similar to the cal-
culated spectrum (see Fig. 7) with the same small redshift of
0.15 eV. The transmission spectrum shows a band gap of
1.75 eV (see Fig. 8). This is close to the band gap of an ex
situ hydrogenated Mg,Ni thin film, 1.9 eV,>® which con-
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FIG. 7. (Color online) Ex situ measured reflection spectrum for an in situ
grown 200 nm Mg,NiH, thin film without a Pd cap layer (red curve). The
spectrum displays a 0.15 eV redshift which is also observed in the in situ
measured spectrum. The interference pattern of the simulated reflectance is
comparable to the interference pattern of the measured reflectance.
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FIG. 8. (Color online) Ex situ measured transmission spectrum for an in situ
grown 200 nm Mg,NiH, thin film without a Pd cap layer (red curve). We
observe that the measured transmittance has an optical band gap of 1.75 eV
and the simulated transmittance has an optical band gap of 1.9 eV.

firms the direct formation of Mg,NiH, by activated reactive
evaporation. If we would have formed the only other pos-
sible hydride phase, MgH,, we would observe a shift of the
band gap towards much higher energies, because the band
gap of MgH, is 5.6 ev.?

The redshift in the apparent optical band gap might be
due to a higher purity of the in sifu grown film. As the ap-
parent gap in heavily doped semiconductors decreases with
the dopant level, the lower dopant level of our in situ films
might explain the observed reduction.”® The shift of E, is
given by the Burstein-Moss equation,

2

h
AE, = 2m.*h(s T Nop) ™ (3)

in which m, is the reduced effective mass, and Nope the
optical carrier concentration. The 0.15 eV band gap shift re-
sults in 2.64 X 10*°/cm? charge carriers, which is one order
of magnitude lower than found by Enache et al. ' for ex situ
hydrided Mg,Ni thin films. This nicely resembles the differ-
ence in resistivity which is one order of magnitude higher in
our in situ grown films as compared to the ex situ hydrided
films.

VI. THE OPTICAL SWITCHING OF MG;,NIH,
THIN FILMS

Before describing the optical behavior of the in situ
grown films, we shortly summarize that of an ex situ hy-
drided Mg,NiH, film.

When a Mg,Ni film is exposed to hydrogen the reflec-
tion drops to a minimum value at which the transmission is
still essentially zero (see Fig. 9). Transmission starts to in-
crease after the reflection has recovered from its minimum
value. This results in an intermediate optically black state
and is a consequence of the self-organized double layering of
these films upon hydrogenation. This double layering has its
origin in a preferred hydride nucleation at the film/substrate
interface. Lohstroh et al. have shown that it is not possible to
find a single set of n and k that describes the observed R and
T spectra during the optical black state (maximal absorption)
and that one needs to assume a double layer model.”¢

To examine the rehydriding properties of an in situ
grown Mg,NiH, film, we cap the film in situ with 10 nm Pd.
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FIG. 9. (Color online) Reflection and transmission spectra at 1.25 eV vs
hydrogenation time of an as-prepared Mg,Ni thin film. At the minimum of
the reflectance (blue curve), the transmittance (red curve) is essentially zero,
indicating the preferred hydride nucleation at the interface with its maximal
absorption.

This results in the dehydrogenation of the hydride phase and
enables us to rehydrogenate the film. The rehydrogenation of
the in situ grown Mg,NiH, thin films displays a clear differ-
ence in hydrogenation behavior (see Fig. 10). The minimum
in reflection is less pronounced and before the reflection
reaches its minimum value, the transmission has already in-
creased to 7=0.035. This means that the hydride nucleates
throughout the entire film and not solely at the film/substrate
interface. Thus we can find an “effective” n and k for this
film. Therefore we make a calculation of the reflectance and
transmittance by the transfer matrix method as described pre-
viously. This method calculates R and T spectra for a dense
grid of (n,k) for the Mg,NiH, layer. A crossing of R and T
indicates a solution (n,k). For R=0.1 and T=0.035 we find
two sets of effective (n,k) (see Fig. 11). This implies that the
film behaves as a homogeneous layer, and can be described
by an effective medium theory. Furthermore, this indicates
that there is almost no preferred hydride nucleation at the
substrate interface. In the next section we will show that this
is related to the thin film microstructure, which is quite dif-
ferent from that of films that are grown without a hydrogen
background pressure.

Reflectance
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FIG. 10. (Color online) Reflection and transmission spectra at 1.25 €V vs
hydrogenation time of a film which was in situ deposited as Mg,NiH, and
then dehydrogenated. At the reflectance minimum (blue curve), the trans-
mittance (red curve) has a finite value of 0.04. This finite value of the
transmittance indicates that we can model the Mg,NiH, layer by a single set
of n and k values during the maximal absorption.
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FIG. 11. (Color online) Contour maps of the reflectance and transmittance at
1.25 eV for a 200 nm Mg,NiH, thin film capped with 10 nm Pd on quartz.
The crossing of the contour plot for transmittance at 7=0.035 and the re-
flectance at R=0.1 (which correspond to the values for a film in the black
state) indicates that optically the Mg,NiH, film can be modeled as a homo-
geneous layer.

VIl. MICROSTRUCTURE OF IN SITU GROWN MG;NIH,
THIN FILM

The surface morphology of the in situ prepared
Mg,NiH, thin films is investigated by AFM measurements.
A comparison between an as-prepared Mg,Ni, an ex situ
postdeposition hydrided Mg,NiH, film, and an in situ grown
Mg,NiH, film is shown in Fig. 12. The grains of a 200 nm ex
situ hydrided Mg,NiH, film have an average size of 75 nm
in diameter [see Fig. 12(b)] which is comparable to an un-
loaded Mg,Ni film [see Fig. 12(a)]. The surface microstruc-
ture of an in situ prepared Mg,NiH, film has a significantly
smaller grain size of 25 nm. Furthermore, the roughness of
the unloaded Mg, Ni film surface has decreased and is in the
order of 1 nm, whereas a normal 200 nm Mg,NiH, film has
a roughness of 20 nm [see Fig. 12(b)].

With AFM we can only probe the film surface. We use
scanning electron microscopy (SEM) measurements on
cleaved 200 nm in situ prepared Mg,NiH, films deposited on
Si substrates, to investigate the microstructural cross section
of the film. The specific columnar microstructure of Mg,Ni
thin films with the typical small grain structure near the sub-
strate interface has disappeared in the in sifu prepared
Mg,NiH, films [see Figs. 13(a) and 13(b)]. The in situ grown
thin film consists of a homogeneous phase without any no-
ticeable microstructure and the film microstructure is smaller
than or close to the resolution of the SEM apparatus (maxi-
mum resolution of 1.5-2.0 nm). Preliminary plane view
transmission electron microscopy (TEM) measurements
show that these films are close to an amorphous phase and

c) Mg,NiH,
In-situ grown

) Mg,NiH,
Ex-situ loaded

FIG. 12. (Color online) AFM measurements on (a) a 200 nm Mg,NiH, thin
film covered by 10 nm of Pd and (b) a 200 nm Mg,NiH,_s thin film pre-
pared by activated reactive deposition.
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Mg.Ni

Substrate

Substrate

FIG. 13. (Color online) (a) SEM image of the cross section of an as-
deposited 200 nm Mg,Ni. The film shows a clear columnar structure. (b)
SEM cross-sectional image of a 200 nm Mg,NiH, thin film prepared by
activated reactive deposition. The surface of the film is very flat as com-
pared to the Mg,Ni film.

that the crystallites are probably around 1 nm. These mea-
surements imply that there is no microstructural reason for a
preferred hydride nucleation as is the case for an ex sifu
hydrided Mg,NiH, thin film. This is consistent with the op-
tical measurements in Sec. VI where we concluded that the
hydride nucleates throughout the whole thin film, and not
just at the substrate interface.

Viil. THE STABILITY OF MG;NIH; AND THE ROLE
OF PD

The atomic hydrogen source allows us to grow in situ
Mg,NiH, thin films at an applied hydrogen pressure below
the H, equilibrium pressure of Mg,NiH, formation. Schoe-
nes et al. found that they could grow YH,; hydride films at
an ambient hydrogen gas pressure of 1.3 X 107 Pa, whereas
the equilibrium pressure of the films to form YH,  is lower.®
Hayoz et al. also reports about the in situ growth of Y
dihydrides9 by applying a hydrogen gas pressure. While the
atomic hydrogen source is essential for the hydride forma-
tion in complex hydride systems, the blocked decomposition
reaction stabilizes the hydride formed. Indeed, the in situ

604 Simulation*MgzNi #Pd

Measurement Mg,NiH, + Pd

Simulation Mg,NiH, + Pd

Reflectance
N
e

Simulation Mg,NiH, + PdH,,

200 201 202 203 204 205 206 207 208 209 210 211
Thickness Pd (nm)

FIG. 14. (Color online) Reflectance at 1.95 eV as a function of deposited Pd
thickness on an in situ grown 200 nm Mg,NiH, hydride film. Simulation of
the reflectance of a 200 nm Mg,NiH, film capped with Pd and capped with
PdH,; are shown together with a 200 nm metallic Mg,Ni/Pd film. The
developing interference pattern indicates the unloading of the film with the
metallic Mg,Ni phase forming from the Pd surface downwards. The simu-
lations with Pd and PdH,); indicates that the film really unloads and that the
change in reflectance is not due to the deposited Pd cap layer.
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FIG. 15. (Color online) Reflection spectra at 1.95 eV during the loading/
unloading process at room temperature of an in situ grown Mg,NiH, thin
film. Point 1: Start of the rehydrogenation at 1X 10° Pa of an in situ pre-
pared Mg,NiH, film which was unloaded after it was capped with Pd. Point
2: Indicating the reduced minimum in reflection. Point 3: Start to unload the
thin films in air. Point 4: Start of a rehydrogenation but now at 1 X 10° Pa.
Point 5: Again the reduced minimum in reflection is observed.

grown Mg,NiH, hydride film remains in its metastable state
in vacuum (5 X 1077 Pa) after deposition. The hydrogen de-
sorption from the film without a Pd cap layer is almost neg-
ligible on at least a time scale of hours. This shows that the
dehydrogenation process of Mg,NiH, has a high activation
barrier and is kinetically blocked. Depositing a Pd cap layer
on top of an in situ grown hydride film results in a sponta-
neous dehydrogenation of the film. This process starts al-
ready at only a few angstrom of Pd (see Fig. 14). The depo-
sition of a 10 nm Pd cap layer results in a completely
unloaded Mg,Ni metallic film within minutes, under high
vacuum (HV) conditions. After rehydrogenating this film in
the vacuum system (load lock), the unloading kinetics have
become much slower than before. However, when we subject
the film to air, the hydrogen desorption is accelerated and the
film unloads to the metallic phase within minutes; see point 3
in Fig. 15 and point 4 in Fig. 16. The need to activate the
dehydrogenation by O, is always observed in ex sifu hy-
drided Pd/Mg,NiH, thin films. It seems as if the hydrogena-
tion of the Pd-covered metal alloy has a detrimental effect on
the activation energy for dehydrogenation.

Grisjo et al. performed a study on the surface reaction of

60
1 A
_ 50 Mg,Ni
s 3 4
© 404
()
&
+ 30
é ::2 gl
& 20+ Vacuum 5 X 10° Pa Air
10-
20000 40000 60000 80000
Time (s)

FIG. 16. (Color online) Reflectance at 1.95 eV of a postdeposition hydrogen
absorption/desorption cycle of an in situ grown 200 nm Mg,NiH, thin film
capped with 10 nm Pd. Point 1: Unloaded Mg,Ni phase. Point 2: Reduced
interference minimum. Point 3: Hydrogen desorption in vacuum. Point 4:
Applied atmospherical air environment. The exposure to an air environment
catalyzes the dehydrogenation tremendously.
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palladium hydride in vacuum, air, and water.”* They found
that the activation energy of desorption of hydrogen is low-
ered by the reaction with oxygen. Furthermore a humid at-
mosphere catalyzes the reaction between hydrogen and oxy-
gen and increases the release rate of hydrogen by a factor of
100 as compared to desorption in a vacuum system. In a
vacuum system the release of hydrogen can only take place
by the recombination and desorption process of hydrogen. It
is difficult to understand the difference between the unload-
ing of the in situ grown hydride in vacuum and that of the
rehydrided film, because the dehydrogenation conditions are
the same in both cases.

Possibly contamination of the Pd and the intermixing of
Pd with Mg,NiH, play a role here. Although the applied
hydrogen gas to rehydrogenate the film is 99.999 pure, con-
taminants which degrade the catalytical properties of the Pd.
This is, however, not plausible since the same hydrogen gas
is used in the in sifu growth.

Alternatively, Borgschulte et al. suggests that the Pd
may become covered by the hydride metal on hydrogenation.
This so-called strong-metal support interaction (SMSI) effect
is driven by the minimization of the surface energy and plays
a largze'5 ggle in the reduced catalytic properties of the Pd cap
layer.”™

IX. CONCLUSIONS

In situ fiber spectroscopy and in sifu resistivity measure-
ments show that complex metal hydride thin films can be
grown by an activated reactive evaporation. Mg,NiH, hy-
dride thin films can be grown from the constituent elements
Mg, Ni, and H, where H is provided by an atomic hydrogen
source. The hydride films are stable in vacuum. Only when
adding Pd, the as-grown hydride films transform to the me-
tallic state. The dehydrogenation of a rehydrided film is
much more difficult and requires oxygen. The difference in
dehydrogenation behavior of an in situ grown Mg,NiH, thin
film and a rehydrogenated thin film may have its origin in a
contamination effect of the Pd catalyst or a microstructural
reorganization upon rehydriding the thin film. Further re-
search has to be done to clarify the origin of this effect.

In situ resistivity measurements show that the resistivity
of an in situ grown Mg,NiH, thin film is 0.34 Q) cm, which
is an order of magnitude higher than for a postdeposition
hydrided film. This mismatch between in situ and ex situ
hydrided films can be attributed to the high density of hy-
dride grain boundaries in in situ prepared hydrides. The shift
of the energy band gap indicates a low charge carrier density,
which may also contribute to the high resistivity value.

During deposition, a minimum in reflection is observed,
which is caused by a two-step process. A destructive inter-
ference due to the phase change upon reflection from the
growing layer and an increasing absorption due to this in-
crease in the film thickness. No assumptions about the thin
film microstructure or thickness dependence of the n and &
values need to be made to clarify this effect.

J. Appl. Phys. 100, 063518 (2006)

As proposed in a previous paper, here we proved the
relation between the preferred hydride nucleation in Mg,Ni
thin films and the specific microstructure of these films. Thin
films grown by activated reactive evaporation, consists of a
small grained homogeneous layer and since there is no mi-
crostructural development throughout the film, there is no
preferred hydride nucleation inside the film. Since we do not
observe an optical black state in these films, we conclude
that the occurrence of this effect in ex siru Mg,Ni films is
due to its peculiar microstructure.
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