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1 Introduction

The Density-Functional(DFT)-Method (see contribution of R. Zeller) has opened a whole new
world for calculating ground state properties of condensed matter systems. Equilibrium struc-
tures of crystals, molecules, surfaces, adsorption layers, structural defects and dissolved impu-
rities are just a few examples [1, 2].

But many materials problems are connected with dynamical properties. E.g., phase transitions
are often governed by a redistribution of atoms over long distances. The same is true for crystal
growth phenomena, where the atoms deposited to the surface find the appropriate sites for
incorporation into the growing crystal only after visiting many surface sites. In both cases the
diffusion of atoms is of interest, which is a thermally activated process. In addition, vibrational
spectra are often used to identify symmetries of defects in bulk systems or at surfaces. These
time and/or temperature dependent quantities are the realm of classical molecular dynamics
simulation which are performed with thousands of atoms using analytical model interactions
or empirical interactions between the atoms whose parameters are fitted to a set experimental
results (see contribution of R. Winkler).

In many instances, the coordination and symmetry of the environment changes when an atom
undergoes large displacements from ideal lattice positions, e.g. during a diffusion jump or in
the neighborhood of defects. It is difficult to generate empirical potentials which are valid for
all transition configurations encountered during a diffusion jump and estimate the validity of the
calculated energy differences. Particularly, in covalent systems with directed electronic bonds
the formation and character of bonds depends sensitively on the local atomic arrangement.
The first challenge thus is to calculate the forces on the atoms from a realistic local electronic
distribution which may drastically deviate from the ideal bulk electron density. An illustrative
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Fig. 1: Diffusion path of a Ge or Si adatom on the As-covered Si(111) surface. Configura-
tions with different bond coordination are shown: (a) the stable position at the H3 site, (b) an
intermediate position, (c) the saddle point at the T4 site, (d) H3 site in the neighboring cell.
2nd-layer Si: black, 1st-layer As: gray, adatom: white

example is shown in Fig. 1. Calculations using DFT [3] show that on an As-covered Si(111)
surface the equilibrium configuration of a Ge (or Si) adatom is a so-called H3-site (on top
of the hexagonal hole in the surface double layer), where the adatom binds to 3 As atoms of
the terminating upper layer. In this configuration the bond angle to the As atoms are nearly
ideal tetrahedron angles just as in bulk Si, and on the adatom an sp>-hybridization is favorable
(where one of the orbitals is a singly occupied dangling bond). It is clear that some of these
bonds have to be broken when the adatom performs a diffusion jump to an equivalent H3-site in
a neighboring surface cell. In one intermediate configuration the Ge adatom has only two bonds
to As atoms, which would suggest a planar sp?-hybridization on the Ge atom and very different
bond angles. The saddle point configuration is the T4 site (on top of the second-layer Si), where
the adatom again has three bonds to As atoms, but a repulsive interaction to the second-layer Si
atom.
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As we will see the DFT-approach provides the necessary information, since the ground state
electron density can be calculated to a very good approximation for any atomic arrangement,
and realistic forces on the atoms can be calculated for arbitrary configurations. For the charac-
terization of the numerical procedures we closely follow R. Jones” and D. Hohl’s contribution
to an earlier IFF Spring School [4]. Before we turn to the treatment of dynamics using DFT we
shortly summarize the basics of DFT for ground state properties.

2 Total energy calculations using density functional theory

The density functional theory is based on two theorems of Hohenberg and Kohn [5] which are
discussed in detail in R. Zeller’s contribution.

1. All ground state properties of a system of many electrons in an external field, V,,; (e.g.
due the Coulomb potential of ions) are fully determined if the electron density, n (7 ),
is known, they can be written as “functionals” of the density. One example is the total
electronic energy F = E|n|.

2. A variational principle exists for the energy: E[n| > Eggs, where Egg is the exact ground
state energy of the system. The ground state energy is obtained with the exact ground
state density, i.e. E[ngs(7)] = Egs.

This variational principle can be used constructively if one decomposes the functional E[n] as
suggested by Kohn and Sham [6]:

Ble) = Tl + [ drn(r) (Valr) + 3007 ) + Bl 0

where Ty[n] is the kinetic energy of non-interacting electrons with the density n(7"), ¢(") is the
classical Coulomb potential of the electrons, i.e. the Hartree potential
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and E,.[n| is the exchange-correlation energy. The variational principle then yields
0En 0T OE,.[n
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where the Lagrange parameter (chemical potential) p is used to guarantee the condition of
constant number of electrons: [ dr n(# ) = 2M (M is the number of occupied states for
non-spinpolarized problems).

Equation (3) is valid for the system of electrons, including all Coulomb interactions. Suppose,
we want to treat a (fictitious) system with non-interacting electrons which move in an effective
potential V. ;;(7"). Then the total energy variation yields

6En]  0Tp
on(r)  on(r)

A solution for this system can easily be obtained by solving the single-particle Schrodinger
equation
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and constructing the electron density from the M wavefunctions with the lowest eigenvalues
(doubly occupied because of spin degeneracy):

M
n(i) =2 Z i (7). (6)

The problems (3) and (4) are identical if one identifies

5Exc [n]
on(r)

Vers(F) = Ve () + ¢(7) + @)
If this condition is fulfilled, e.g., by a selfconsistency cycle, we have mapped the complicated
many-body electron problem exactly to the much easier problem for non-interacting electrons.
All terms of the total energy, eq. (1), can be calculated rather easily except the exchange-
correlation term, F,.[n]. One can show that it is relatively small (at least for atoms and
molecules) [2], and an exact expression can be written down [7, 8]

e? Nge (T, 7 —T7)
E — — — —/ xrc b
weln] ) /d’r’n(r)/dr = (8)
where )
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0

can be interpreted as the “exchange-correlation-hole”. E,.[n] may then be viewed as the
Coulomb interaction of the electrons of density n(7") with the corresponding holes. The func-
tion g(7,7'; \) is the pair-correlation-function of an electron system with density n (7 ) and
Coulomb interaction A@(7). The integral over A in eq. (9) connects the electron correlations in
the physical system with full Coulomb interaction, whose energy one would like to calculate,
and the correlations in the fictitious system without interactions, for which the single-particle
Schrodinger equation can be solved.

2.1 Approximations for the exchange-correlation energy

For practical purposes one has to use suitable approximations for the exchange-correlation term,
E,.[n]. The most commonly applied approximation, the so-called local-density-approximation
(LDA), relates the exchange-correlation energy of a non-uniform system locally to that of a
uniform electron gas with the same density:

xc

%@mz/ﬁwwm%wn (10)

hom

Here €2 [n(7")] is the exchange-correlation energy per particle of a homogeneous electron gas
with the density (7). Quantum-Monte-Carlo results of Ceperley and Alder [9] for the function
e'om[n ()] have been parameterized by Vosko, Wilk, and Nusair [10]. LDA works very well
for systems with extended wavefunctions like bulk metals and semiconductors, but also for
small molecules very reliable results can be obtained as is demonstrated in Fig. 2 for the energy
surfaces of the low-lying electronic states of O3 as a function of binding angle [11]. For O3
the wavefunctions cannot be approximated by a single Slater-determinant. Thus, Hartree-Fock-

calculations yield ground states with the wrong symmetry. On the other hand, LDA-calculations



Ab initio Molecular Dynamics

A7.5

1

XA,

90

%poo (deg)

P S
120

| Fig. 2: Energy surfaces of low-lying electronic states
| with different symmetry for ozone, Os, as a function of
1 angle apoo [11]. The numbers at the calculated points

denote the O-O-binding length for the respective config-

urations.

yield a good description of the electronic ground state with a binding angle o = 120° as well as
of the energy difference to the low lying exited state with ov = 60°.

Recently, more complicated approximations for the exchange-correlation energy have been de-
veloped, the so-called general gradient approximations (GGA) (see e.g. [12, 13]) which take
into account the spatial variation of the electron density by terms depending on the gradient of
the density, Vn(r"). With this approximation, reliable results for the conformation of organic
molecules, both for free molecules in the gas phase as well as for molecules adsorbed at sur-
faces can be obtained. As an example we present in Fig. 3 a comparison of LDA and GGA
calculations for the structure of a free glycinate radical [14]. While the bond lengths are of
similar quality for LDA and GGA, the bond angles improve considerably with the GGA.

Q Pz orbital

pair of
electrons

Bondlengths A

Fig. 3: Conformation of the free gly-
cinate radical COOCHy,N H,, [14].
The sketch on the left shows the
character of the occupied electronic
levels, especially for the carboxyl
group, COO. In the table the
calculated bond lengths for gly-
cinate using LDA and GGA are
compared with experimental val-
ues (from Ref. [15] for glycine
COOHCHy;NH,).

LDA GGA | Exp Bond angles (degree)

C'-C? 1.487 1.456 | 1.520 LDA GGA | Exp
C'-N° 1.428 1.495|1.463 H® - N°-HY 109.2 111.6 | 1125
C?2-0% 1315 1.256 | 1.223 H®-N°-C' 111.8 1149|1138
C?2-0* 1310 1.252 - N° - C!-H" 1109 111.5]111.7
C'-H® 1.148 1.139 | 1.098 N°-C-C? 109.7 111.1|110.6
C'-H" 1.138 1.129 - HS-C'-H" 945 104.8|107.4
N° - H® 1.067 1.067 | 1.000 03-C?2-0* 1175 1183 -
N5 -H® 1.065 1.062 | 1.000
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2.2 Many degrees of freedom

The examples above show that one can indeed obtain reliable results for the conformation and
energy surfaces of complex molecules. But how can we guarantee that we find the most stable
conformation for the system, if the number of degrees of freedom becomes larger and no sym-
metry arguments can be used? Hoare and Mclnnes [16] have correlated the number of (relative)
minima with the number of atoms in a cluster, when the interaction of the atoms can be de-
scribed by a pair-potential of the Lennard-Jones form: V;;(r) = 4 [(2)'2 — (2)%] (r = |7} — 7]
for each pair of atoms (¢, j)). Their result is displayed in Table 1. One can easily imagine that
the number of (relative) minima increases exponentially with the number of degrees of freedom.
Indeed, Wille and Vennik [17] have shown that for N-atom-clusters which interact via pair po-

Table 1: Number of minima in N -atom clusters with Lennard-Jones interaction [16]

9 10 11 12 13

N 6
2 18 57 145 366 988

7 8
LJ min 4 8

tentials there is no algorithm to determine the structure of the ground state, whose CPU-time
demand only grows with a power of N. Such problems are called “NP-complete” by mathe-
maticians, and they are characterized as “intractable” [18]. It is thus impossible to explore all
minima, and it is a challenge to find a method which avoids most minima and yields a path to the
lowest minimum, the ground state, directly. Kirkpatrick et al. [19] have suggested a “simulated
annealing” method based on the principles of the Monte-Carlo method. Car and Parrinello [20]
have pointed out that a combination of Molecular dynamics with DFT at elevated temperatures
can sample a large fraction of the configuration space and filter out the low lying energy minima
by following the dynamic trajectories.

3 The combined MD/DFT-method

In order to treat dynamical processes like atomic vibrations or diffusion of atoms one has to
formulate and solve the equations of motion for the relevant degrees of freedom. Due to the
large atomic mass the motion of the ions can be handled by classical Newtonian dynamics.
Within the Born-Oppenheimer approximation the electronic dynamics can be decoupled from
the atomic motion. However, the ground state energy of the electrons depends on the atomic
configuration, and the forces on the ions are determined by the electron density. In principle,
we thus have to solve the electronic selfconsistency problem for every atomic configuration on
the atomic trajectory to obtain reliable forces [5]. If one uses the electron density determined
selfconsistently for a neighboring configuration to calculate the forces on the ions, one makes an
error which depends on the “distance” of the two configurations. The closer the configurations
the smaller the error. This is indicated in Fig. 4, where the paths to selfconsistency and the
minimal energy surface for two neighboring configurations are plotted. The envelope of all
minimal energy surfaces is the “Born-Oppenheimer surface”, which yields the correct forces on
the ions for all configurations.

Car and Parrinello [20] have suggested to treat electronic and ionic degrees of freedom on
the same footing. They formulated a (fictitious) dynamics for the Kohn-Sham wavefunctions
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Fig. 4: Schematic one-dimensional sketch of
the Born-Oppenheimer surface and paths to
. selfconsistency. Fixing the atomic configura-
4 tion to 1° and calculating the electron den-
sity, nas(7;x°), selfconsistently one reaches
the correct ground state (minimal) energy,
E[Z,n(r; z°)], which contains a point on the
“Born-Oppenheimer surface” for this config-
uration. Then the correct forces on the atoms
can be calculated (F' (2°), bold arrow at z°). If
one uses the same selfconsistent electron den-
Bom-Oppenheimer surface | siry at the point x* one is not on the “Born-
» Oppenheimer surface” anymore. The forces
‘% (open arrow at point x') contain a small er-
< ror. Only if the selfconsistent electron den-
sity at the point x' is calculated, the “Born-
Oppenheimer surface” is reached again and

the correct forces, F(z'), are calculated.

[x; n(r;x 9]

total energy

E[x; n(r;x Y

x1 coordinate x©

{1 (7;)}, which describe the electronic degrees of freedom, and a classical Newtonian dynamics
for the ionic degrees of freedom {R,}. As discussed above, the total energy of the system
E[{¥(73)}, {R.}] is a function(al) of both sets of variables. Using the following Lagrangian

.o 1 52
BUOG (B~ B + X ([ arvi=5,)  an
ij
one obtains the equations of motion

H 772}2‘(7?’ t) = Hw(mf}: "’ Z Alﬂvbj

Mﬁizz—vm([w<n{RH+quRb) (12)

Here we have included the ion-ion Coulomb interaction Ej,, ({ &, }), which in a periodic crystal
is calculated by the Ewald-method.

M,, are the ionic masses and  is a fictitious mass for the electronic degrees of freedom. The
Lagrange parameters A;; are introduced to guarantee the orthonormality of the wavefunctions
(7, t). With these orbitals and the electron density n(7) = S°2 | 2|1b;(7)|* we determine the
energy E[{1(7)}, {R,}], which enters into the Lagrangian £, eq. (11), as a classical potential.
The fictitious Newtonian dynamics of second order for the wavefunctions {t(7;)} with masses
1 < M, has two consequences: (i) The time step for the numerical solution of the equations
of motion, eq. (12), has to be rather small compared to the one used for regular molecular
dynamics. (ii) The transfer of (kinetic) energy between the classical ionic degrees of freedom,
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{R,}, and the quantum mechanical electronic degrees of freedom, {¢(7;)}, is very slow. This
means that one stays close to the Born-Oppenheimer surface once it has been reached, and since
the atomic configuration does not change a lot during one time step, one can proceed for quite
a few time steps without necessity to fully relax the electronic system again.

One can solve the combined systems, eqgs. (12), for the coupled dynamics of electrons and ions
in three ways which we will discuss in the following:

1. Molecular dynamics calculations with the “correct” (LDA) interatomic potential: Here
one really solves the equations of motion (12) and analyzes the dynamical trajectories.
As an example we present the early calculations of Car and Parrinello [21] for amorphous
Si (see section 5).

2. “Simulated annealing” calculations of (LDA) ground state geometries for molecules and
small atomic clusters: In this case the trajectories of atoms and wavefunctions are fol-
lowed at higher temperatures where the phase space can be explored (almost) completely,
since (small) barriers between relative minima can be overcome by thermal motion. By
slowly cooling the ensemble to low temperatures the low lying minima of the total energy,
1.e., the ground state configurations of the clusters can be calculated. As an example we
present calculations [22] for selenium-clusters (Se,,, forn = 3,. .., 8) (see section 6).

3. “Molecular relaxation”: One can solve the electronic problem for a given atomic config-
uration. Using eqs. (3) and (6) for the total electronic energy, E[{¢(7;)}, {R.}] we can
transform the equation of motion for the wavefunction v (7;):

_— oF .
pi(rit) = F+Fortho = — W+Z Nijpi (7, t) = — Hap (7" +Z A (T,
) Y ]

(13)
with the single particle Hamiltonian H from eq. (5), which contains the effective potential
Vers,> €q. (7). Thus for %(F t) = 0, eq. (13) is identical (up to a unitary transformation)
with eq. (5), and the eigenvalues of the Lagrangian multiplier matrix A;; are the eigenval-
ues of the Kohn-Sham equations (5). The condition @/}Z(r t) = 0 is fulfilled, if selfconsis-
tency is obtained, and this defines the Born-Oppenheimer surface for the chosen atomic
configuration. Instead of really solving a time dependent equation, one can use any relax-
ation mechanism to obtain selfconsistency. With the final result for the total energy we
can calculate the forces on the atoms according to the right hand side of eq. (12b). We
then move the atoms to a new configuration by “Quasi-Newton” methods (see below) and
calculate the electronic selfconsistency for each visited configuration. An energy mini-
mum is reached (approximately), if all forces are smaller than a chosen tolerance. We
have used this “molecular relaxation” method to determine the reaction paths of adatoms
on the As-terminated Si(111) surface [3] (see section 7).

In all cases the “forces” on the wavefunctions have to be calculated many times until selfcon-
sistency is reached. We now turn to the discussion of fast numerical algorithms to achieve this
goal.

4 Plane wave pseudopotential calculations

If we are interested in minimal energy atomic configurations, the binding forces are of utmost
importance. Only the electronic states of the outer shells, e.g. the overlapping valence states,
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substantially contribute to the chemical binding. Thus, it is sufficient to represent the distribu-
tion of these valence electrons in the solid with high accuracy.

4.1 Pseudopotentials

The pseudopotential method [23] provides the framework for this purpose. Instead of describing
all oscillations of the true valence wavefunctions due to the orthogonalization to the core states,
one uses smoothed node-less “pseudo”’-wavefunctions inside of a sphere around each ion with
a chosen cut-off distance, r.. By adjusting the potential due to the nuclear charges and the
inner shell electrons in the sphere, i.e. replacing the true potential by a “pseudopotential”’, one
can guarantee that the valence eigenvalues are reproduced by the pseudo-wavefunctions. This
idea is schematically represented in Fig. 5a. For the use of pseudopotentials in the framework

all-electron wave—functior

\

seudo—potential
k- p P Zvallr

vt (e ta.u)

Fig. 5: (a) The concept of pseudopotentials for outer valence electrons. (b) calculated norm-
conserving pseudopotentials for Al for { = 0,1,2, constructed according to the Bachelet-
Hamann-Schliiter-scheme [25].

of DFT Bachelet, Chiang, Hamann and Schliiter [24, 25] have constructed norm-conserving
pseudopotentials for the first time for all elements of the periodic table, and their construction
principle is still in use. One has to generate a pseudopotential for each angular momentum /¢
by solving the Schrodinger equation for an isolated atom with DFT. By fixing the logarithmic
derivative of the pseudo wavefunction for angular momentum ¢ for a given reference energy
(e.g. a valence eigenvalue of an atom) to the correct value, calculated with the true (all electron,
ae) wavefunction,

~ 0lngge(r,€) ~ O0lng)’(r,€)

Lif(rese) = b0, = S

or

one can ensure that the scattering properties of the atom are correctly described for this /-
channel at the reference energy and in an interval around this energy. This criterion is directly
connected to the norm-conservation of the wavefunction which is included in the construc-
tion principle of the pseudopotential. In Fig. 5b such “norm-conserving” pseudopotentials for

|T:7‘C - Lgs(rca 6) ) (14)
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Al for ¢ = 0,1,2 are shown. For each atom the full pseudopotential is a sum over angular
momentum components. Following Kleinman and Bylander [26] one separates a common
(- independent) local potential V}?>(r) and transforms the (-dependent difference potentials
AVPS(r)Py = (VP*(r) — V5(r)) P, (with P, the projector to the /-channel) into a separable

projector form. The total external potential due to the atoms at sites {ﬁn} can then be written
as a sum over all atoms and for each atom over angular momentum components

vas - R,) = Z(V/;i +Z]T’” W1} —m) (15)

n
The smooth pseudo wavefunctions can be expanded in a planewave basis quite efficiently. For
periodic solids the pseudo wavefunctions obey Bloch’s theorem and can be written as a sum
over reciprocal lattice vectors G™:

PP (F) = Z ¢z, (G") exp ( i(k + G F) (16)

If one deals with non-periodic systems (like defects in crystals or surfaces), a periodically re-
peated “supercell” is used, which has to be large enough to avoid interactions between the defect
images. Supercells containing up to a few hundred atoms can nowadays be used with parallel
computers. The k-vectors are restricted to the first Brillouin zone and the G"-vectors are re-
ciprocal lattice vectors of the periodic system. The basis set used in the expansion, eq.(16), is
limited by a cut—off, expressed as the kinetic energy of the plane wave with the largest G-vector:
EC“t = 25731 G?naz

The simple pseudopotential concept cannot be used for electrons of inner shells, since one needs
a very large number of planewaves (E.,; large) to represent the rather localized wavefunctions
of this type. The same is true for atoms which contain valence electrons occupying an ¢-shell
for the first time. Since these functions are not shielded by inner shells, they penetrate deep
into the region of the attractive Coulomb potential of the nucleus. This applies to the atoms
of the second period (B, C, N, O, F) with open 2p-shells, and transition metals (Ti, V, Cr, Mn,
Fe, Co, Ni, Cu, Zn) with open 3d-shells. A generalization of the pseudopotential method has
been developed for these cases, the so-called projector-augmented-wave (PAW) method (see
e.g. Ref. [27]). We will not deal with these complications here, very recent review articles can
be found in the Handbook of Materials Modeling [1], in particular the articles by Car et al. [28]
and Blochl ef al. [29].

With the planewave expansion, eq. (16), the single particle Schrodinger equation (5) for the
pseudo wavefunctions is transformed into a diagonalization problem of a hermitian Hamiltonian
matrix for the determination of the expansion coefficients c,;vy(é"):

> Hi (GG e, (G™) = e, 7, (GM). (17
where H Ey(é”, ij> are the matrix elements of the Hamiltonian for plane wave states. The
dimension of the Hamiltonian matrix for realistic systems (several hundred planewaves per
atom and supercells containing up to several hundred atoms) is immense: N < 100000, and
it is clear that we cannot solve such a problem by conventional methods. We can estimate
the requirements for a direct diagonalization as follows: The memory necessary to keep a
100000 x 100000-matrix is 10000 Mwords, and the number of multiplications for the direct
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diagonalization of such a matrix, e.g. by the Householder method, scales as N3, which is pro-
hibitively large. But, we only need the lowest M (= number of electrons/2) eigenvalues and
eigenvectors, which are occupied in the electronic ground state and establish the ground state
density according to eq. (6). They can be calculated by iterative methods.

4.2 Iterative methods

Iterative diagonalization methods are based on the following property of hermitian N x N
matrices A with a dominant eigenvalue \; and associated eigenvector u; (see e.g. Ref. [30]):
For each starting vector z, which has a non-zero projection to w;, the series {xy}, k > 1, of the
iterated, normalized vectors converges to 4 :

k=0 o ; (Tolu1) # 0
k>1 fk:AZkal;l’k:—%k
12l
k — oo T — Up (18)

In such iteration procedures we never need the full matrix A, but only the product vector A zy.
The special properties of the single particle Hamiltonian H, eq. (5), allow us to calculate this
product vector without ever calculating the N? matrix elements. It turns out that we have
to perform only O(Nlog,N) operations. This becomes clear if one inspects the Hamiltonian
matrix in k-space:

= 5 hGn 2 » . . . . ~ ~ -
Hp (G".G™) = S zm) + Vie(G" = G™) 4+ §(G" = G™) + Voo (G" = G™)
+ > Sk + G Se(k + G™) (19)

V4
with Si(F+G") = dm 3 Yo (@) T(F +G7)
o

where the Yy, (0, 5. )( = —{, ..., +{) are the spherical harmonics for angular momentum /,

depending on the angles of k+ G

This k-space representation of the Hamiltonian can be compared to the real space operator in
eq. (5) with the effective potential from eq. (7) and the external pseudopotential from eq. (15).
The kinetic energy is a differential operator in r-space, and a diagonal matrix in k-space. The
potential terms (local pseudopotential, Hartree potential and LDA exchange correlation poten-
tial) which depend on (é” — ij) are convolution operations in k-space, and they transform
into simple multiplication operators in r-space. The separable (projection operator) parts of the
pseudopotentials are integration operators in r-space, and vector multiplications in k-space.
This means that parts of the Hamilton operators are “quasi-diagonal” in conjugated spaces. An
operator with such properties is called “pseudo-spectral”. When calculating the product vector
'H ¢ in the iterative procedure, we can use each of the terms in the space where it requires the
least effort, e.g the kinetic energy and the separable pseudopotential in k-space, and the local
parts of the potential energy operator in r-space. This can be written symbolically:

HY = (Hpin + VE) g+ (VB + ¢ + Vie) ¥r (20)

Before we can apply the r-space part of the Hamiltonian we have to Fourier transform the wave
functions into r-space, and the resulting products back into k-space, where the two terms of
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eq. (20) are summed up. The wavefunctions are kept in k-space for further iterations. By means
of Fast-Fourier-transform (FFT) we can do the transformations between the conjugated spaces
with an effort of O(Nlog,N) multiplications (see appendix A and Ref. [31]).

Following Davidson [32] and Kosugi [33], the iteration procedure described above for one
eigenvector can be generalized to determine a group of eigenvectors, e.g. the ones with the
lowest M eigenvalues which determine the ground state electron density according to eq. (6).
Typically, M (= number of electrons/2) is a few percent of the number of basis functions, V.
In this method one generates a subspace of dimension Ny, = 2M, which contains the trial
vectors for the wanted eigenvectors. One iterates this subspace by applying the Hamiltonian in
the spirit of eq. (20), and filters out the eigenvectors with the lowest eigenvalues in every step.
During the scheme one has to diagonalize N,;, X N,,-matrices in the subspace, which requires
much less effort than for the full N x N-matrix. In appendix B we give a short account of this
method.

The “pseudo-spectral” properties of the single particle Hamiltonian can also be used to calculate
the “forces” on the wavefunctions in the dynamical approach, governed by eq. (13), which we
repeat here for convenience:

. SE B}
/“Pi("“a t) = E+E,ortho = - W+ZAljw]<r7t> = - le +ZAU¢] (21)
7 Y j

As can be seen, the forces F; are given by the application of the single particle Hamiltonian H
on the wavefunction ;. As shown in eq. (20) this can be performed partly in real space and
in reciprocal space, depending on convenience. Thus, the close analogy between an iteration
step in the diagonalization methods and the force calculation in dynamical methods is obvious.
The orthogonalization forces F; ,.+4, have to be applied, if many eigenfunctions and eigenvalues
should be calculated simultaneously. To approach the point in the A/ x N-dimensional space
of the coefficients c; (G’"), where all ¢; = 0, and where the electronic energy, eq. (1), is
minimal, we can use e{ simple “steepest descent” method, i.e. change the time dependent Fourier
coefficients of the wavefunctions along the forces:

g g L At)?
eGP+ A1) = g, (G0 + (— 5 Hi (GG e (61 +F> L o

J/

F,;,V(@", t)

In spite of the high dimension of the vector space {é“} it turns out that there are no relative
side minima but only one global minimum for the electronic energy as function of the c;; V((j")
Thus, we do not have to fight the difficulties described in Section 2.2. To reach the pbint of
vanishing forces we can use very efficient so-called “quasi-Newton” methods [34, 35] which
are described in Appendix C. In Ref. [34] you can also find a description of the “conjugate
gradient” method which is another well-known alternative to find the extrema of a function(al).

5 Dynamical properties of amorphous Si

Car and Parrinello [21] have first applied the DFT/Molecular Dynamics scheme according to
eqs.(12) to amorphous Si, using the “correct” (LDA-) interatomic potentials. Since amorphous
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materials do not have translation symmetry, one has to use large (periodically repeated) super-
cells to model their behavior. If the supercell is large enough, the artificial periodicity should
not matter. Car and Parrinello have used an fcc supercell with a volume of 1033 A3, containing
54 Si-atoms. This setup allows to study the short range atomic order up to a distance of ~ 6 A
(to be compared to the nearest-neighbor distance in Si-bulk of ~ 2.35 A) without perturbation
by boundary effects. The aim of the study was the calculation of the microscopic structure of
an amorphous glass-like material without empirical parameters.

To represent the electronic wavefunctions a planewave basis-set with £, = 5.5 Ry and one
k-point (E = () was used. This is sufficient because Si has a well-behaved pseudopotential and
the supercell is rather large. The time step to solve the discretized coupled equations of motion,
egs. (12), was At = 1.7 x 107!, one order of magnitude smaller than for usual MD simulations.
Because of the small (fictitious) “electronic” mass, u, the electronic degrees of freedom show a
much faster variation than the ions. After the electronic ground state has been determined for the
starting configuration of the ions (see below), the equations of motion, eqs. (12), were integrated
with the Verlet algorithm [36] (see also contribution by R.G.Winkler). For the electronic part
(in reciprocal space) this reads:

_ _ _ , At)?
cp (GMt+ A = 2e; (G" 1) — e (Gt = At + (Fy (G 1) + Fyune) (G O(A)

(23)
As mentioned above, due to the small fictitious mass, ¢ = 300 a.u., the electronic system de-
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viates from the ground state by a very small energy (a few tenths of eV) over several 1000 time
steps. Thus the dynamics of the 54 Si atoms is realistically modeled for an appreciable time
without forcing the electrons to the ground state (Born-Oppenheimer-surface) by the compli-
cated and time consuming selfconsistency procedure described in Section 4.2. This “energetic
decoupling” is the main advantage of the combined DFT/MD method. With the solution of the
equations of motion the “diagonalization” of the electronic Hamiltonian, the selfconsistency,
and the ionic motion are handled simultaneously.

Car and Parrinello started with a diamond-like structure for the 54 Si atoms, for which the
electronic ground state was determined with the methods discussed in Section 4.2. Then the
system was brought to 7" = 2200K, where it melted. As in classical MD, the temperature is
determined by the average kinetic energy of the ions, which can be controlled by a scaling of
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the velocities (see also H.G.Winkler). Then the temperature was reduced to 300 K by reducing
the kinetic energy during several thousand time steps to obtain an amorphous solid system. At
this temperature the evolution of the system was followed for a total time of t = 2 x 10712 s. To
characterize the structure the time averages of the pair correlation function and of the velocity-
autocorrelation function (equivalent to the phonon density of states) were calculated. In Fig. 6
the results are compared to experiments. The agreement is quite remarkable. This demon-
strates that thermodynamic properties of real materials can be calculated with parameter-free
(“ab 1nitio””) quantum methods.

6 Simulated annealing studies of Se clusters

O

; m
Fig. 7: Time evolution of a Ses cluster
calculated by DFT/MD, starting from
the linear chain shown in (a). The end

configuration (e) is the lowest energy
configuration of Ses,.

Another example of the application of the DFT/MD method is the study of low energy configu-
rations of small atom clusters. In particular, the clusters of (partially) covalently bonding atoms
show a large variety of configurations with very different bonding characteristics, but similar
energies. Selenium is a specific example [22], which forms chains in the stable solid phase.
The simulation for Se,,-clusters (n = 3,...,8) was performed in a supercell with a volume of
1000 A3. A planewave basis-set with one k-point (E = 0) and F,,; = 14 Ry was used. The
fictitious mass was set to i = 1800 a.u., and the time step At = 3.5 x 1071°. In an “arbitrary”
starting geometry the electronic degrees of freedom were relaxed to selfconsistency, i.e., the
system was brought to the Born-Oppenheimer surface. During the time evolution the system
stayed there very accurately. Finite temperatures were used to overcome small energy barriers
between relative minima. It might be interesting to know that for Se; one time step required 1
CPU-s on the CRAY-XMP (with 100 MFLOPS), and ~ 10.000 time steps were needed to come
to the final configuration. To probe different minima of the energy surface the temperature was
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varied and slowly reduced to 7" = 0 (simulated annealing). Depending on n, the Se,, -clusters
showed very different stable structures: Up to n = 4, planar configurations were found to be
most stable. Starting with n =5, three-dimensional structures were obtained. For all structures
the bond lengths and angles are analyzed. Excellent agreement is found for the cluster geome-
tries which have been measured (Seg and Seg). Also, the electronic structure can be analyzed for
the stable configurations, and a good understanding of the electronic distribution for the highest
occupied (HOMO) and lowest unoccupied (LUMO) orbitals is obtained.

Fig. 7 shows a sequence of configurations obtained by following the time evolution of a Se;
cluster by DFT/MD, starting from the linear chain of Fig. 7a. Several side minima were found
(b - d) during the time development, and the final most stable configuration is a closed ring
(three-dimensional) with C's-symmetry.

7 Surfactant mediated growth: Kinetics of adatoms

As a third example we discuss the possible reactions on a semiconductor surface during epi-
taxial growth, and how to calculate the kinetic parameters for adatoms. The design of modern
electronic devices often requires new materials combinations and the control of interfaces down
to the atomic scale. A prominent example is the Ge/Si-system. One would like to combine
the perfection of large Si wafers with the larger electron mobility in Ge. To do this one has
to deposit a defect free Ge film on a Si substrate. This is not an easy task because due to the
larger lattice constant (ag./as; = 1.04) Ge grows on clean Si surfaces in the form of large
three-dimensional islands. However, if a single-atom layer of group-V atoms (As, Sb, Bi) is
placed on top of the Si substrate before the Ge atoms are deposited, one can obtain atomi-
cally flat Ge films. The group-V atom layer (called “surfactant” layer, short for surface active
layer) floats on top of the growing Ge film, and enforces a layer-by-layer growth of Ge on Si.
This means that all deposited Ge(Si) atoms are incorporated under the surfactant layer. The
group-V atoms prevent the complicated reconstruction of the clean group-IV surfaces, and they
lower the surface energy. As shown in Fig. 8 the equilibrium structure of As-covered Si(111)
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Fig. 8: Equilibrium surface structures of surfactant-covered Si(111): (a) with As-coverage the
(1x1)-structure is found, the As atoms constitute the upper layer of the terminating double
layer; (b) with Sb (or Bi)-coverage the ( V3 x\/3)-structure is found, the Sb (Bi) atoms form
T4-centered trimers on top of a Si double layer. Si atoms are represented by light spheres, As,
Sb, Bi atoms by dark spheres.

is the unreconstructed (1x 1) surface whereas the Sb and Bi-covered Si(111) surfaces show a
(v/3 x /3) surface structure instead of the (7 x7)-reconstruction of the clean Si(111) surface.
Due to the extra electron the group-V atoms saturate their valence shell with three bonds. On
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the surface they have an occupied lone pair instead of the energetically costly single electron
dangling bond of the group-IV atoms at the surface (which are saturated by the reconstruction
of clean surfaces).

In addition, the adatom kinetics is changed by the surfactants. The quantitative analysis of ex-
periments [37, 38] reveals the following facts for surfactant-mediated epitaxy: (i) Si homoepi-
taxy proceeds via nucleation of islands on the flat terraces, and the density of nucleated islands
for Si homoepitaxy is much higher with surfactants than without [37]. (i) Ge heteroepitaxy
proceeds with a competition between step flow growth and island nucleation on the flat ter-
races. (iii) The strain due to the 4% lattice mismatch is released by a dislocation network at the
Ge/Si-interface after a Ge film of ~ 10 layers has been grown [38].

The different growth behavior of Si and Ge can be understood on the basis of a different effective
diffusion barrier for the two atom species: For Si adatoms the effective barrier should be larger
with surfactants than without, resulting in a shorter effective diffusion path, which in turn leads
to a high nucleation density of islands. On the contrary, for Ge the effective barrier should be
small. Then the Ge adatoms can reach the (very distant) terrace steps. To substantiate these
ideas and understand the experimental results we have calculated the kinetic parameters for
deposited adatoms (Ge and Si) on As- and Sb-covered Si(111) [3, 39, 40, 41, 42]. Since the
surface with an adatom is not periodic anymore, we have to use a supercell approach. All
calculation were performed in a (3x3) surface supercell. For the plane wave basis we used 4
k-points out of the surface Brillouin-zone and a cut-off F.,; = 13.69 eV. As shown in Fig. 9, we
used iterative methods to obtain minimum energy configurations.

For the surfactant-covered surfaces we have to consider two reaction paths: (i) the adatom
diffusion step on top of the surfactant layer, and (ii) the incorporation step, which brings the
group-IV atoms under the surfactant layer and lifts the surfactant atoms to a new on-top position.

Search for a reaction path

The calculation of a reaction path and the reaction barrier requires to determine the starting
configuration, {ﬁn}o, and the end configuration, {f{n}l, of the path, and the saddle point,
{ﬁn}s , for the reaction. The saddle point is the configuration with the lowest maximal energy
of all possible paths connecting { R, }° and {&,,}!, and the reaction barrier for the reaction from
0 — 1 is the energy difference between starting configuration and saddle point

E(0—1) = Eu({B)®) = Bul{f)"),
with — Ep({Rn}) = El{nas(} AR} + Eion({E0}) (24)

the potential energy of the system. The starting and end configurations are (meta)stable posi-
tions, i.e. (relative) minima of the potential energy contour with respect to the ionic degrees of
freedom. We can determine these minima in the way discussed in Sections 3 and 4. The full
procedure is summarized in the hierarchy of iterative loops depicted in Fig. 9.

Of course, we have to make sure that we find the most significant (lowest) minimum for the
adatom configurations. Since the surfactant covered surfaces still show a high symmetry with
only few special points (see Fig. 8), we can construct possible diffusion paths almost by in-
spection. The actual equilibrium (minimum energy) configuration can then be found by starting
from a few “most asymmetric” configurations in the surface unit cell. If all starting configura-
tions yield the same minimum, we can be pretty sure that we have found the correct one. As
the equilibrium site for Si and Ge adatoms on top of the As-covered Si(111) surface we find the
“H3”-position (in the middle of the hexagon formed by the outer double layer, see Figs. 8 and
la).
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(1) start: choose atomic configuration
(2) start: calculate selfconsistent electron density with DFT methods
by solving the Kohn-Sham equations with quasi-Newton methods
(3) solve eigenvalue problem with Davidson-Kosugi method
(3) end: eigenvalue problem (de < tol.)
(2) end: electron density (dn(r) < tol,) — selfconsistency reached
(1) calculate forces on atoms
and find new atomic configuration with quasi-Newton methods

—

(1) end: atomic configuration (max (F;,) < tolr) — minimum reached

Fig. 9: Flow chart with iteration loops to determine minima of Epo({R,})

The diffusion path is a connection between two equivalent equilibrium configurations in neigh-
boring unit cells. Several configurations on the Si-adatom diffusion-path on As-covered Si(111)
are shown in Fig. 1. When calculating the actual transition path between two minima, we have
to prevent the system from relaxing to the minima at either end of the path. This can be achieved
by introducing the condition (“constraint”), that the system is allowed to vary the configuration
only in a hyperplane perpendicular to the connecting vector between the path terminating min-
ima, e.g. by projecting the forces on the atoms to this plane. Introducing the hypervectors for
the ionic degrees of freedom

coordinates IX) = |Ry,Ry,....Ry),
forces |F) = |F,Fy ... Fy), (25)

we can formulate this constraint as

. . AX|F .
Flyane = 1F) = 22X 175
(AX|AX)

with  |AX) = |X'— X%, (26)

This reduces the 3/N-dimensional configuration space to a (3N — 1)-dimensional hyperplane.
To find the saddle point we have to determine the plane with the energetically highest minimum
under the constraint formulated in eq. (26). Using the projected forces, eq. (26), we can follow
the iteration procedure in Fig. 9 also for the minimization of the (constrained) energy on the
hyperplanes. For the diffusion path the constraint, eq. (26), mostly concerns the moving adatom,
since the surfactant-terminated surface is almost inert and the atoms do not move a lot during
the diffusion jump of the adatom.

We define equidistant points on the straight connection between neighboring H3-positions and
minimize the potential energy on the orthogonal hyperplanes going through these points. The
configuration with the highest minimal energy is an approximation to the saddle point of the
diffusion path. The residual forces perpendicular to the plane give an estimate of the quality of
the approximation. We can improve the quality by applying the same procedure to the interval
between the two points with the two highest minimal energies. To check that the calculated
saddle point is indeed dividing the attraction basins of the two minima, we can back-relax the
system from neighboring configurations without constraint. If it always ends up in one of the
minima, we have indeed found a valid saddle point. As a saddle point for the diffusion of Si and
Ge adatoms on As-terminated Si(111) we find the “T4”-position (adatom above the Si atoms of
the second surface layer, see Fig. 1c). The diffusion activation energies are very similar for Si,
Ge (and also Sn) adatoms, we find Ep = 0.25 eV [40].
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The calculations are much more complicated for the incorporation of the adatoms under the
surfactant layer. In this case, we have to consider a two-atom reaction. The starting configu-
ration for the reaction on the As-covered Si(111) surface again is the H3-adatom configuration
Siuqq(H3). In the final configuration the adatom replaces a surfactant atom which has to move
away. We can determine this final configuration again with unconstrained minimization by
putting the extra Si (or Ge) atom to a substitutional position in the first surface layer, and locate
the replaced As atom in an on-top position in the same surface unit cell. The minimization of
the energy yields indeed an almost ideal substitutional site, Sis,;, for both group-IV atoms and
an adatom bridge-position for the As atom with one bond to the group-IV atom and a second
one to a neighboring As atom (see Fig. 10d). Both Si and Ge atoms gain energy when incor-
porated (however Sn does not!), the binding energies are 0.80 eV and 0.20 eV for Si and Ge,
respectively [40].

But how does the adatom get to the substitutional position, i.e. what is the reaction path? The
first guess is to start from the straight connection path between the H3-position for the Si adatom
(plus substitutional As) and the substitutional Si (plus bridge As-adatom) and apply the energy
minimization with constraints. Here the path is determined by the coordinated motion of two
atoms (Si adatom and replaced As atom), and the projection of the forces, eq. (26), effects
mainly these two atoms. The hyperplane effectively remains a 5-dimensional space (plus small
displacements of the neighboring atoms to adjust bonds), and one can imagine that complica-
tions might arise. Indeed, when we check the approximately calculated saddle point configura-
tion starting from the straight path by back-relaxation without constraints, we find new (relative)
minimum configurations of the potential energy. Thus, we have to apply the search for the sad-
dle points for all possible paths between these minima and find the path with the lowest saddle
points connecting the adatom configuration Si,gq to the substitutional configuration Sig,;. It
turns out that the optimal path goes via four extra minima (see Fig. 11b). The reason is that
on this path the system can avoid to break more than one bond at a time, and thus the energy
barriers are much lower than close to the straight path.

In such complicated energy landscapes it is not easy to guarantee that the path found by the end
points of the minimization on the hyperplanes with the constraints, eq. (26), is continuous. One
has to determine the relevant minima carefully, and use rather closely neighboring hyperplanes,
especially close to the saddle points. Other people try to overcome this problem by the “nudged
band method” [43], which uses an additional constraint by introducing an energy term, which
depends on the distance of the discrete points visited on the path.

Fig. 10: Exchange path of Si-As pair on Si(111):As in perspective view (Si adatom white, As
atoms gray, bulk Si atoms black); (a) on top equilibrium configuration Si,qq-ASsup, (b) Si-As-
dimer parallel to surface (side minimum); (c) saddle point configuration of the Si-As-pair before
full re-bonding has taken place; (d) substitutional equilibrium configuration Sig,,-ASqqq-

In Fig. 10 three-dimensional plots of some configurations encountered on the exchange path
from Si,gq to Sigy, are shown. Although the exchange path is the same for Ge adatoms, the
energies on the path differ substantially, as can be seen in Fig. 12. For Si the highest barrier
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is found in the first section, and E.,(Si) = 0.27 eV is comparable to Ep(Si). However, when
the Ge atom approaches the Si layer, the energy rises above that of the Si adatom. On this
last section of the exchange path the energy for the Ge-As-exchange is shifted upward almost
rigidly by ~ 0.5 eV compared to the Si-As-exchange, nearly the same amount by which the
binding energies of the incorporated atoms differ. For Ge adatoms E.,(Ge) = 0.71 eV is much
larger than Ep(Ge).
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Fig. 11: Topview of the adatom diffusion and exchange paths for group-1V atoms on Si(111):As
[40]. (a) The diffusion path starts at the equilibrium H3-site (small black dots), goes via the
T4 saddle point(medium black dots) and ends at the H3-site in a neighboring cell. As atoms
are large gray dots.- (b) The exchange paths for Si (lower half of figure) and Ge (upper half)
adatoms are very similar. The exchanging pairs visit several minima (open circles, whose sizes
indicate the height above the surface).

The results of the calculations are summarized in the Figs. 11 and 12, and in Table 2. The kinetic
behavior of the adatoms is determined by the competition of on-top diffusion and exchange
reaction, whose temperature dependence is governed by the activation energies listed in Table 2.

Table 2: Energies (in eV; relative to H3 adatom position) for group-1V adatoms on Si(111):As
and Si(111):Sb in different configurations [39, 40]

Si(111):As Si(111):Sb
surface struct (I1x1) (I1x1) V3 x+3
Conf. Si Ge Sn Si Si
Ep 0.25 0.25 0.23 0.21 0.55
E.. 0.27 0.71 0.60 0.20
E.o=—-FEg -080 -020 044 -1.50 —0.80
Ereer 1.07 091 2.10 1.00
Epers 1.07 091 0.21 1.00

For Si the exchange barrier is as small as the diffusion barrier, and from each H3 equilibrium
site the Si adatom can undergo either reaction. Due to the large energy gain for the substitutional
configuration, it will spend most of the time there. The effective diffusion step is thus the re-
exchange step with an activation energy of ~ 1 eV (compared to 0.6 eV on clean S(il11) [37]).
This explains the effective slowing down of the Si adatom diffusion due to the As coverage
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and the high nucleation density during homoepitaxy on Si(111):As. On the contrary, for Ge
the exchange barrier is much larger than the diffusion barrier. One can estimate, that at typical
growth temperatures (T~ 500 °C) a Ge adatom on the average makes about 500 jumps before it
is incorporated (and even more at lower temperatures). Thus it has a good chance to visit terrace
steps, where it also can be incorporated. This explains the experimentally found mixed growth
mode for Ge on Si(111):As by step flow and island nucleation. A similar argument holds for
Sb-covered Si(111).
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Fig. 12: Energy (relative to H3 position of adatoms)
along the diffusion path (to the left of H3) and along
. the exchange path to the substitutional position (to the
] “h3 Sl\//ll dlm‘ér right). Compared are the energies for Si (dashed line)
i and Ge (full line) on Si(111) at as; [40]. The in-
1 é@ @@ Ge,, sets show configurations for important minima: H3:
] adatom equilibrium; dimer: Si(Ge)-As-dimer on top
of As-layer; Si(Ge)sup: substitutional Si(Ge) and As
adatom (Si-bulk black, As gray, adatom white).
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In Table 2 we have included results for diffusion of Si on Si(111):Sb [39]. The different values
found for the diffusion and exchange barriers on the different surface structures ((1x1) and
(v/3 x v/3)) help to understand that during homoepitaxial growth on Si(111):Sb islands with
both types of surface structures are found [39, 41].

Appendices

A Fast Fourier Transform

Fast-Fourier-Transform [31] finds applications in many numerical procedures, e.g. solving lin-
ear differential equations. In principle, it was already familiar to C.F. Gauss, but has not
been used extensively up to 1965, since for one-dimensional transforms with N = 12, 24,
or 36 planewaves it does not have big advantages. But with the onset of broad use of high-
performance computers, FFT was re-discovered by Cooley and Tukey, and has revolutionized
the numerical world. Today, vectorized and parallel FFT program packages can be found in
every good on-line computer library.

How many multiplications are needed for the discrete Fourier transform of N data points f;?

N-1 N-1
F. = Z e2mik/N fj _ Z Wk fj (27)
j=0 =0

At first sight it seems to be O(N?) as for each matrix multiplication. But, if N can be factorized
as a product of natural numbers, this is not so! As an example we will demonstrate this for
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N = 2!. Then F}, can be written as a sum of two Fourier transforms of length N/2, one with
the even-indexed points and one with the odd indexes:

N-1
Fp o= ) &Ny
§=0
Nj2—1 N/2-1
_ Z o2mik(25) /N f2j+ Z e2mik(25+1)/N f2j+1
j=0 7=
N/2-1 N2
_ Z o2miki/(N/2) f2j+Wk,1 Z e2miki/(N/2) ijH
j=0 7=

= FJ+Wr F (28)

One thus has reduced the N-point Fourier transform to two (/N/2)-point transforms (and a
multiplication). This reduction can be used recursively for each of the terms of eq. (28) until
one ends up with transformations of length unity (the identity). With every further reduction the
number of terms doubles and an additional multiplication has to be done. Finally, one arrives
at an effort of Nlog, N multiplications. We leave the proof (e.g. by induction) to the reader.
The difference between Nlog, N and N? multiplications is immense for large numbers: for
N = 10° we find 108 vs. 10'? multiplications, which translates to a fraction of a second vs. an
hour of CPU-time on a fast processor!

B Davidson Kosugi method

Davidson and Kosugi [32, 33] have suggested an iterative procedure to determine a group of
eigenvalues and the corresponding eigenvectors of a real symmetric matrix A simultaneously.
It can also be applied to hermitian matrices like the Hamiltonian matrix, eq. (19). The method
is basically the Ritz iteration method to correct trial vectors simultaneously using correction
vectors in a subspace of fixed dimension N,;,. We describe the method used to determine the
M lowest eigenvalues:

1. Inmitialization (m = 0) of Ny, vectors:

(a) Choose M vectors and eigenvalues {|@/)l[,0]>, el ]}, (v =1, M) as starting vectors; e.g.

the eigenvectors corresponding to the lowest eigenvalues of a submatrix Ag of A
with dimension > N, calculated by diagonalization.

2. Iterations, (m > 0)

(a) calculate the residues: | R[1),])™ = (A — ™))y

(b) |R[¢,])™|| < §: convergence reached, leave iteration cycle, go to (3).

(c) Condition the residue vectors with a suitable diagonal matrix D, e.g. the diagonal
elements of A: [y ™) = m | R, ))m

(d) Orthonormalize [{™), [<”™™), and N,,;, — 2M unit vectors. These vectors define
the basis vectors |e ), (o« = 1, Ng,;) for the mth iteration of the subspace.
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(e) Diagonalize {e¢’|A]e®). The eigenvectors corresponding to the M lowest eigenval-

ues are the starting vectors for the next iteration step: {w[ym+1], e H}}, (v=1,M).
Go to (a).

3. Orthonormalization. After convergence orthonormalize the converged wavefunctions:
<wl/7 w,u> = 61/;“ (V, o= 1, M)

During the iteration the basis vectors of the subspace are adjusted in every step by adding
orthogonal correction vectors to the ones corresponding to the lowest eigenvalues. In this way
the full /N-dimensional vector space is sampled successively by “rotating” the subspace.

C Quasi-Newton methods

“Quasi”’-Newton methods are used for minimization or optimization problems when the Hessian
matrix of second derivatives of the energy function cannot be used (e.g. because it would be too
costly to calculate it). Then one has to find a way to iterate the Hessian matrix along the path
sampled by just using the calculated values of the energy function and its first derivatives. An
account of quasi-Newton methods and the possible ways to iterate the Hessian can be found
in Numerical Recipes [34] and more explicit in Computational Methods for Optimization [35].
Here we will just give a short description of the ideas behind the quasi-Newton methods.

We first shortly repeat the regular Newton-Raphson scheme. Suppose one can expand the energy
function E[Z] where Z is a vector with many components & = (1, xs, ..., 2y) around a point
Z (™) (close to the minimum Z*) to second order:

— —(m _»m — —(m 1 — —(m m)| = —(m
BlE = B - () - 50) + LE - | - 500 29)
, . 32 my  O°E
with f( ) = —gb(m) and H™ = 572 |z m)

To estimate the minimum we use the condition that the first derivative of the energy has to be
zero. This yields a next estimate & of the minimum point.

oFE S
5= - 0= —|f™) + H™ |z — ™M)
7 = [F) 4+ (H) | Fo) (30)

Of course, eq. (30) yields the correct minimum only if the starting point is so close to the min-
imum, that the derivatives of the energy function at Z (™) are exactly the ones at 7*, especially
H™ = H*. (In principle, this is true if we expand around the minimum). Otherwise, we could
proceed with an iteration by expanding the energy at point Z ™+ = #, and so on.

For each iteration step we have to make sure that the energy decreases, which means that the
Hessian matrix has to be positive-definite. If we start far from a minimum, this cannot be en-
sured for the actual second derivative matrix of the energy function. Thus it would be desirable
to find a way to construct approximations to the Hessian with the required positive definiteness.
Close to the minimum the updating formula should approach the true Hessian and we thus can
enjoy the quadratic convergence of the Newton-Raphson scheme. In addition, in many cases
the Hessian matrix cannot be calculated explicitly because the CPU and/or the memory require-
ments are too high. Then one has to iterate the Hessian by only using the information on the
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energy function and its first derivative at the points visited. This explains the name “quasi”-
Newton methods because we do not use the actual Hessian calculated from the energy function
to find the next iteration point, but an updated approximation of it. Such a procedure can be
established in the following way: Suppose we write down eq. (30) for two consecutive iteration
points, Z (™ and Z™*1 assuming that we have found the correct Hessian H* already, and then
subtract the two equations. This yields

We now require that the new update of the Hessian matrix, (H™ ™) ! (calculated after point
#(m+1) has been visited) obeys eq. (31), and can be written as a correction to the previous
approximation (H(m)) !, One also has to avoid storing N2 elements for the Hessian, and thus a
correction in the form of a dyadic (or “outer” or “direct”) product of two vectors (which requires
to store O(N) elements for each iteration step) would be most convenient:

(H(m-i-l))il _ (H(m))fl + ng |Q—[’§m+1)> ® <ﬁ’§m+1)| (32)
k

There are several ways to construct the update vectors @™t and the weights g;, from the
difference vectors AZ M+ = g(m+1) _ g(m) gnd A fm+1) — f(m+1) _ f(m) They are named
after the authors. The most commonly used ones are due to Davidon-Fletcher-Powell (DFP)
and Broyden-Fletcher-Goldfarb-Shanno (BFGS). The DFP updating formula reads

_1 N |Af(m+1)> ® <Af(m+1)|
<Af(m+1)‘Af(m+1)>

DFP:  (H™)™ = (H™)

- — 1 = ) (33)
(A f(m+1)] (H(m)) A f (m+1))
whereas the BEGS updating can be written as
BFGS: (HD) T = (=)
= (m+1) = (m-+1) A Fm+)| (g A Fomt)
L 1AF) @ A ] (A () A
(AZ 40| A flontn) (A0 | A o)
AT D) & ((H(m))_l AFm+D)| 4| (H(m))‘l Afm+D)y @ <Af(m+1)’{34)
\

<Af(m+1)| (H(m)) -1 Af(mﬂ))

We leave it to the reader to show that both forms indeed satisfy eq. (31). From eq. (32) one can
see immediately that the approximated Hessian stays symmetric if one starts with a symmetric
form. Usually, one starts with a term proportional to the unit matrix

H)) " =al. (35)

Inserting (35) into eq. (30) one can see that with this form the configuration change is strictly
along the force and the parameter « sets the scale for the change. If no update of the Hessian is
made, this is the “steepest descent” method. In any case, o has to be adjusted for each problem
to get optimal performance of the iteration procedure. For further discussions see Refs. [35, 34].
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