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1 Introduction

In the previous lectures we have seen that density-functional theory (DFT) is the method of
choice when we are interested in the ground-state properties of a many-electron system. DFT
is based on the Hohenberg-Kohn theorem [1], which states that there is (a) a one-to-one cor-
respondence between the ground-state density n0(r) and the external potential as well as (b) a
variational principle for the energy functional E[n0] ≤ E[n]. The second statement allows to
obtain the ground state of a many-electron system by variation of its density, a quantity that is
much less complicated than the many-electron wave function Ψ0(r1, ..., rN), where N is the par-
ticle number. The first statement implies that the many-particle Hamiltonian is a functional of
the ground-state density. Since the diagonalization of the Hamiltonian yields the complete exci-
tation spectrum, the excited states can ultimately be regarded as functionals of the ground-state
density as well. However, the Hohenberg-Kohn theorem does not provide us with an explicit
mathematical form. In this lecture we show that excited-state properties can be accessed more
directly with a purpose-built method, the so-called many-body perturbation theory [2, 3]. In-
cidentally, in practice its implementation within the GW approximation [4] for the electronic
self-energy is based on a perturbative evaluation with Kohn-Sham orbitals and can, therefore,
finally be interpreted as the desired density functional.
The solution of the Kohn-Sham equation [5] of DFT yields a whole spectrum of single-particle
states, and one is tempted to identify the corresponding eigenvalues with excitation energies.
Strictly speaking, such an interpretation is wrong: the Kohn-Sham wave functions and eigen-
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Figure 1: Comparison of LDA, GW and experimental band gaps for a variety of materials.
Taken from Ref. [8].
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Figure 2: Schematic illustration of direct and inverse photoelectron spectroscopy. In both
processes the particle number changes. The measured energy difference Ekin−~ω corresponds
to εi = EN

0 − EN−1
i in direct and εi = EN+1

i − EN
0 in inverse photoelectron spectroscopy.

values must be considered as mathematical tools and cannot be endowed with a physical mean-
ing. The only exception is the energy of the highest occupied state, which equals the exact
ionization potential (or chemical potential for metals) [6, 7]. Consequently, while often qual-
itatively correct, the DFT band structure fails to give reliable quantitative values for the band
gaps of insulators and semiconductors, which are often underestimated by as much as 1.0 eV
or more. In the case of Ge the local-density approximation (LDA) of DFT even predicts a
semi-metal with a negative band gap rather than a semiconductor. In this lecture we demon-
strate that the Kohn-Sham eigenvalues can be corrected using Green-function techniques and
the GW approximation for the electronic self-energy. Figure 1 shows a comparison of LDA and
self-energy corrected band gaps with respective experimental values for a variety of materials.
The underestimation within the LDA as well as the improvement by the GW approximation are
evident.

Band gaps are experimentally measured by photoelectron spectroscopy. Figure 2 gives a
schematic illustration. In direct photoelectron spectroscopy a photon with energy ~ω impinges
on the sample and ejects an electron, whose kinetic energy Ekin is subsequently measured. The
binding energy εi of this electron is given by the difference εi = Ekin − ~ω. Actually, we
already simplified the argumentation here, as the formulation “binding energy of an electron”
suggests that the electrons are independent. In reality they are correlated through the Coulomb
interaction, and the ejection of an electron is always a many-body process. In this general sense
εi equals the difference εi = EN

0 −EN−1
i between the total energy EN

0 of the N -particle ground
state ΨN

0 and the energy EN−1
i of the (N − 1)-particle state ΨN−1

i that remains after the emis-
sion. Inverse photoelectron spectroscopy is the complementary process: electrons are injected
into the sample, and the energy of the emitted photon is measured. The number of electrons
in the system thus increases from N to N + 1, and we can identify Ekin − ~ω with the energy
difference εi = EN+1

i − EN
0 of the many-electron systems.
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Figure 3: The electrons in a many-electron system are correlated by the strong Coulomb inter-
action v. The motion of one electron depends on the motion of all other electrons. A nearly-
independent-particle picture can be recovered within the quasiparticle concept. Due to ex-
change and correlation effects a Coulomb hole forms around an electron and behaves together
with it like a single entity, which is called quasiparticle. Quasiparticles interact via a weak
screened interaction W instead of the strong Coulomb interaction.

The fact that the independent-electron picture breaks down due to the strong Coulomb interac-
tion questions single-electron concepts like band structure or Fermi surface. Still, in practice
these work surprisingly well. In fact, we can at least retain a nearly-independent-particle pic-
ture if we consider quasiparticles instead of electrons (or holes). In the case of electron injection
into a sample the repulsive Coulomb interaction creates a Coulomb hole around the additional
electron (see Fig. 3). Analogously, if an electron leaves the system, its Coulomb hole also dis-
appears. Relative to the ground-state N -electron system, the addition (removal) of an electron
in indirect (direct) photoelectron spectroscopy hence creates (annihilates) an ensemble consist-
ing of the bare electron and its oppositely charged Coulomb hole. This ensemble behaves in
many ways like a single particle and is thus called “quasiparticle”. Since the Coulomb hole
reduces the total charge of the quasiparticle, the effective interaction between quasiparticles is
screened and considerably weaker than the bare Coulomb interaction between electrons. In
fact, the screened interaction is sufficiently small so that the quasiparticles can be regarded as
approximately independent, which finally justifies the independent-particle approximation and
explains the success of mean-field theories.
A theoretical description of processes involving the ejection or injection of electrons requires
a framework that links the N -particle with the (N ± 1)-particle systems. For this purpose
we employ many-body perturbation theory. The central variable is the time-ordered Green
function G(rt, r′t′). As we will see, it contains the excitation energies εi and even the excitation
lifetimes. Besides, we can directly obtain the ground-state electron density, the expectation
values of one-particle operators and the ground-state total energy from it. The Green function
is hence capable of giving access to the same observables as the ground-state electron density.
In contrast to the DFT expression E [n], the functional E [G] is even known exactly [2]. While
the Green function contains much more information than the electron density, it is also a more
complicated function and thus rarely applied to ground-state properties. In the present lecture
we will, therefore, concentrate on the calculation of excited states.
Section 2 lays the theoretical foundations of the method. More complicated derivations are
deferred to the appendix. The GW approximation is discussed in Section 3.1, and some aspects
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of its numerical implementation are given in Section 3.2. As an illustration, Section 3.3 presents
a number of selected applications. Section 4 contains the summary.

2 Theory

2.1 Green function

In this section we introduce the time-ordered Green function and examine its properties. We
use the second-quantization formulation of quantum mechanics [2, 3]. For the present purpose
it is sufficient to know that this formalism involves field operators ψ̂(r) and ψ̂†(r) that describe
the annihilation and the creation of an electron at the position r, respectively. We will not take
spin dependence explicitly into account. If necessary, the spin quantum number can simply be
added to the formulas by considering it to be part of the spatial coordinate r.
The Green function Ge(rt, r′t′) is defined such that i~Ge(rt, r′t′) is the probability amplitude for
the propagation of an additional electron from (r′, t′) to (r, t) in a many-electron system with the
Hamiltonian (41). This process brings the system from the N -electron ground state

∣∣ΨN
0 (t′)

〉
to

a final state ψ̂(r)U(t, t′)ψ̂†(r′)
∣∣ΨN

0 (t′)
〉
. The final state is constructed by the successive action

of the electron creation operator ψ̂†(r′), the evolution operator Û(t, t′) = exp[−iĤ(t − t′)/~],
which takes the system from t′ to a later time t > t′, and the electron annihilation operator ψ̂(r)
on the N -electron ground state. As the probability amplitude is given by the overlap of the final
state with

∣∣ΨN
0 (t)

〉
, the Green function becomes

Ge(rt, r′t′) = − i

~

〈
ΨN

0 (t)
∣∣∣ψ̂(r)Û(t, t′)ψ̂†(r′)

∣∣∣ ΨN
0 (t′)

〉
θ(t− t′)

= − i

~

〈
ΨN

0

∣∣∣ψ̂(rt)ψ̂†(r′t′)
∣∣∣ ΨN

0

〉
θ(t− t′) , (1)

where θ(t− t′) is the Heaviside step function defined by

θ(t− t′) =

{
1 if t > t′ ,
0 if t < t′ .

(2)

For the last equality in (1) we changed from the Schrödinger to the Heisenberg picture, where
the expression is particularly simple. States and operators in the two pictures are related by

|ΨH〉 = Û(0, t) |ΨS(t)〉 and ÂH(t) = Û(0, t)ÂSÛ(t, 0) . (3)

In the following we always omit the indices S and H. Similarly, we have the Green function

Gh(r′t′, rt) = − i

~

〈
ΨN

0

∣∣∣ψ̂†(r′t′)ψ̂(rt)
∣∣∣ ΨN

0

〉
θ(t′ − t) (4)

for the propagation of an additional hole from (r, t) to (r′, t′). As a matter of convenience, we
combine the two expressions in one time-ordered Green function

G(rt, r′t′) = Ge(rt, r′t′)−Gh(r′t′, rt) = − i

~

〈
ΨN

0

∣∣∣T̂
[
ψ̂(rt)ψ̂†(r′t′)

]∣∣∣ ΨN
0

〉
, (5)
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where we used the time-ordering operator T̂ , which rearranges a series of field operators in
order of ascending time arguments from right to left with a factor (−1) for each pair permuta-
tion. Depending on the time order, Eq. (5) describes either electron (t > t′) or hole (t < t′)
propagation. The electron density n(r) can be expressed in terms of the Green function as

n(rt) =
〈
ΨN

0

∣∣∣ψ̂†(rt)ψ̂(rt)
∣∣∣ ΨN

0

〉
= −i~G(rt, rt + η) . (6)

Here and in the following η is an infinitesimal positive number. It serves only to enforce the
correct order of the field operators. Its unit should always be clear from the context; presently
it is an infinitesimal time.
Let us consider the time-ordered Green function G(r, r′; τ) of a stationary system with τ =
t− t′. If we insert the closure relation

∑
i

∣∣ΨN±1
i

〉 〈
ΨN±1

i

∣∣ = 1 between the two field operators
in (5), where

{∣∣ΨN±1
i

〉}
is the complete set of state vectors of the (N ± 1)-particle system,

transform to the Schrödinger picture and use the definitions

ψN−1
i (r) =

〈
ΨN−1

i

∣∣∣ψ̂(r)
∣∣∣ ΨN

0

〉
and ψN+1

i (r) =
〈
ΨN

0

∣∣∣ψ̂(r)
∣∣∣ ΨN+1

i

〉
(7)

together with the excitation energies

εN−1
i = EN

0 − EN−1
i and εN+1

i = EN+1
i − EN

0 , (8)

then we obtain

G(r, r′; τ) = − i

~
∑

i

ψN+1
i (r)ψN+1

i

∗
(r′)e−iεN+1

i τ/~θ(τ)

+
i

~
∑

i

ψN−1
i (r)ψN−1

i

∗
(r′)e−iεN−1

i τ/~θ(−τ) . (9)

The sums run over the ground state and all excited states of the (N − 1)- and (N + 1)-particle
system, respectively. Expression (9) can be interpreted as follows: The state after the addition
of an electron (τ > 0) is represented by a linear combination of excited states

ψ̂†(r′)
∣∣ΨN

0

〉
=

∑
i

ψN+1
i

∗
(r′)

∣∣ΨN+1
i

〉
(10)

that subsequently evolve according to their respective phase factors exp(−iεN+1
i τ/~). The re-

sulting state is then probed at the point r by the projections ψN+1
i (r). The case τ < 0 (hole

propagation) is analogous. Consequently, the Green function indeed contains the complete ex-
citation spectrum of the (N ± 1)-particle system. Fourier transformation of (9) to the frequency
axis using the Fourier transform of the Heaviside step function

θ(ω) =
1

2π

∫ ∞

−∞
θ (τ) eiωτ−η|τ |dτ =

i

2π (ω + iη)
(11)

finally yields the Lehmann representation of the Green function

G(r′, r; ω) =
∑

i

ψN+1
i (r)ψN+1

i

∗
(r)

~ω − εN+1
i + iη

+
∑

i

ψN−1
i (r)ψN+1

i

∗
(r)

~ω − εN−1
i − iη

. (12)
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We observe that the Green function has poles at the true many-particle excitation energies εN±1
i .

These energies correspond to excitations of an (N − 1)-particle and an (N + 1)-particle system
and hence to those processes measured in direct and inverse photoelectron spectroscopy. In the
case of a noninteracting (or mean-field) system the ψN+1

i (r) are simply the unoccupied and the
ψN−1

i (r) the occupied single-particle wave functions, the εN±1
i are the corresponding single-

particle energies. In order not to overload the notation, we will drop the (N ± 1) superscripts
from now on.

2.2 Spectral function
In connection with Eq. (9) we can define the spectral function A(r, r′; ω), i.e., the density of the
excited (or quasiparticle) states that contribute to the electron or hole propagation. In a finite
system this density is a series of delta functions at the excitation energies

A(r, r′; ω) =
∑

i

ψi(r)ψ
∗
i (r

′)δ(~ω − εi) (13)

weighted by the products of the corresponding projections (7). This allows us to rewrite (12) as
an integral over frequencies

G(r, r′; ω) = ~
∫ ∞

−∞

A(r, r′; ω′)
~ω − ~ω′ + sgn(~ω′ − µ) iη

dω′ (14)

with max
(
εN−1
i

) ≤ µ ≤ min
(
εN+1
i

)
. In an infinite system µ corresponds to the chemical

potential. The inequality max
(
εN−1
i

) ≤ min
(
εN+1
i

)
follows from the convexity of the total

energy as a function of the particle number, i.e., EN−1
0 − EN

0 ≥ EN
0 − EN+1

0 : we lose more
energy when removing an electron than we gain by adding one. With the identity

1

x∓ iη
= P

(
1

x

)
± iπδ(x) (15)

in the limit η → 0+, where P(1/x) is the principal value of 1/x, we find that

A(r, r′; ω) = −sgn(~ω − µ)
1

π
Im G(r, r′; ω) . (16)

The closure relation of the functions (7) yields another important property

~
∫ ∞

−∞
A(r, r′; ω)dω =

∑
i

ψi(r)ψ
∗
i (r

′) = δ(r− r′) . (17)

When we change from a finite to an infinite system, the delta functions in A(r, r′; ω) merge and
form a series of smooth peaks with finite line widths instead of sharp resonances (see Fig. 4).
However, if the resulting spectral features are of Lorentzian form, i.e.,

A(r, r′; ω) =
∑

i

ψi(r)ψ
∗
i (r

′)
Γi

(ω − ε̃i/~)2 + Γ2
i

, (18)

where the ε̃i are the peak positions and |Γi| the corresponding peak widths, then we can perform
the integration in (14) analytically and again obtain a discrete sum over i as in Eq. (12), provided
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Figure 4: The excitation peaks of a finite system in the spectral function A(ω) merge into
quasiparticle peaks of finite width in the case of an infinite system. This gives rise to finite
excitation lifetimes determined by the inverse of the peak widths.

that the energies are defined as complex numbers εi = ε̃i + iΓi. Consequently, the form of
the Fourier transform (9) remains unchanged, too. The imaginary component of εi leads to
a damping term exp(−|Γiτ |/~), revealing that the excitation has a finite lifetime of ~ |Γi|−1.
Physically, the de-excitation proceeds via Auger transitions that create electron-hole pairs on
the way. The damping of the particle propagator G may seem surprising, as it suggests that the
particle gradually disappears. However, one must keep in mind that we deal with an infinite
system, i.e., N → ∞, and an additional particle (electron or hole) can “dissipate” into the
Fermi sea. In this sense, one often speaks of finite quasiparticle lifetimes and calls ψi(r) and
εi the quasiparticle wave functions and energies, respectively. The quasiparticle equation (22)
introduced in the next section holds for infinite systems if one uses an analytic continuation of
the self-energy into the complex frequency plane.

2.3 Dyson equation
Appendix A shows that the time-ordered Green function G(r, r′; ω) of the interacting system
obeys an integral equation, the Dyson equation

G(r, r′; ω) = G0(r, r
′; ω) +

∫∫
G0(r, r

′′; ω)Σ(r′′, r′′′; ω)G(r′′′, r′; ω)d3r′′d3r′′′ , (19)

where G0(r, r
′; ω) is the Green function of a mean-field system defined by

ĥ0ϕ
0
i (r) = ε0

i ϕ
0
i (r) (20)

with the single-particle Hamiltonian

ĥ0(r) = − ~
2

2m
∇2 + Vext(r) +

e2

4πε0

∫
n(r′)
|r− r′|d

3r′ . (21)

The quantities Vext(r), m, e and ε0 are defined as in Eq. (41). The Green function G0(r, r
′; ω)

is obtained from Eq. (12) with the wave functions ϕ0
i (r) and energies ε0

i . The nonlocal and
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Figure 5: Illustration of a series of scattering processes using Feynman diagrams. All zigzag
lines representing the instantaneous Coulomb interaction must be drawn horizontally. Arrows
going forward in time represent electron and those going backward in time hole propagators.
The self-energy is the sum of all possible single scattering processes.

frequency-dependent function Σ(r, r′, ω) is the non-Hermitian self-energy operator, which con-
tains all many-body exchange and correlation effects beyond the electrostatic Hartree poten-
tial. This can be more easily seen in a reformulation of the Dyson equation. By inserting the
Lehmann representation (12) into Eq. (19), we find that the wave functions ψi(r) and energies
εi obey the quasiparticle equation

ĥ0(r)ψi(r) +

∫
Σ(r, r′; εi/~)ψi(r

′)d3r′ = εiψi(r) (22)

(see appendix B), which is nonlinear in εi. Although it looks very similar to the one-particle
equations of mean-field approaches like Hartree, Hartree-Fock or DFT, it does not constitute
a mean-field formulation, since the self-energy takes all dynamic many-electron processes into
account. Consequently, the functions ψi(r) and energies εi must not be understood as single-
particle quantities. In fact, they are defined in Eqs. (7) and (8) as properties of the many-electron
system. From the nonlinearity of the quasiparticle equation it follows that the wave functions
ψi(r) are not orthonormal, in contrast to single-particle wave functions. However, they do fulfill
the closure relation (17).
The Dyson equation (19) can be rewritten in the form of a geometric series by subsequently
replacing G on the right-hand side by G0 + G0ΣG, which leads to, symbolically written,

G = G0 + G0ΣG0 + G0ΣG0ΣG0 + G0ΣG0ΣG0ΣG0 + ... . (23)

This is a typical equation of scattering theory, where the different terms of the geometric se-
ries describe single, double, triple, etc., scattering processes, and Σ is the scattering potential.
Such a succession of scattering processes can be illustrated by Feynman diagrams, where G0 is
drawn as a straight arrow and the Coulomb interaction as a zigzag line. According to (23), a
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diagrammatic representation of a multiple scattering process should involve a series of arrows
(G0) divided by single scattering processes (Σ). In the example of Fig. 5 these are the exchange
interaction, the creation of an electron-hole pair (the “bubble” diagram) and finally the creation
of a pair that itself creates another pair. In order to obtain the complete Green function, we have
to sum all multiple scattering processes, of which the one shown in Fig. 5 is merely one exam-
ple. The self-energy is given by the sum of all single scattering processes. The interpretation
in terms of scattering processes allows to construct approximations for Σ by the summation of
diagrams considered essential for the physical behavior of a given electron system. In general,
however, such approximations are rarely convergent, and too many processes turn out to be
quantitatively important. Therefore, we apply a systematic algebraic method instead.

3 Implementation and Applications

3.1 GW approximation
In practice we must use an approximation for the self-energy, such as the GW approximation,
which contains the electron exchange and a large part of the electron correlation. It is formally
derived in Appendix A and has a very simple mathematical form in the time domain

ΣGW (r, r′; τ) = i~G0(r, r
′; τ)W (r, r′; τ + η) . (24)

In order to calculate the self-energy contribution to the quasiparticle energies, we need the
Fourier transform on the frequency axis

ΣGW (r, r′; ω) =
i~
2π

∫ ∞

−∞
G0(r, r

′; ω + ω′)W (r, r′; ω′)eiω′ηdω′ . (25)

The first function on the right-hand side is the Green function of the noninteracting system
defined by (20) and the second function the dynamically screened interaction W (r, r′; ω), which
is related to the bare Coulomb potential v(r, r′) = e2/ (4πε0 |r− r′|) through the inverse of the
dielectric function

W (r, r′; ω) =

∫
ε−1(r, r′′; ω)v(r′′, r′)d3r′′ = v(r, r′) +

∫
nind(r, r

′′; ω)v(r′′, r′)d3r′′ . (26)

The screened interaction W (r, r′; ω) is the effective potential at r′ induced by a quasiparticle
at r: the Coulomb potential of the electron repels other electrons in its neighborhood and thus
gives rise to the formation of an exchange and correlation hole, whose effective positive charge
nind(r, r

′′; ω) screens the bare Coulomb potential v(r, r′) (see Fig. 6). Analogously, an effective
negative charge screens the Coulomb potential of a hole. The screened interaction is consider-
ably weaker than the bare Coulomb interaction. The GW approximation uses the random-phase
approximation (RPA)

ε(r, r′; ω) = δ(r− r′)−
∫

v(r, r′′)P (r′′, r′; ω)d3r′′ , (27)

P (r, r′; τ) = −i~G0(r, r
′; τ)G0(r

′, r;−τ) . (28)

It corresponds to a subset of scattering processes in the many-electron system. Some of the
respective diagrams are just the ones shown in Fig. 5. Using expression (12) for the Green
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Figure 6: The formation of the Coulomb hole around an electron at r screens its Coulomb
potential v(r, r′). This leads to the definition of the screened interaction W (r, r′) that takes into
account the combined potentials of the bare electron and its screening cloud nind. The ensemble
consisting of the electron and its polarization cloud is called “quasiparticle”.

function G0 of the noninteracting system we observe that the Fourier transform of the polariza-
tion function (28) is given by

P (r, r′; ω) =
occ.∑

i

unocc.∑
j

ϕ0
i (r) ϕ0

j
∗
(r)

(
1

~ω + ε0
i − ε0

j + iη
− 1

~ω − ε0
i + ε0

j − iη

)
ϕ0

i
∗
(r′) ϕ0

j (r′)

(29)
in terms of the wave functions ϕ0

i (r) and energies ε0
i .

The well-known Hartree-Fock equations can be recovered from Eq. (22) if we use the energy-
independent self-energy

ΣHF(r, r′) = i~G0(r, r
′;−η)v(r, r′) (30)

(given in the time domain) instead. By comparison with Eq. (24), we see that the GW approxi-
mation constitutes an expansion of the self-energy up to first order in the screened interaction as
opposed to the bare Coulomb interaction in (30). This approximates the exact self-energy con-
siderably better, because W is much smaller than v. Due to the similarity of the two self-energy
expressions, the GW approximation can formally be regarded as a Hartree-Fock approach with
a dynamically screened interaction W instead of the static Coulomb interaction v.

3.2 Numerical implementation

For band-structure calculations it is more efficient to obtain the εi directly from the quasiparticle
equation (22) instead of solving the Dyson integral equation (19) and searching for the poles
of the Green function. Furthermore, it is then possible to exploit the formal similarity to the
Kohn-Sham equation

ĥ0ϕ
KS
i (r) + Vxc(r)ϕ

KS
i (r) = εKS

i ϕKS
i (r) , (31)

where Vxc(r) is the local exchange-correlation potential. In many cases the Kohn-Sham eigen-
values εKS

i already provide a reasonable estimate of the band structure and are in qualitative
agreement with experiment. For systems where the quasiparticle wave functions are known,
one also finds ϕKS

i (r) ≈ ψi(r) [9]. This observation indicates that the self-energy correction
Σ (r, r′; εi/~) − Vxc(r)δ(r − r′) is small and justifies the use of first-order perturbation theory
to obtain approximate energies

εi ≈ εKS
i +

〈
ϕKS

i |Σ (εi/~)− Vxc|ϕKS
i

〉
. (32)
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A solution of this nonlinear equation still requires the knowledge of the frequency dependence
of the self-energy, which is not known in general. Therefore, we use the linear expansion

Σ(r, r′; εi/~) ≈ Σ(r, r′; εKS
i /~) +

εi − εKS
i

~
∂Σ(r, r′; εKS

i /~)
∂ω

, (33)

which leads to
εi ≈ εKS

i + Zi

〈
ϕKS

i

∣∣Σ (
εKS
i /~

)− Vxc

∣∣ϕKS
i

〉
. (34)

The quasiparticle renormalization factor is given by

Zi =

(
1−

〈
ϕKS

i

∣∣∣∣∣
1

~
∂Σ

(
εKS
i /~

)

∂ω

∣∣∣∣∣ϕKS
i

〉)−1

(35)

and equals the quasiparticle weight

Zi =

∫
|ψi(r)|2 d3r < 1. (36)

With the decomposition of W into the bare Coulomb interaction v and the remainder W − v,
the GW self-energy (24) splits into exchange and correlation parts, symbolically written as

ΣGW = i~GKS
0 W = i~GKS

0 v + i~GKS
0 (W − v) = ΣGW

x + ΣGW
c . (37)

Instead of G0 we use the Kohn-Sham Green function GKS
0 . After inserting this decomposition

into Eq. (25), we must evaluate the convolutions

ΣGW
x (r, r′; ω) =

i~
2π

∫ ∞

−∞
GKS

0 (r, r′; ω + ω′)v(r, r′)eiω′ηdω′ , (38a)

ΣGW
c (r, r′; ω) =

i~
2π

∫ ∞

−∞
GKS

0 (r, r′; ω + ω′) [W (r, r′; ω′)− v(r, r′)] dω′ . (38b)

The integral (38a) can be evaluated analytically and leads to the well-known expression for the
Hartree-Fock exchange term

〈
ϕKS

i

∣∣ΣGW
x

∣∣ ϕKS
i

〉
= − e2

4πε0

occ.∑
j

∫
ϕKS

i
∗
(r) ϕKS

j (r) ϕKS
j
∗
(r′) ϕKS

i (r′)

|r− r′| d3r d3r′ . (39)

In general, the second convolution (38b) must be computed numerically. For this purpose the
integration contour is usually deformed to the complex plane, where the analytical continuations
of G0 and W are smoother.
Let the Kohn-Sham wave functions be represented in a basis {ζα(r)}. According to (29) we
can then write the polarization function and all related quantities in terms of products χµ(r) =
ζ∗α(r)ζβ(r) with the composite index µ = (α, β) as

P (r, r′; ω) =
∑
µ,ν

Pµν(ω)χ∗µ(r)χν(r
′) . (40)

The Eqs. (24) to (28) are solved by matrix operations:

1. A self-consistent DFT loop produces the Kohn-Sham wave functions ϕKS
i (r) and energies

εKS
i . At this point we can already evaluate the exchange term (39).
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2. The polarization matrix Pµν(ω) is calculated according to (29).

3. The dielectric matrix is obtained from εµν(ω) = δµν −
∑

γ vµγPγν(ω) and inverted.

4. Next the screened interaction Wµν(ω) =
∑

γ ε−1
µγ (ω)vγν is calculated from a matrix mul-

tiplication of the inverse dielectric function with the Coulomb matrix.

5. The correlation term
〈
ϕKS

i

∣∣ΣGW
c

∣∣ ϕKS
i

〉
is evaluated according to (38b) with a numerical

contour integration on the complex frequency plane.

6. Finally, approximate quasiparticle energies are obtained from (34) and (35).

The computation of the dielectric function, its inversion and the convolution (38b) are very
time-consuming. Therefore, some (especially older) codes approximate the inverse dielectric
function by a so-called plasmon-pole model [10, 11]. These models replace the imaginary com-
ponent of ε−1(ω), which has a peaked structure, by a sum of delta functions at the corresponding
frequencies. This simplification reduces the third step to a single matrix inversion of the static
dielectric function at ω = 0 and makes an analytic evaluation of the frequency integral (38b)
possible.

3.3 Examples
Although Hedin’s seminal article [4] was already published in 1965, it was not before the middle
of the 1980s that the first ab initio calculations for real materials were reported in the literature.
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Figure 7: LDA band structure (dashed lines) of silicon with GW self-energy corrected valence
and conduction bands (solid lines). The GW approximation shifts the corresponding bands up
and down, respectively, but leaves the dispersion essentially unaffected.
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Figure 8: Comparison of LDA (dashed), quasiparticle (solid line) and experimental (crosses)
bands for Na. Taken from Ref. [16].

In spite of several approximations in the numerical treatment, which were necessary because of
the lack of computer power back then, initial results were already very promising. Hybertsen
and Louie [12] as well as Godby et al. [13] showed that the calculated band gap of Si fell
within a margin of about 0.1 eV from the experimental value. Shortly afterwards the same
authors reported band gaps for several other semiconducting materials that turned out to be
equally accurate [14, 15]. After these pioneering studies the GW approximation was applied
to a variety of semiconductors with great success (see, e.g., Fig. 1). The principal effect of
the GW self-energy correction on the band structure of a semiconductor is to rigidly shift the
valence bands up and the conduction bands down, thus opening the band gap. Figure 7 shows
this effect for Si as an example.
Not only the band gaps of semiconductors and insulators are improved by the GW self-energy
correction, but the correlation-induced band narrowing of metals is also correctly described.
The band narrowing reflects the higher effective mass of quasiparticles (the polarization cloud
adds to the electron mass) compared to bare electrons. For this reason, the self-energy is some-
times also referred to as “mass operator”. Figure 8 shows the energy dispersion of Na as an
example [16]. The band narrowing brought about by the GW self-energy correction leads to
nearly perfect agreement with experiment.
The calculated excitation or quasiparticle lifetimes can be directly compared with two-photon
photoemission spectroscopy. This experimental method allows to measure dynamical de-
excitation processes in electronic systems. After a first photon has excited the electron system
(creating a “hot” electron), a second photon probes the quasiparticle density of states like in
ordinary direct photoelectron spectroscopy. The time delay between the two photons can be
tuned such that the system can be observed in different stages of the electronic de-excitation
process. From a series of measurements one can thus deduce the lifetime, which depends on
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E-EF [eV]

Figure 9: De-excitation dynamics measured in time-resolved two-photon photoemission spec-
troscopy (diamonds) and calculated with the GW approximation (solid line). Taken from
Ref. [17].

the excitation energy, i.e., the energy of the first photon. In the example of Ag in Fig. 9 the
theoretical curve τ = ~ |Γ|−1 obtained from the imaginary parts of the quasiparticle energies
(see Sec. 2.2) closely follows the experimental data points [17].

4 Summary
In this lecture we presented the GW approximation for the electronic self-energy, which allows
to calculate excited-state properties like excitation energies and lifetimes. The self-energy de-
scribes scattering processes between electrons and, in principle, contains all exchange and cor-
relation effects beyond the electrostatic Hartree potential. The GW approximation includes a
subset of these scattering processes. Apart from exchange it describes the creation of electron-
hole pairs within the random-phase approximation (RPA) that leads to the formation of po-
larization clouds around the bare particles. The ensemble of an electron or a hole together
with its polarization cloud behaves essentially like a single entity and is called a quasiparticle.
The quasiparticles interact via a screened potential that is considerably weaker than the bare
Coulomb interaction. This makes a perturbative treatment possible. In this respect, the GW
approximation constitutes an expansion of the self-energy up to linear order in the screened in-
teraction. It works well in a large class of systems where the polarization effects covered by the
RPA play the dominant role in electron correlation, such as simple metals and semiconductors.
The GW approximation is by nature a perturbative approach. Actual GW calculations are usu-
ally based on the self-consistent Kohn-Sham wave functions and energies as a starting point.
This method has its limitations in materials where DFT already gives unphysical results. It
breaks down for systems with very strong electronic correlation, which is insufficiently de-
scribed by the available exchange-correlation functionals. The large error in the band gap of
NiO in Fig. 1 is an example. In reality, NiO is a strongly correlated Mott-Hubbard insulator,
whereas it comes out as a semiconductor with a very small band gap (nearly a semi-metal) in
DFT calculations.
The GW method is designed for the analysis of excited states of the (N ± 1)-electron systems.
The treatment of optical absorption processes, where the particle number does not change due
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to the promotion of valence electrons into unoccupied conduction states rather than emission,
requires the simultaneous description of two particles, an electron and a hole, i.e., an exciton.
Consequently, one must describe such a process with a two-particle Green function. In this case
many-body perturbation theory leads to the so-called Bethe-Salpeter equation. Absorption spec-
tra obtained from this equation are indeed very accurate [18]. An alternative is time-dependent
density-functional theory [19], which also gives access to the excited states of an N -electron
system.

Appendices

A Hedin Equations
With the field-operators introduced in Section 2.1 we can rewrite the many-particle Hamiltonian

Ĥ =
∑

i

[
− ~

2

2m
∇2

i + Vext(ri)

]
+

1

2

∑
ij

v(ri, rj) , (41)

where Vext(r) is the potential created by the atomic nuclei, v(r, r′) = e2/ (4πε0 |r− r′|) the
Coulomb interaction, m the electron mass, e the electron charge and ε0 the vacuum dielectric
constant, as

Ĥ =

∫
ψ̂†(r)ĥ(r)ψ̂(r)d3r +

1

2

∫∫
ψ̂†(r)ψ̂†(r′)v(r, r′)ψ̂(r′)ψ̂(r)d3r d3r′ (42)

with the one-particle operator

ĥ(r) = − ~
2

2m
∇2 + Vext(r) . (43)

The expression (42) is just a mathematical reformulation of (41) and should not be mistaken for
the energy expectation value in Hartree theory, although it looks similar.
From the equation of motion for the annihilation operator

i~
∂

∂t
ψ̂(r, t) =

[
ψ̂(r, t), Ĥ

]
−

= ĥ(r)ψ̂(r, t) +

∫
v(r, r′)ψ̂†(r′, t)ψ̂(r′, t)ψ̂(r, t)d3r′ , (44)

which describes the time evolution of a Heisenberg operator in the same way as the Schrödinger
equation describes that of a wave function, we can directly deduce the equation of motion for
the Green function

i~
∂

∂t
G(rt, r′t′) = δ(r− r′)δ(t− t′) + ĥ(r)G(rt, r′t′) (45)

− i

~

∫
v(r, r′′)

〈
ΨN

0

∣∣∣T̂
[
ψ̂†(r′′, t)ψ̂(r′′, t)ψ̂(r, t)ψ̂†(r′, t′)

]∣∣∣ ΨN
0

〉
d3r′′ .

This is not a closed equation, because it involves the two-particle Green function

G(1234) = − 1

~2

〈
ΨN

0

∣∣∣T̂
[
ψ̂(1)ψ̂(2)ψ̂†(4)ψ̂†(3)

]∣∣∣ ΨN
0

〉
. (46)



The GW approximation A5.17

Here and in the following we denote the set of space-time coordinates (r1, t1) with a natural
number 1, etc., and further define

δ(12) = δ(r1 − r2)δ(t1 − t2) , (47)
v(12) = v(r1, r2)δ(t1 − t2) , (48)∫

d1 =

∫
d3r1

∫ ∞

−∞
dt1 , (49)

1+ = (r1, t1 + η) , (50)

where η is an infinitesimal positive time. With the two-particle Green function (46) we can
rewrite (45) as

i~
∂

∂t1
G(12) = δ(12) + ĥ(1)G(12)− i~

∫
v(1+3)G(1323+)d3 . (51)

The additional infinitesimals in 1+ and 3+ make sure that the time order is the same as in (45).
In order to employ the functional-derivative method, we introduce an external potential U(1)
that is again set to zero at the end. Of course, all quantities from now on depend on U(1),
while the equations remain invariant provided that we replace ĥ(1) → ĥ(1)+U(1). We can use
functional differentiation to define a number of useful quantities. The reaction of the density to
changes in the external potential is governed by the linear-response function

R(12) =
δn(1)

δU(2)

∣∣∣∣
U=0

. (52)

The test potential and the Coulomb potential created by the induced charge can be combined
into an effective potential

Ueff(1) = U(1) +

∫∫
v(13)R(32)U(2)d2 d3 , (53)

which is related to U(1) via the inverse dielectric function

ε−1(12) =
δUeff(1)

δU(2)

∣∣∣∣
U=0

= δ(12) +

∫
v(13)R(32)d3 . (54)

With the definition of the polarization function

P (12) =
∂n(1)

∂Ueff(2)

∣∣∣∣
U=0

(55)

and the chain rule for functional derivatives one obtains the geometric series

ε−1(12) = δ(12) +

∫
v(13)P (32)d3 +

∫∫∫
v(13)P (34)v(45)P (52)d3 d4 d5 + ... , (56)

which can easily be inverted to yield

ε(12) = δ(12)−
∫

v(13)P (32)d3 . (57)



A5.18 Christoph Friedrich and Arno Schindlmayr

If we take the Coulomb potential of an electron at 2 as the test potential, we get the screened
potential

W (12) =

∫
ε−1(13)v(32)d3 = v(12) +

∫∫
v(13)P (34)W (42)d3 d4 (58)

as the effective potential at position 1.
After this interlude we can go on with the derivation. For the functional derivative of the Green
function with respect to the test potential we find [4, 20]

δG(12)

δU(3)

∣∣∣∣
U=0

= G(12)G(33+)−G(1323+) . (59)

This allows us to eliminate the two-particle Green function, and the integral in (51) becomes

−i~
∫

v(1+3)G(1323+)d3 = −i~
(∫

v(13)G(33+)d3

)

︸ ︷︷ ︸
V H(1)

G(12) + i~
∫

v(1+3)
δG(12)

δU(3)
d3

= V H(1)G(12) +

∫
Σ(13)G(32)d3 , (60)

where V H(1) is the Hartree potential [cf. Eq. (21)] and

Σ(12) = i~
∫∫

v(1+3)
δG(14)

δU(3)
G−1(42)d3 d4

= −i~
∫∫

v(1+3)G(14)
δG−1(42)

δU(3)
d3 d4

= i~
∫∫

W (1+3)G(14)Γ(42; 3)d3 d4 (61)

the self-energy. For the second identity we used partial integration and for the third the chain
rule for functional derivatives, the definition of the screened interaction (58) and the vertex
function

Γ(12; 3) = − δG−1(12)

δUeff(3)

∣∣∣∣
U=0

. (62)

With the self-energy (61) the equation of motion for the Green function (51) now becomes
[
i~

∂

∂t1
− ĥ0(1)

]
G(12)−

∫
Σ(13)G(32)d3 = δ(12) , (63)

where we incorporated the Hartree potential into the one-particle operator

ĥ0(1) = ĥ(1) + V H(1) . (64)

The delta function on the right-hand side of Eq. (63) demonstrates that G(12) is indeed a Green
function in the mathematical sense. In a noninteracting system the self-energy vanishes, and
(63) becomes [

i~
∂

∂t1
− ĥ0(1)

]
G0(12) = δ(12) . (65)
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Multiplication of Eq. (63) with G0 and Eq. (65) with G from the left followed by integration
yields the Dyson equation

G(12) = G0(12) +

∫∫
G0(13)Σ(34)G(42)d3 d4 . (66)

Finally, Eqs. (65) and (66) allow us to rewrite the vertex function (62) as

Γ(12; 3) = δ(12)δ(13) +
δΣ(12)

δUeff(3)
, (67)

and with the identity

δG(12)

δUeff(3)
=

δ

δUeff(3)

∫∫
G(14)G−1(45)G(52)d4 d5

= 2
δG(12)

δUeff(3)
+

∫∫
G(14)

δG−1(45)

δUeff(3)
G(52)d4 d5 (68)

we obtain

Γ(12; 3) = δ(12)δ(13)−
∫∫∫∫

δΣ(12)

δG(45)
G(56)Γ(67; 3)G(74)d4 d5 d6 d7 (69)

and analogously

P (12) = −i~
δG(11+)

δUeff(2)
= −i~

∫∫
G(13)Γ(34; 2)G(41)d3 d4 . (70)

The Eqs. (58), (66), (61), (69) and (70) constitute Hedin’s set of integro-differential equa-
tions, whose self-consistent solution, in principle, solves the many-electron problem exactly.
Unfortunately, they are not just numerical relations but contain a functional derivative in (69).
Therefore, the Hedin equations cannot be solved self-consistently by computer codes, but they
may be iterated analytically in order to derive useful approximations. In practice we can only
perform one iteration. We start with the Green function G0 of the noninteracting system, which
corresponds to the single-particle Hamiltonian (64). As the corresponding self-energy vanishes
in this case, the set of equations simplifies to

Γ(12; 3) = δ(12)δ(13) , (71)
P (12) = −i~G0(12)G0(21) , (72)

W (12) = v(12) +

∫∫
v(13)P (34)W (42)d3 d4 , (73)

Σ(12) = i~G0(12)W (1+2) , (74)

G(12) = G0(12) +

∫∫
G0(13)Σ(34)G(42)d3 d4 . (75)

The polarization function here corresponds to the bubble diagram of Feynman’s diagrammatic
approach to many-body perturbation theory and leads to the random-phase approximation for
the screened interaction (cf. Fig. 5). The expression for the self-energy in this first iteration
coined the name GW approximation.
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B Quasiparticle Equation
Inserting (12) into the equation of motion for the Green function of a stationary system in the
frequency domain

[
~ω − ĥ0(r)

]
G(r, r′, ω)−

∫
Σ(r, r′′; ω)G(r′′, r′; ω)d3r′′ = δ (r− r′) , (76)

which is equivalent to the Dyson equation, yields

∑
i

ψ∗i (r′)
~ω − εi ∓ iη

{[
~ω − ĥ0 (r)

]
ψi (r)−

∫
Σ (r, r′′; ω) ψi (r

′′) d3r′′
}

= δ (r− r′) . (77)

Now we multiply with (~ω − εj) and take the limit ω → εj/~ on both sides. If we assume that
the system is nondegenerate (i.e., all εi are different), the left-hand side becomes

lim
ω→εj/~

(~ω − εj)
∑

i

ψ∗i (r′)
~ω − εi ∓ iη

{[
~ω − ĥ0 (r)

]
ψi (r)−

∫
Σ (r, r′′; ω) ψi (r

′′) d3r′′
}

= ψ∗j (r′)
{[

εj − ĥ0 (r)
]
ψj (r)−

∫
Σ (r, r′′; εj/~) ψj (r′′) d3r′′

}
, (78)

and the right-hand side becomes

lim
ω→εj/~

(~ω − εj) δ (r− r′) = 0 . (79)

Since ψ∗j (r′) does not vanish for all r′, the expression in the curly brackets must be zero. This
leads directly to the quasiparticle equation

ĥ0 (r) ψj (r) +

∫
Σ (r, r′′; εj/~) ψj (r′′) d3r′′ = εjψj (r) . (80)

It remains valid in the degenerate case, which is seen as follows. We assume that the solution of
Eq. (80) leads to degenerate amplitudes ψj(r) and energies εj . Then we introduce an arbitrary
perturbation φ̂, e.g., an additional external potential in ĥ0(r), that breaks the symmetry in such
a way that the degeneracy is lifted. For this (nondegenerate) case the above proof applies. The
validity of Eq. (80) for the degenerate case is then established by taking the limit φ̂ → 0.
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