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1 Introduction
The description of the chemical and physical properties of materials requires a quantum me-
chanical treatment of the many-particle system of electrons and nuclei with their basic electro-
static Coulomb interactions. Even if the more massive nuclei are regarded as classical particles
and if the fast moving electrons are treated non-relativistically, this requires the solution of the
Schrödinger equation of 3N spatial variables and N spin variables. Since the number N of
electrons is usually large (even for small molecules N is often larger than 100 and for solids
N ≈ 1023), it is obvious that the solution cannot be obtained without approximation. It is
also obvious that the many-electron wavefunction obtained as the solution of the Schrödinger
equation is a much too complicated object, if one wants to understand and predict material
properties.
In the last decades density-functional theory has emerged as a powerful alternative. Density-
functional theory formally reduces the many-electron problem to a single-electron problem and
uses the electron density distribution n(r) as the elementary quantity instead of the many-
electron wavefunction. The idea goes back to Thomas [1] and Fermi [2] who, shortly after
the basic publications of Schrödinger and Heisenberg, already in 1927 obtained a heuristic
description of the many-electron system completely in terms of the electronic density. The
Thomas-Fermi method can be considered as the conceptual root of density-functional theory.
Almost 40 years later in 1964, Hohenberg and Kohn [3] were then able to prove their famous
theorem, which states that the ground-state properties of the many-particle system are uniquely
determined by the ground-state particle density n(r). This theorem provides the fundamental
justification of modern density-functional theory and has motivated an enormous number of ap-
plications primarily in the electron theory of atoms, molecules and solids, but also in the physics
of liquids [4] and in nuclear physics [5].
It is the aim of this chapter to introduce the basic concepts of density-functional theory and to
discuss its apparent success for practical applications. The consideration will be simplified by
the restriction to a non-relativistic, non-spin-polarized, time-independent many-electron system
at zero temperature, which has a non-degenerate ground state Ψ described by the Schrödinger
equation

ĤΨ =
[
T̂ + Û + V̂ext]

]
Ψ (1)

=

[
− ~

2

2m

N∑
i

∇2
i +

N∑∑
i<j

U(ri, rj) +
N∑
i

vext(ri)

]
Ψ = EΨ

Here U(r, r′) = e2|r − r′|−1 is the electron-electron interaction and vext(r) the static external
potential due to the interaction of the electrons with the atomic nuclei. The kinetic energy
operator T̂ and the interaction operator Û are universal in the sense that they are the same for
any system, while vext is system dependent or non-universal.
The plan of this chapter is the following. After introducing the Thomas-Fermi approximation
as a historical density-functional method, the main principles of modern density-functional the-
ory, the Hohenberg-Kohn theorem and the Kohn-Sham method of mapping the complicated
many-electron system to an effective single-electron system, are explained. It is then discussed
that approximations for the exchange-correlation part of the density functional can be derived,
which are useful for practical applications. Finally, two techniques are considered, which have
received increasing attention in recent years. These are the method of coupling-constant inte-
gration as a tool to find and understand approximate exchange-correlation functionals and the
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method of constraints as a tool to extend the applicability of density-functional theory from
ground states to the states of lowest energy compatible with the constraints.
Remark: Extensions of density functional to non-degenerate ground states, to spin-polarized
and relativistic electron systems, to excited states and finite temperatures, to time-dependent
and to superconducting situations are possible and will be partly covered in other chapters.

1.1 Thomas-Fermi Approximation (1927)
The starting point for the Thomas-Fermi method is the non-interacting system of N electrons
in volume V with the density n = N/V and the Fermi energy EF , which is connected to the
radius kF of the Fermi sphere by

kF =

√
2m

~2
EF . (2)

In terms of kF , the density n and the kinetic energy T can be written as

n =
1

3π2
k3

F (3)

and as

T =
3

5
NEF =

3

5
N
~2

2m
k2

F . (4)

The kinetic energy density t = T/V follows from (4) by use of (3) as

t =
1

5π2

~2

2m
k5

F =
3

5
(3π2)2/3 ~2

2m
n5/3 . (5)

The Thomas-Fermi method applies this relation locally for each point in the inhomogeneous
interacting electron system and approximates the kinetic energy as

T =

∫
t(r)dr ≈ 3

5
(3π2)2/3 ~2

2m

∫
n5/3(r)dr . (6)

By this approximation the kinetic energy can be calculated directly from the density without
requiring the knowledge of the many-electron wavefunction. This knowledge is also unneces-
sary for the calculation of the energy contribution arising from the interaction with the external
potential. This contribution is given by the expectation value 〈Ψ|V̂ext|Ψ〉 and can exactly be
determined from the density by formula (56) given in the appendix. The electron-electron in-
teraction energy U , given by the expectation value 〈Ψ|Û |Ψ〉, can be calculated by

U =
e2

2

∫
n2(r, r

′)
|r − r′| drdr′ , (7)

which follows from formula (58) given in the appendix by using U(r, r′) = e2|r − r′|−1. Thus
also the calculation of U does not require the full many-electron wavefunction, but only the pair
density n2(r, r

′). In the Thomas-Fermi method the interaction energy (7) is approximated by
replacing the pair density n2(r, r

′) with the product of the densities n(r) and n(r′). This leads
to

U ≈ e2

2

∫
n(r)n(r′)
|r − r′| drdr′ . (8)
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The total energy E for the electron system in the external potential vext is thus approximated by

E ≈ 3

5
(3π2)2/3 ~2

2m

∫
n5/3(r)dr +

e2

2

∫
n(r)n(r′)
|r − r′| drdr′ +

∫
n(r)vext(r)dr , (9)

which represents a functional E[n(r)] of the density. Here the word functional is used in its ini-
tial meaning originating in the calculus of variation and describes a function that takes functions
as its argument; that is, a function whose domain is a set of functions.
The ground-state density and energy can be obtained from (9) by variation over all possible
densities with the condition

∫
n(r)dr = N , which is taken into account by using a Lagrange

parameter µ. From

δ

{
E[n(r)] + µ

[
N −

∫
n(r)dr

]}
= 0 (10)

one obtains the integral form of the Thomas-Fermi equation as

(3π2)2/3 ~2

2m
n2/3(r) + e2

∫
n(r′)
|r − r′|dr′ + vext(r)− µ = 0 . (11)

The usual differential form (13) of the Thomas-Fermi equation follows from (11) by introducing
the induced potential via

e2

∫
n(r′)
|r − r′|dr′ = vind(r) or ∇2vind(r) = −4πe2n(r) (12)

and by using the induced potential as the basic variable. This leads to

∇2vind(r) = −4e2

3π

[
2m

~2
(µ− vext(r)− vind(r))

]3/2

. (13)

Remark: It has been shown that the heuristically obtained density functional (9) of the Thomas-
Fermi approximation is inaccurate for most applications, for instance, it does not give the shell
structure of the atoms, it makes the atoms smaller with larger nuclear charge and it does not lead
to binding of molecules and solids. The largest source of errors is the use of the free-electron
approximation for the kinetic energy T [n(r)], which should be replaced by a better functional.
This has been achieved in the density-functional theory of Hohenberg, Kohn, and Sham [3, 6],
which also provides a fundamental justification for the use of the density as the elementary
variable to describe the many-electron system.

2 Density-Functional Theory

2.1 Hohenberg-Kohn Theorem (1964)
Since the electron-electron interaction is known (Coulomb potential), the external potential
completely determines the Hamiltonian of the many-electron system. Thus it also completely
determines the ground-state wavefunction and the ground-state density of the many-electron
system. This means that a unique mapping exists from the external potential to the ground-state
density and that the ground-state density is a uniquely determined functional of the external
potential n0[vext(r)].
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The first statement of the Hohenberg-Kohn theorem is that the mapping from the external po-
tential to the ground-state density is invertible up to a trivial additive constant in the potential.
This means that the external potential is a uniquely determined functional of the ground-state
density: vext[n0(r)]. Consequently, since every wavefunction Ψ (not only the ground-state
wavefunction!) is trivially a functional Ψ[vext(r)] of the external potential, the wavefunction Ψ
is also a functional Ψ[vext[n0(r)]] of the ground-state density. Thus every quantum mechanical
observable, i. e. every expectation value 〈Ψ|Ô|Ψ〉 is a functional of the ground-state density.
The second statement of the Hohenberg-Kohn theorem is that a unique functional E[n(r)] of
the electron density n(r) exists, which under the condition

∫
n(r)dr = N obtains its minimum

for the ground-state density n0(r) and gives the ground-state energy as E0 = E[n0(r)].
The proof of the Hohenberg-Kohn theorem for non-degenerate ground states is simple and
proceeds by reductio ad absurdum. It is shown that a contradiction arises if one assumes that
two different ground states Ψ0 6= Ψ0

′ (arising from two different potentials v 6= v′+const) lead
to the same ground-state density n0(r). The proof is based on the Rayleigh-Ritz principle for the
ground-state energy, which is given by E0 = 〈Ψ0|Ĥv|Ψ0〉 assuming a normalized wavefunction
as everywhere in this chapter. The Rayleigh-Ritz principle leads to

E0 < 〈Ψ0
′|Ĥv|Ψ0

′〉 = 〈Ψ0
′|Ĥv′ + v − v′|Ψ0

′〉 = E0
′ +

∫
n0(r)[v(r)− v′(r)]dr , (14)

where the strict inequality is a consequence of the restriction to non-degenerate ground states.
Analogously one obtains

E0
′ < E0 +

∫
n0(r)[v

′(r)− v(r)]dr . (15)

The addition of (14) and (15) leads to a cancellation of the integrals, which contain the same
density by assumption, with the result E0 + E0

′ < E0
′ + E0. This is clearly a contradiction

and the assumption that the densities are equal cannot be true. Consequently, two different po-
tentials cannot lead to the same ground-state density, which means that the ground-state density
uniquely determines the external potential and, as explained above, all stationary observables
of the many-electron systems.
Unfortunately, for most physical properties it is not known how they can be calculated directly
from the ground-state density. Therefore, the second part of the Hohenberg-Kohn theorem,
which is the minimum principle for the ground-state energy E0, is of particular importance.
According to Levy [7] the unique energy functional E[n(r)] can be defined as the minimum
over all wavefunctions, which deliver the density n(r),

E[n(r)] = min
Ψ→n

〈Ψ|T̂ + Û + V̂ext|Ψ〉 (16)

and can be written as
E[n(r)] = F [n(r)] +

∫
n(r)vext(r)dr . (17)

Here the simple functional dependence on vext is explicitly displayed. The functional

F [n(r)] = min
Ψ→n

〈Ψ|T̂ + Û |Ψ〉 (18)

is universal, which means that it does not depend on vext and is the same for all systems de-
scribed by the Schrödinger equation (1). From (16) one obtains

E[n(r)] = 〈Ψmin
n |T̂ + Û + V̂ext|Ψmin

n 〉 ≥ E0 , (19)
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where Ψmin
n is defined as the wavefunction, which delivers the minimum, and where the in-

equality follows from the Rayleigh-Ritz minimum principle for the ground-state energy E0. If
the ground-state wavefunction Ψ0 is used in (16), one obtains

E[n0(r)] ≤ 〈Ψ0|T̂ + Û + V̂ext|Ψ0〉 = E0 , (20)

where it has been used that the ground-state wavefunction delivers the ground-state energy and
where the inequality follows from (16), because E[n0(r)] is defined as the minimum over all
wavefunctions, which give the ground-state density n0(r), and one of these wavefunctions is the
ground-state wavefunction Ψ0. Since (19) is valid for any density, it is also valid for the ground-
state density. This leads to E[n0(r)] ≥ E0, which together with (20) shows E0 = E[n0(r)] and
establishes the minimum principle

E0 = min
n

E[n(r)] . (21)

Here the minimization is over all densities which arise from antisymmetric wavefunctions for
N electrons. This variational principle can be used to determine the ground-state density n0(r)
and energy E0 provided that the functional F [n(r)] can be defined explicitly, which is, however,
only possible approximately.

2.2 Kohn-Sham Equations (1965)
The theory discussed above has transformed the formidable problem of finding the minimum
of 〈Ψ|Ĥ|Ψ〉 with respect to the 3N -dimensional trial function Ψ into the seemingly trivial
problem of finding the minimum of E[n(r)] with respect to the three-dimensional trial function
n(r). However, since the explicit form of the functional F [n(r)] is not known, the theory seems
to be rather abstract and of little use. Here, the idea of Kohn and Sham [6], the introduction of
a fictitious auxiliary non-interacting electron system with an effective external potential veff (r)
is of unique importance. This effective potential is constructed in such a way that the density
of the auxiliary non-interacting system equals the density of the interacting system of interest.
The Hohenberg-Kohn theorem (applied for U ≡ 0) guarantees the one-to-one correspondence
between the densities and the effective potentials. While the functional F [n(r)] in (17) and
(18) is universal with respect to the external potential, it evidently depends on the interaction
U . For U ≡ 0 the functional F [n(r)] reduces to the kinetic energy functional Ts[n(r)] of
non-interacting electrons and the total-energy functional can be written as

Es[n(r)] = Ts[n(r)] +

∫
n(r)veff (r)dr . (22)

The Hohenberg-Kohn variational principle (21) then leads to the Euler-Lagrange equation

δ

δn(r)

{
Es[n(r)] + µ

[
N −

∫
n(r)dr

]}
=

δTs[n(r)]

δn(r)
+ veff (r)− µ = 0 , (23)

where similarly as for the derivation of the Thomas-Fermi equation (10) a Lagrange parameter
µ is used to guarantee the charge conservation N =

∫
n(r)dr. Equation (23) provides an exact

way to calculate the ground-state density n(r) provided that the potential veff (r) is known,
since the functional Ts[n(r)] for the kinetic energy of non-interacting electrons can be implicitly
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constructed by using single-particle wavefunctions (orbitals) ϕi(r), which allows to represent
n(r) and Ts in the form

n(r) =
occ∑
i

|ϕi(r)|2 and Ts[n(r)] =
occ∑
i

∫
ϕ?

i (r)(−
~2

2m
∇2

r)ϕi(r)dr , (24)

where i denotes both the spatial as well as the spin quantum numbers and where the sum is over
the lowest N (occupied) eigenstates to respect the Pauli principle. The variation of E[n(r)] with
respect to the orbitals leads to the Kohn-Sham equations

[
− ~

2

2m
∇2

r + veff (r)− µ

]
ϕi(r) = εiϕi(r) , (25)

where the εi represent Lagrange parameters, which guarantee that the orbitals are normalized as
(ϕi, ϕi) = 1. To apply this scheme, a useful expression for the effective potential veff (r) must
be found. The important achievement of Kohn and Sham was the suggestion to write equation
(17) as

E[n(r)] = Ts[n(r)] +

∫
n(r)vext(r)dr +

e2

2

∫
n(r)n(r′)
|r − r′| drdr′ + Exc[n(r)] . (26)

Here the last term is the so-called exchange-correlation energy functional defined as

Exc[n(r)] = F [n(r)]− Ts[n(r)]− e2

2

∫
n(r)n(r′)
|r − r′| drdr′ (27)

As before, Ts[n(r)] is the kinetic energy functional (24) of non-interacting electrons. The vari-
ational principle applied to (26) gives

δTs[n(r)]

δn(r)
+ vext(r) + e2

∫
n(r′)
|r − r′|dr′ +

δExc[n(r)]

δn(r)
− µ = 0 . (28)

This equation is formally identical with the Euler-Lagrange equation (23) of the non-interacting
electron system with the effective potential

veff (r) = vext(r) + e2

∫
n(r′)
|r − r′|dr′ + vxc[n(r)](r) , (29)

where the exchange-correlation potential is defined as

vxc[n(r)](r) =
δExc[n(r)]

δn(r)
. (30)

Equations (24) and (25) are the famous Kohn-Sham equations, which are probably the most
important equations of density-functional theory. Since the effective potential depends on the
density via (29) and the density on the effective potential via (24) and (25), these equations must
be solved self-consistently. This can be achieved by iteration: starting from a trial density the
effective potential is determined by (29), for which the equations (24) and and (25) are solved to
determine a new density. This process is repeated until the new density equals the previous one.
In order to damp possible increasing oscillations in the iteration process, it can be necessary
to use only a part of the output density and to mix it with the input density in the iterations.
From the behavior of the eigenvalues of the functional derivative f(r, r′) = δE[n(r)]/δn(r′) it
can be shown [8] that the iteration process always converges to a stable solution if the mixing
parameter is small enough, but many iterations may be required.
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2.3 Approximations for the Exchange-Correlation Energy Functional
The density-functional theory presented above is exact in principle, however the density func-
tionals Exc[n(r)] and vxc[n(r)], in which all complications of the many-particle problem are
hidden, are not exactly known and must be approximated. The widespread use of density-
functional theory in calculating physical and chemical properties arises from the fact that ap-
proximations for Exc and vxc have been found which are both simple and accurate enough for
practical applications. A rather simple and remarkably good approximation is the so-called
local density approximation (LDA), which replaces the exact functional Exc by

ELDA
xc [n(r)] =

∫
n(r) εLDA

xc (n(r)) dr , (31)

where εLDA
xc (n) is a function (not a functional) of the density. This function is used in (31)

locally at each point r with the value n = n(r) of the density at this point. For a homogeneous
interacting electron system with constant density, equation (31) gives the exact result for the
exchange-correlation energy and the function εLDA

xc (n) in (31) can be determined by quantum
mechanical many-body calculations. The exchange part of εLDA

xc (n) is given by

εx(n) = −3

4

e2

π
kF = −3

4
e2

(
3

π

)1/3

n1/3 (32)

and can be obtained by the Hartree-Fock method, which neglects correlation, but takes into
account exchange. The exchange potential in the Kohn-Sham equations follows from (32) as

vx(n) =
d

dn
(nεx(n)) = −e2

(
3

π

)1/3

n1/3 . (33)

The correlation part of εLDA
xc (n) is more difficult to calculate. Accurate results for the correla-

tion part of εLDA
xc (n) have been obtained by the quantum Monte Carlo method [9] and reliable

parameterizations for these results are available [10, 11].
For systems with more inhomogeneous densities, the integrand in (31) can be generalized by
taking into account dependences on the gradient of the density

EGGA
xc [n(r)] =

∫
f(n(r),∇n(r)) dr . (34)

While the input εLDA
xc in (31) is unique, the function f in (34) is not and many different forms

have been suggested incorporating a number of known properties of the exact functional, for
instance limit and scaling behaviors, or empirical parameters. A well tested numerical approxi-
mation is the generalized gradient approximation (GGA) [12,13], which for instance, improves
the cohesive energies and lattice constants of the 3d transition metals. Recently, so-called meta-
GGA functionals [14, 15] were proposed, where besides the local density and its gradient also
other variables are introduced, for instance the kinetic energy density of the Kohn-Sham orbitals

EGGA
xc [n(r)] =

∫
f (n(r),∇n(r), τ(r)) dr with τ(r) =

occ∑
i

|∇ϕi(r)|2 . (35)

By the additional flexibility in (35) it has been possible to improve the accuracy compared to
(34) for some physical properties without worsening the results for others. Another possibility
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to improve the exchange-correlation functional has been suggested by Becke [16]. These so-
called hybrid functionals use a fraction of exact exchange

Ehyb
xc = aEKS

x + (1− a)EGGA
x + EGGA

c , (36)

where EKS
x is the exact exchange calculated with the Kohn-Sham orbitals and the constant

a ≈ 0.28 is an empirical parameter. Unlike LDA and GGA, which are explicit functionals of the
density, meta-GGA’s and hybrid functionals also depend explicitly on the Kohn-Sham orbitals.
Nevertheless, they are still density functionals, since by (25) the orbitals are functionals of the
effective potential and therefore by virtue of the Hohenberg-Kohn theorem functionals of the
density.

2.4 Applications

Although the Hohenberg-Kohn-Sham density-functional theory provides a formally exact and
computationally efficient scheme for electronic-structure calculations, it took more than ten
years before it became widely used in solid state theory at the late 1970’s. The main obsta-
cle was the form of the exchange-correlation functional, which, available in its local density
approximation (LDA), was believed to be good only for spatially slowly varying densities, a
condition hardly ever met for real electronic systems. Nevertheless, the LDA has proved to be
remarkably accurate in describing the ground-state properties for a wide variety of systems. Out
of the many thousands applications one particular example of early calculations [18,19] is cho-
sen here to illustrate that the LDA can lead to rather good results. Figure 1 displays calculated
values and experimental results for the Wigner-Seitz radius as a measure of the equilibrium
lattice constant, the cohesive energy, and the bulk modulus of the transition metals of the third
and fourth series of the periodic system. The agreement with experiment is rather good, in
particular for the fourth series and for the trends along both series. It should be noted in this
context that for the calculations the only input specific to each metal was its atomic number
and the choice of a fcc or bcc lattice structure. Part of the differences seen in the middle of the
third series is caused by the magnetism of these elements, which was not taken into account
by ignoring spin-polarization. Early spin-polarized calculation for some selected metals can be
found, for instance in Ref. [20]. Including spin-polarization improves the lattice constants and
bulk moduli for the magnetic metals, but worsens the cohesive energies mainly due to energy
errors arising from the LDA description of the 3d atoms.
Because of these errors density-functional theory was rarely used in chemistry, where energetics
are generally more important than in solid state theory. Only in the early 1990’s with the advent
of the GGA, which was quite successful to improve binding energies, atomic energies, and also
bond-length and angles, density-functional theory became an accepted method for large scale
applications in quantum chemistry. The introduction of hybrid functionals further increased the
usefulness of density-functional theory for quantum chemical calculations. By 1998, because
it allowed to consider systems unattainable by traditional quantum chemistry methods, density-
functional theory had become so successful and popular among quantum chemists that half of
the Nobel prize in chemistry went to Walter Kohn “for his development of density-functional
theory” [17].
Remark: The treatment of exchange-correlation effects in the LDA and in its improvements
discussed above is not appropriate for systems for which the electron system of slowly varying
density is a fundamentally incorrect starting point. Examples are: Van der Waals (or polariza-
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tion) energies between non-overlapping systems, density tails evanescing into the vacuum near
the surfaces of bounded electron systems, or strongly correlated electron systems.

Fig. 1: Calculated Wigner-Seitz radius, cohesive energy, and bulk modulus for metallic elements
of the third and fourth series of the periodic system (from Ref. [18]). Measured values are
indicated by crosses. The calculations employ the muffin-tin approximation and ignore spin-
polarization.

3 Coupling-Constant Integration

An important concept in the development of density functionals is the method of coupling-
constant integration [21–23], also known as the adiabatic-connection approach [24], which pro-
vides intuitive and physical insight into the exchange and correlation energies and guidance for
the approximation of their density functionals. The method is based on the introduction of a
fictitious many-electron system with a scaled electron-electron interaction λU(r, r′), 0 ≤ λ ≤ 1
and a fictitious external potential vλ, which is chosen such that for all λ in the interval (0,1) the
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corresponding density equals the physical density

nλ(r) ≡ nλ=1(r) = n(r) . (37)

This procedure represents an interpolation between the non-interacting system (λ = 0) with
the effective Kohn-Sham potential veff and the physical system (λ = 1) with the true external
potential vext. The Hellmann-Feynman theorem can be used to obtain the λ derivative of the
ground-state energy as

dE0(λ)

dλ
=

d

dλ
〈Ψλ|Ĥλ|Ψλ〉 = 〈Ψλ|dĤλ

dλ
|Ψλ〉 = 〈Ψλ|U |Ψλ〉+

d

dλ

∫
n(r)vλ(r)dr , (38)

where Ψλ denotes the ground-state wavefunction for the Hamiltonian Ĥλ (with potential vλ and
interaction λU(r, r′)). By integration over the λ interval (0,1) one obtains

E[n(r)]− Es[n(r)] =

∫ 1

0

〈Ψλ|U |Ψλ〉dλ +

∫
n(r) [vext(r)− veff (r)] dr , (39)

where it was used that E(λ = 1) is the ground-state energy E[n(r)] of the physical system
with external potential vext = vλ=1 and E(λ = 0) is the ground-state energy Es[n(r)] of the
non-interacting system with the effective potential veff = vλ=0. If (26) and (22) are used, the
difference of the energies on the left-hand side of (39) can be written as

E[n(r)]−Es[n(r)] =
e2

2

∫
n(r)n(r′)
|r − r′| drdr′+Exc[n(r)]+

∫
n(r) [vext(r)− veff (r)] dr (40)

and the exchange-correlation functional is explicitly obtained as

Exc[n(r)] =

∫ 1

0

〈Ψλ|U |Ψλ〉dλ− e2

2

∫
n(r)n(r′)
|r − r′| drdr′ . (41)

According to (59) given in the appendix, the expectation value in (41) can be written in terms
of the pair density, which leads to

Exc[n(r)] =

∫ 1

0

e2

2

∫
nλ

2(r, r
′)

|r − r′| drdr′dλ− e2

2

∫
n(r)n(r′)
|r − r′| drdr′ . (42)

Here the pair density explicitly depends on the interaction strength λ, while the density is
independent of λ by construction. With the pair-correlation function, given by nλ

2(r, r
′) =

n(r)gλ(r, r
′)n(r′), the last equation can be written as

Exc[n(r)] =
e2

2

∫
n(r)n(r′)
|r − r′|

[∫ 1

0

(gλ(r, r
′)− 1) dλ

]
drdr′ (43)

or as

Exc[n(r)] =
e2

2

∫
n(r)

nxc(r, r
′ − r)

|r − r′| drdr′ (44)

with

nxc(r, r
′ − r) = n(r′)

∫ 1

0

(gλ(r, r
′)− 1)dλ . (45)
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Here nxc can be understood as the exchange-correlation hole and Exc as the interaction en-
ergy between the electronic density n(r) and the hole. The hole is created by three effects:
(i) self-interaction correction, which guarantees that the electron does not interact with itself,
(ii) the Pauli exclusion principle, which keeps electrons of equal spin apart in space, and (iii)
the Coulomb repulsion, which keeps any two electrons apart in space. Effects (i) and (ii) are
responsible for the exchange energy, which is present even for λ = 0, while effect (iii) is re-
sponsible for the correlation energy, which arises only for λ 6= 0. By use of equation (59) given
in the appendix one obtains that the hole is normalized

∫
nxc(r, r

′ − r)dr′ = −1 , (46)

which reflects the total screening of an electron at r due to the combined effect of the Pauli
principle and the electron-electron interaction.

Fig. 2: The exchange hole around an electron at r in the neon atom shown as function of
distance from the electron along a line connecting the electron and the nucleus for two different
positions of the electron 0.09 and 0.4 Bohr radii away from the nucleus (from Ref. [25]). Solid
lines are for the exact hole and dashed lines for the LDA hole.

For the use of (44), which is an exact quantum mechanical result, it is important to realize that
the Coulomb interaction 1/|r − r′| only depends on the distance |r − r′| between the particles.
This can be exploited by a change of variable r′′ = r′ − r. In terms of r′′, equation (44) can be
written as

Exc[n(r)] =
e2

2

∫
n(r)

nxc(r, r
′′)

r′′
drdr′′ , (47)

which by integration over the angles of r′′ leads to

Exc[n(r)] =
e2

2

∫
n(r)4πnxc(r, r

′′)r′′dr′′dr , (48)

where nxc(r, r
′′) is defined as the spherical average of nxc(r, r

′′). Similarly (46) can be trans-
formed into ∫

4πnxc(r, r
′′)r′′2dr′′ = −1 . (49)
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Together (48) and (49) show that the exchange-correlation energy depends on the first moment
of a function for which the second moment is exactly known. Since (48) and (49) are valid
for any external potential, they are of course also valid for the homogeneous electron system
with a constant external background potential. Since the LDA exactly describes the homoge-
neous electron system, this means that these equations are exactly satisfied in the LDA. This
observation has been used by Gunnarsson, Jonson and Lundqvist [25] to explain the unexpected
quantitative success of LDA density-functional calculations. These authors have argued that the
success arises from the fact that only the spherical average is used in (48) so that distortions of
the hole due to inhomogeneities are averaged out and from the fact that the LDA hole satisfies
the sum rule (46). The effect of the spherical averaging is illustrated in Figs. 2 and 3, where
results for the exchange-only limit of the hole are shown for the neon atom. The actual shape of
the exchange hole in Fig. 2 is poorly represented by the LDA exchange hole (the true exchange
hole in an atom has a maximum at the nucleus whereas the LDA hole is centered at the elec-
tron). However, the spherical averages in Fig. 3, which really enter in (48), are in much better
agreement.

Fig. 3: Spherical average of the exchange hole in the neon atom (from Ref. [25]). The average
is multiplied by r′′ so that the area under each curve is directly proportional to the integral over
r′′, which enters in (48). Note that the integral of r′′ times the curves is the same for the exact
and the LDA hole because of the sum rule (49).

Thus the adiabatic connection formula (44) provides strong arguments to understand why the
LDA works so well for systems even far from the limit of constant density and why it was so
difficult to improve upon the LDA by relaxing this limit in gradient expansions. Only after
it had been realized that any successful exchange-correlation functional should obey physical
constraints like sum rules and scaling behaviors as the ones imposed by the adiabatic connec-
tion formula, it became possible in the late 1980’s to develop functionals like the GGA with
improved accuracy.

4 Constrained Density-Functional Theory
Already the formal development of density-functional theory in Sec. 2 contains constraints in
the minimization procedures. For instance, in (16) the minimization is constrained to wave-
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functions Ψ with the correct density n(r) and in (10) and (23) the variation is constrained to
charge conserving densities. The basic idea of constrained density-functional theory [26] is to
extend this concept to quite arbitrary constraints. The energy of the lowest state compatible
with a constraint can then be found by a modified energy functional. One example considered
in Ref. [26] is the modified energy functional

Ẽ[n(r)] = E[n(r)] + v

[
NV −

∫

V

n(r)dr

]
. (50)

Here E[n(r)] is the usual functional (17) and the constraint, guaranteed by the Lagrange param-
eter v, describes that the local volume V exactly contains NV electrons. The minimization of
(50) with respect to n(r) leads to an additional potential v in the Kohn-Sham equations, which
is constant in the volume V and zero otherwise. This potential must be adjusted such that the
resulting density nv(r) gives exactly NV electrons in the volume V . Instead of calculating the
energy from the functional Ẽ[nv(r)], it is computationally much easier to calculate directly the
energy difference with respect to a reference state N0, for instance the ground state. This can
be done by the Hellmann-Feynman theorem

dE(NV )

dNV

= v ⇒ ∆E(NV ) =

∫ NV

N0

v(N ′)dN ′ , (51)

which only requires the knowledge of the potential v(N ′). Physically, the potential v can be
viewed as the “force” necessary to constrain the system to the desired state and ∆E as the
“strain energy” of the system.

Fig. 4: The Lagrange parameter vf (left), which controls the f occupation Nf and the energy
difference ∆E(Nf ) (right) for Ce impurities in Pd and Ag as function of ∆Nf (from Ref. [26]).

Instead of constraining the total number of electrons in volume V to a desired number, it is
more interesting to constrain the partial number of electrons of a particular angular-momentum
character. This has been used in Ref. [26] for a first fully self-consistent calculation of the
screened Coulomb interaction parameter (the Hubbard U ) for the Ce 4f electrons of Ce impu-
rities in Pd and Ag crystals. The Lagrange parameter, which enforces the desired number Nf of
f electrons in the Ce impurity cell, is a projection potential vf acting only on the l = 3 angular
momentum components of the wavefunction in the considered impurity cell. The spd elec-
trons in this cell as well as all other electrons in neighboring cells can freely relax to minimize
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the energy, describing in this way an optimally screened excitation. The results of Ref. [26]
for the self-consistently determined potential vf and energy difference ∆E(Nf ) are shown in
Fig. 4 as function of ∆Nf = Nf − N0

f , where N0
f = 1.18 and N0

f = 1.25 are the calcu-
lated ground-state values for the f occupation in the Ce impurity cells in Pd and Ag. Fig. 4
shows a nearly linear dependence of vf on ∆Nf and consequently by integration an almost
quadratic dependence of ∆E(Nf ) on ∆Nf . The values of the Coulomb interaction calculated
by Uf = ∆E(Nf + 1) + ∆E(Nf − 1) have been obtained as 8.1 eV for Ce in Pd and as 6.6
eV for Ce in Ag, which is in reasonable agreement with experimental and other theoretical
estimates [26].
Remark: Constrained LDA calculations provide presently probably one of the best ways to de-
termine the value of the Coulomb interaction parameter U , which can be used in methods for
strongly correlated electrons as in the dynamical mean field theory (DMFT) or in the LDA+U
method . However, a significant uncertainty remains, since the constraint is not defined unam-
biguously and depends, for instance, on the volume V chosen in (50) or on the shape of the
orbitals in basis-set methods.

Fig. 5: Magnetic interaction energy ∆E(M) and constraining magnetic field H(M) for pairs
of Mn and Fe impurities on nearest neighbor sites in a Cu crystal (from Ref. [27]). Note that
the energies involved in these calculations are several orders of magnitude smaller than the
individual energies of the antiferromagnetic and ferromagnetic configurations.

The constrained density-functional approach is also of particular importance for magnetic sys-
tems, since it allows to fix the local magnetic moments in the atomic unit cells and to calculate
the resulting energies. These energies can then be mapped to effective Hamiltonians describing
only the contracted degrees of freedom of the local moments. For instance, for small deviations
from the ground state, the energy difference is quadratic in the changes of the moments

∆E ≈ 1

2

∑∑
i,j

Jij∆Mi∆Mj , (52)

which provides a method to calculate the exchange-coupling constants Jij within density-
functional theory. An early application [27] to magnetic systems is the calculation of interaction
energy differences between the ferromagnetic and antiferromagnetic configuration of impurity
pairs in metals. In these calculations the local magnetic moment of one of the impurities is con-
strained to an arbitrary value M and the lowest energy E(M) compatible with this constraint is
determined by a modified functional similar to (50) given by

Ẽ[n(r), m(r)] = E[n(r),m(r)] + H

[
M −

∫

V1

m(r)dr

]
, (53)
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where the Lagrange parameter H is a constraining magnetic field, which is constant in cell
V1 and vanishes elsewhere. This field is chosen such that the integral of the magnetization
density m(r) over the cell V1 gives the desired value of the moment. Similar to (51) the energy
difference is given by

∆E(M) =

∫ M

M0

H(M ′)dM ′ , (54)

where M0 is the moment of the reference state. For instance in Fig. 5, the reference state is
the antiferromagnetic configuration, for which the moment M0 of one impurity is negative and
opposite to the moment of the second impurity. This reference state with calculated moments
of M = −3.22µB and M = −2.31µB (for Mn and Fe pairs) corresponds to the left minima
of the ∆E(M) curves in Fig. 5. The right minima of the ∆E(M) curves correspond to the
ferromagnetic configuration with calculated moments M = 3.20µB and M = 2.40µB (for
Mn and Fe pairs). Both the antiferromagnetic and the ferromagnetic configurations are stable
as the minima of the energies with vanishing constraining field H indicate. Near M ≈ 0
the ∆E(M) curves have maxima indicating unstable nearly non-magnetic states. The energy
differences between the ferromagnetic and antiferromagnetic configuration are 0.14 eV for Mn
and -0.13 eV for Fe pairs such that the antiferromagnetic state is more stable for the Mn pair
and the ferromagnetic state is more stable for the Fe pair. Note that whereas the energy and field
curves depend on the choice of the constraint, for instance the volume V1, the resulting energy
differences between both configurations are independent of the choice of the constraint. Instead
of varying the absolute magnitude of the moment also its direction can be constrained. This
requires a transversal field perpendicular to the direction of the moment and will be discussed
in more detail by Bihlmayer in chapter Magnetism in Density Functional Theory (A2).
Remark: The constrained density-functional approach discussed above provides a generaliza-
tion of earlier ideas for discrete systems. For instance, by constraining the symmetry of the
wavefunction one obtains the theorem of Gunnarsson and Lundqvist [23], which establishes
density-functional theory for the lowest state of each symmetry, and by constraining the occu-
pation ni of a certain atomic orbital i one can rederive Janak’s formula εi = ∂E/∂ni [28] or, in
the integrated form, Slater’s transition state [29].
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Appendix

The expectation values 〈Ψ|V̂ext|Ψ〉 and 〈Ψ|Û |Ψ〉 can be written in terms of the density n(r)
and the pair density n2(r, r

′). This can be shown as follows. By using the representation of the
density as expectation value of the density operator

n(r) = 〈Ψ|n̂|Ψ〉 =

∫
|Ψ(r1, ..., rN |2

N∑
i

δ(r − ri)dr1...drN (55)

one obtains
∫

n(r)vext(r)dr =

∫
|Ψ(r1, ..., rN |2

N∑
i

δ(r − ri)vext(ri)dr1...drNdr

=

∫
|Ψ(r1, ..., rN |2

N∑
i

vext(ri)dr1...drN (56)

= 〈Ψ|V̂ext|Ψ〉 ,

where first vext(r) has been replaced by vext(ri) because of the δ function and then the result∫
δ(r − ri)dr = 1 was used. Similarly by using the representation of the pair density as

expectation value of the two-particle density operator

n2(r, r
′) = 〈Ψ|n̂2|Ψ〉 =

∫
|Ψ(r1, ..., rN |2

N∑∑

i 6=j

δ(r − ri)δ(r
′ − rj)dr1...drN (57)

one obtains
∫

n2(r, r
′)U(r, r′)drdr′ =

∫
|Ψ(r1, ..., rN |2

N∑∑

i6=j

δ(r − ri)δ(r
′ − rj)

×U(ri, rj)dr1...drNdrdr′ (58)

= 2

∫
|Ψ(r1, ..., rN |2

N∑∑
i<j

U(ri, rj)dr1...drN

= 2〈Ψ|Û |Ψ〉 ,

where the double sum over i 6= j has been has replaced by twice the double sum over i < j. It
is also useful to note that the density n(r) is connected to an integral of the pair density by

∫
n2(r, r

′)dr′ = (N − 1)n(r) , (59)

which can be established by using the identity

N∑∑

i6=j

∫
δ(r′ − rj)dr′ =

N∑∑

i6=j

= (N − 1)
N∑
i

(60)

in equation (58).
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