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1 Introduction
Density functional theory [1, 2] is an ingenious way of reformulating the many-body problem.
Instead of trying to solve the Schrödinger equation of interacting electrons directly, the problem
is cast in a way such as to make it tractable in an approximate, but in many cases surprisingly
accurate way.
Here we briefly summarize the central equations of the Kohn-Sham method [2] in the general-
ization to spin-densities [3] as it is commonly used today. We seek the ground state energy and
spin densities n↑(r) and n↓(r) of a system of N interacting electrons. In spin-DFT, the total
energy of the interacting system is written as a functional of the spin densities (atomic units are
used throughout)

Ev[n↑, n↓] = Ts[n↑, n↓] +

∫
d3r v(r)n(r) + U [n] + Exc[n↑, n↓] (1)

where

Ts[n↑, n↓] =
∑

σ=↑,↓

Nσ∑
i=1

∫
d3r ϕ∗iσ(r)

(
−∇

2

2

)
ϕiσ(r) (2)

is the kinetic energy functional of non-interacting electrons with spin densities n↑, n↓ and Nσ

is the total number of electrons with spin σ where σ =↑, ↓ is the z-component of spin.

U [n] =
1

2

∫
d3r

∫
d3r′

n(r)n(r′)
|r− r′| (3)

is the classical electrostatic or Hartree energy of the total charge density n(r) = n↑(r) + n↓(r)
and Exc[n↑, n↓] is the so-called exchange-correlation energy functional.
The ground state spin densities of the interacting system may be calculated by self-consistent
solution of the auxiliary single-particle equation

(
−∇

2

2
+ vsσ(r)

)
ϕiσ(r) = εiσϕiσ(r) (4)

where the effective potential is given by

vsσ(r) = v(r) + vH(r) + vxcσ(r) . (5)

Here we have defined the Hartree potential as

vH(r) =

∫
d3r′

n(r′)
|r− r′| (6)

and the exchange-correlation potential

vxcσ(r) =
δExc[n↑, n↓]

δnσ(r)
. (7)

The exchange-correlation functional is the central quantity of density functional theory: al-
though its formal definition has already been given in the original work of Hohenberg and Kohn
[1] and further been clarified in the constrained-search formulation of Levy [4, 5], these are
formal definitions which cannot be used in practice and one needs to resort to approximations.
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Fortunately, it is possible to construct simple approximations which perform, sometimes sur-
prisingly, well. Probably the most widely known approximation is the so called Local Spin
Density Approximation (LDA or LSD), which is based on the model of the uniform electron
gas. Formally, it is defined as

ELSD
xc [n↑, n↓] =

∫
d3r n(r) εunif

xc (n↑(r), n↓(r)) (8)

where εunif
xc (n↑, n↓) is the exchange-correlation energy per electron of the uniform electron gas

with (constant) spin densities n↑ and n↓. This function is known from Quantum Monte Carlo
calculations [6] and several simple parametrizations have been suggested [7–9]. Despite its
simplicity, LSD has proven to be surprisingly accurate and hard to improve upon.
A major breakthrough in the development of more accurate exchange-correlation functionals
came with the advent of so-called “generalized gradient approximations” (GGA’s) which have
the general form

EGGA
xc [n↑, n↓] =

∫
d3r f(n↑, n↓,∇n↑,∇n↓) . (9)

While the input εunif
xc (n↑, n↓) in LSD is unique, the function f in Eq. (9) is not and many forms

have been suggested [10–18]. While the simple LSD approximation proved to be surprisingly
accurate especially in solid state physics, only the advent of the so-called generalized gradient
approximations (GGA’s) with their increased accuracy led to an explosion of applications of
DFT in quantum chemistry.

2 The Optimized Effective Potential Method
Both for LSD and GGA the functional dependence of Exc on the spin densities is known ex-
plicitly. More recently it has been realized that functionals which depend explicitly on the
Kohn-Sham orbitals may also be viewed as density functionals since the orbitals are, through
Eq. (4), functionals of the effective potential vs(r) which itself is a density functional. Of
course, the explicit functional dependence of the orbitals on the density remains unknown and
orbital functionals are often called implicit density functionals.
Although somewhat surprising at first sight, the idea of orbital functionals is already present in
the original Kohn-Sham formalism because the exact form of the kinetic energy Ts[n↑, n↓] of
the non-interacting system (see Eq. (2)) is also given in terms of the Kohn-Sham orbitals.
Orbital-dependent expressions also provide a natural framework for approximations to Exc.
In fact, if one performs a power series expansion of the exact functional Exc in terms of the
interaction strength e2 (where e is the elementary charge) one obtains as leading term in this
series the exact exchange energy. The functional dependence of the latter on the orbitals is
known and reads as

EEXX
x [n↑, n↓] = EEXX

x [{ϕiσ}] = −1

2

∑

σ=↑,↓

Nσ∑

j,k=1

∫
d3r

∫
d3r′

ϕ∗jσ(r)ϕ∗kσ(r′)ϕjσ(r′)ϕkσ(r)

|r− r′|
(10)

which is nothing but the Fock exchange energy but evaluated with Kohn-Sham orbitals.
Once we accept to use an expression for Exc which depends on the Kohn-Sham orbitals, the
main question is how to compute the corresponding exchange-correlation potentials of Eq. (7).
This is achieved with the so-called Optimized Effective Potential (OEP) method which will be
described in the following Sections.
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2.1 Derivation of the OEP integral equation
The way to accomplish this task is to use the implicit dependence of the Kohn-Sham orbitals
on the spin densities. As a first step we rewrite Eq. (7) by using the chain rule for functional
derivatives as

vxcσ(r) =
Nσ∑
j=1

∫
d3r′

(
δExc

δϕjσ(r′)
δϕjσ(r′)
δnσ(r)

+ c.c.

)
. (11)

For simplicity, we assumed here that the exchange-correlation functional is given as an explicit
functional of the occupied Kohn-Sham orbitals only. Then the functional derivative of Exc with
respect to the orbitals can easily be calculated. In order to compute the functional derivative
of the orbitals with respect to the spin density, we now view the orbitals as functional of the
effective potential vsσ(r) and use the chain rule of the functional differentiation once again, i.e.,

vxcσ(r) =
Nσ∑
j=1

∫
d3r′

∫
d3r′′

(
δExc

δϕjσ(r′)
δϕjσ(r′)
δvsσ(r′′)

+ c.c.

)
δvsσ(r′′)
δnσ(r)

(12)

The last functional derivative on the right hand side of this equation may now be identified
with the inverse of the static spin-density response function of the Kohn-Sham system which is
defined as

χsσ(r, r′) =
δnσ(r)

δvsσ(r′)
. (13)

Operating with χsσ on Eq. (12) from the right one obtains

∫
d3r′ vxcσ(r′)χsσ(r′, r) =

Nσ∑
j=1

∫
d3r′

(
δExc

δϕjσ(r′)
δϕjσ(r′)
δvsσ(r)

+ c.c.

)
. (14)

Now all the terms in this equation can be expressed through the Kohn-Sham orbitals and eigen-
values. The functional derivative of the orbitals with respect to the potential can be calculated
exactly from first order perturbation theory and reads

δϕjσ(r′)
δvsσ(r)

= Gs,jσ(r′, r)ϕjσ(r) (15)

where we have defined

Gs,jσ(r, r′) =
∑

k 6=j

ϕkσ(r)ϕ∗kσ(r′)
εjσ − εkσ

. (16)

For simplicity, we have assumed here that the single particle levels are non-degenerate. The
static linear density response function of the Kohn-Sham system may be written as

χsσ(r, r′) =
Nσ∑
j=1

(
ϕ∗jσ(r)Gs,jσ(r, r′)ϕjσ(r′) + c.c.

)
(17)

Substituting (15) and (17) into (14) yields

Nσ∑
j=1

∫
d3r′

(
ϕ∗jσ(r′)

(
vxcσ(r′)− uxc,jσ(r′)

)
Gs,jσ(r′, r)ϕjσ(r) + c.c.

)
= 0 (18)
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where we have defined
uxc,jσ(r′) =

1

ϕ∗jσ(r′)
δExc

δϕjσ(r′)
. (19)

Introducing the so-called orbital shifts [19–21]

ψ∗jσ(r) =

∫
d3r′ϕ∗jσ(r′)

(
vxcσ(r′)− uxc,jσ(r′)

)
Gs,jσ(r′, r) (20)

allows to rewrite Eq. (18) in a very compact way

Nσ∑
j=1

(
ψ∗jσ(r)ϕjσ(r) + c.c.

)
= 0 (21)

which is the standard form of the integral equation of the OEP method.
The name of this equation suggests that the resulting potentials are optimal. In which sense are
they optimal? In SDFT the value of the ground-state total energy corresponds to the minimum
value of the total energy functional. This minimum is obtained only if the exact ground-state
spin densities are inserted. Now the idea of the Kohn-Sham method is that these densities can
be obtained from single-particle orbitals solving single-particle Schrödinger equations. Hence,
in order to produce those single-particle orbitals we need to use a proper local spin dependent
potential which is nothing but the optimized effective potential. Formally, this potential follows
from minimizing the total energy functional [22–25].

2.2 Approximations to the OEP equation
The OEP equations (18) are integral equations to be solved for the exchange-correlation po-
tentials vxcσ(r). Historically, this solution first has been achieved for systems with very high
symmetry [23]. In order to reduce the computational effort, however, simplifying yet accurate
approximations to the full OEP equations have been suggested and will be discussed in this
Section.
We see that an important ingredient of the OEP equations is the Green function of Eq. (16)
which involves a summation over occupied and unoccupied Kohn-Sham orbitals. Sharp and
Horton [22] and later Krieger, Li, and Iafrate (KLI) [26,27] proposed to approximate the Green
function by replacing the energy denominators by a constant value, independent of the particle
indices j and k, i.e.,

GKLI
s,jσ (r, r′) =

1

∆

( ∞∑

k=1

ϕ∗kσ(r)ϕjσ(r′)− ϕ∗jσ(r)ϕjσ(r′)
)

=
1

∆

(
δ(r− r′)− ϕ∗jσ(r)ϕjσ(r′)

)
(22)

Substitution of this expression into Eq. (20) and solving for vKLI
xcσ (r) yields

vKLI
xcσ (r) =

1

2nσ(r)

Nσ∑
j=1

njσ(r)
(
uxc,jσ(r) + vKLI

xc,jσ − uxc,jσ + c.c.
)

(23)

where we have defined
njσ(r) = ϕ∗jσ(r)ϕjσ(r) (24)
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and the constants
vKLI

xc,jσ =

∫
d3r ϕ∗jσ(r)vKLI

xcσ (r)ϕjσ(r) (25)

The constants uxc,jσ are defined in an analogous way as orbital averages of uxc,jσ(r) with respect
to the orbital ϕjσ.
The KLI equation (23) now is an algebraic equation for the potential which only involves the
occupied orbitals and therefore is easier to solve in practical applications than the full OEP
equation (21). It turns out that results obtained within the KLI approximation are often, but not
always, close to those of the full OEP equation.
As we have seen, in the KLI approximation the Kohn-Sham orbital energy differences εjσ−εkσ

are approximated by one and the same constant, irrespective of the sign of different terms. In
a similar spirit, a different approximation known as Common Energy Denominator Approxi-
mation (CEDA) [28] or Localized Hartree-Fock (LHF) [29] approximation has been proposed
which only replaces the energy differences for occupied-unoccupied orbital pairs by a constant
while it retains the energy differences for the occupied-occupied pairs.
Both the KLI as well as the CEDA approximation can easily be implemented within a self-
consistent scheme with essentially the same effort. From the theoretical point of view, CEDA
has the advantage of being invariant under unitary transformations of the occupied orbitals while
KLI is not. From a practical point of view, CEDA and KLI results are often very similar.

2.3 OEP made simple
The orbital shifts ψjσ(r) also play a central role in a iterative scheme to the solution of the full
OEP equation recently suggested by Kümmel and Perdew [20, 21]. We start by noting that the
non-interacting Green function satisfies the following differential equation

(
ĥsσ(r)− εjσ

)
Gs,jσ(r′, r) = − (

δ(r− r′)− ϕ∗jσ(r)ϕjσ(r′)
)

(26)

where ĥsσ(r) is the Kohn-Sham Hamiltonian. Acting with the operator (ĥsσ(r)−εiσ) on Eq. (20)
yields a differential equation which uniquely determines [19] the orbital shifts

(
ĥsσ(r)− εjσ

)
ψ∗jσ(r) = − (vxcσ(r)− uxc,jσ(r)− (vxc,jσ − uxc,jσ)) ϕ∗jσ(r) . (27)

The idea of the scheme is to solve Eq. (27) for the orbital shifts directly in the following way:
for a given approximate solution vxcσ(r) to the OEP equation, compute the right hand side of
Eq. (27) and then solve this equation for the orbital shift ψjσ(r) subject to the orthogonality
constraint ∫

d3r ψ∗jσ(r)ϕjσ(r) = 0 (28)

which follows from the definition (20) by the orthonormality of the Kohn-Sham orbitals. With
the resulting orbital shifts compute the quantity

Sσ(r) =
Nσ∑
j=1

(
ψ∗jσ(r)ϕjσ(r) + c.c.

)
(29)

and then compute a new potential by

vnew
xcσ (r) = vold

xcσ(r) + cSσ(r) (30)
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with some positive constant c. With this new vxcσ, recompute the right hand side of Eq. (27)
and then solve again for a new orbital shift. This is iterated a few times for fixed ϕjσ, ĥs and
εjσ before eventually these quantities are also recomputed during the regular Kohn-Sham self-
consistency cycle. This scheme has been applied successfully [20, 21] to compute the OEP
potential (in exact exchange approximation) not only for highly symmetric systems such as
atoms but also to small sodium clusters where a direct solution of the OEP integral equation
(21) is a much more difficult task.

3 Orbital Functionals for the Exchange-Correlation Energy
As we have seen, the OEP method allows treatment of orbital-dependent functionals in the DFT
framework. In this Section we will discuss some of the orbital functionals which have been
used in the literature.
The exact exchange (EXX) energy functional (10) has been studied extensively in the OEP
context. Decomposing Exc into exchange and correlation, Exc = Ex + Ec, EXX allows one to
treat another component of the total energy (1) exactly and only the correlation energy needs to
be approximated.
If one neglects correlation altogether, the resulting energy functional has exactly the form of the
Hartree-Fock total energy. In the Hartree-Fock scheme, this total energy functional is minimized
with respect to the orbitals leading to the non-local Hartree-Fock potential. In contrast, although
in the OEP method one minimizes the same functional, this minimization is done under the
restriction that the resulting orbitals come from a local potential. As a consequence, evaluating
the Hartree-Fock functional with the Hartree-Fock orbitals, one obtains a lower energy than for
evaluation of the same functional with EXX orbitals. However, the energy difference is very
small in general.
Both Hartree-Fock and EXX theories are free of self-interaction for the occupied orbitals. This
means that the orbital ϕiσ does not “feel” the electrostatic potential formally created by itself
as part of the Hartree potential because this term is exactly cancelled by a corresponding term
in the exchange potential. But it should be noted, that while the Hartree-Fock potential is not
self-interaction free for unoccupied states, the EXX potential is. As a consequence, Hartree-
Fock only leads to few unoccupied bound states. On the other hand, the EXX potential decays
asymptotically as −1/r for finite systems for all orbitals and therefore supports a whole Ryd-
berg series of unoccupied bound states as well as negative ions.
The statement on the asymptotic behaviour needs some clarification. It is generally said that the
EXX potential for finite systems behaves as [23, 26, 30]

lim
r→∞

vEXX
xσ (r) → −1

r
. (31)

Although this statement is true for r far away from the system in most directions, it has been
found [21, 31] that if one approaches the asymptotic region on nodal surfaces of the highest
occupied orbital, the Kohn-Sham exchange potential may actually approach a non-vanishing
constant value.
Unlike the exact exchange functional, explicit density functionals like LDA or GGA typically
are not free of self-interaction, i.e., the exchange-correlation energy does not cancel exactly the
self-interaction contained in the Hartree energy (3). One of the consequences is the incorrect
exponential asymptotic decay of the corresponding exchange-correlation potentials for finite
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systems. Some time ago, Perdew and Zunger [8] suggested to make any approximate Eapprox
xc

self-interaction free by removing the self-interaction explicitly for each orbital, i.e.,

ESIC
xc [n↑, n↓] = Eapprox

xc [n↑, n↓]−
∑

σ=↑,↓

Nσ∑
j=1

(
U [njσ] + Eapprox

xc [njσ, 0]
)

(32)

where the njσ(r) are the orbital densities defined by Eq. (24). In the original work [8], the corre-
sponding total energy functional was minimized with respect to the orbitals, leading to orbital-
dependent effective single-particle potentials. However, the resulting functional certainly has
an orbital-dependent expression and may therefore be treated with the OEP formalism [32].
An additional advantage of orbital dependent functionals over standard explicit density func-
tionals like LDA or GGA is that they also may reproduce the derivative discontinuity ∆xc of
the exchange correlation functional as a function of particle number which occurs at integer
particle number N [33–35]. For infinite systems this discontinuity enters into the expression for
the so-called fundamental energy gap.
Two other classes of orbital functionals are also discussed in the literature. One of them are the
so-called hybrid functionals which are constructed by approximating the exchange energy by a
fraction of exact exchange plus some GGA part for the remainder, i.e.,

Ehyb
x [n↑, n↓] = aEEXX

x [n↑, n↓] + (1− a)EGGA
x [n↑, n↓] (33)

where a is a constant parameter. Hybrids have been introduced in quantum chemistry [36–39]
and have been found to yield accurate results for many energetic properties. Hybrid functionals
are implemented in a wide range of quantum chemistry program packages. Interpretation of the
results of these packages, however, requires some care. The reason is that the self-consistency
cycle in many cases does not use the OEP method or any approximation to it to evaluate the
corresponding effective single-particle potentials. Instead, the results are obtained by minimiz-
ing the energy expression with respect to the single-particle orbitals. Due to the appearance of
the Fock term EEXX

x in the energy expression, this leads to non-local effective single-particle
potentials and thus the results are outside the realm of density functional theory.
The second class of functionals we would like to mention here are the so-called meta-GGA’s
[40–42] which are of the general form

EMGGA
xc [n↑, n↓] =

∫
d3r g(n↑, n↓,∇n↑,∇n↓, τ↑, τ↓) (34)

where

τσ(r) =
1

2

Nσ∑
i=1

|∇ϕiσ(r)|2 (35)

is the kinetic energy density of the Kohn-Sham orbitals. It is through their dependence on
τσ, that meta-GGA’s also become orbital functionals, and their exchange-correlation potentials
should be calculated with the OEP method. As in the case of the hybrids, this is not always done.
However, meta-GGA’s have been implemented self-consistently in the LHF approximation to
OEP to calculate magnetic response properties [43].
Orbital functionals constitute a natural framework for the systematic construction of approxi-
mations for the exchange-correlation functional in the spirit of perturbation theory. Görling and
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Levy [44] have suggested a perturbative expansion of the exchange-correlation energy func-
tional in powers of e2

Exc =
∞∑

j=1

e2jE(j)
xc = e2EEXX

x + e4E(2)
c + . . . (36)

where the exact exchange energy constitutes the first-order term. The series (36) has to be un-
derstood as a series expansion of the functional Exc which can be evaluated with any set of
single-particle orbitals. In particular, it usually is evaluated on the Kohn-Sham orbitals which
themselves (through the Kohn-Sham potential vs) also depend on e2. Since the exchange-
correlation potential is computed from Exc as the functional derivative (7), Eq. (36) implies
that also vxc can be written as a power series in e2

vxc(r) =
∞∑

j=1

e2jv(j)
xc (r) = e2vEXX

x (r) + e4v(2)
c (r) + . . . (37)

where the first order term is again the exact exchange contribution.
One of the interesting properties of orbital-dependent correlation energy functionals is their abil-
ity to properly describe long-range van-der-Waals interactions for well-separated subsystems.
Engel et al. [45] have mapped out the binding energy curve of rare gas dimers as a function of
atomic separation using the second order functional E

(2)
c . They found a qualitatively correct de-

scription, however, a full quantitative description apparently requires higher-order correlations
to be taken into account.
Yet another representation of Exc is related to the dynamic linear density response function
of the interacting system of interest. The derivation of this representation requires ideas from
time-dependent density functional theory (TDDFT) [46]. For the fundamental ideas underlying
TDDFT, the interested reader is referred to the review of Ref. [47] and also to the article by
A. Schindlmayr later in this volume. The representation of Exc we are interested in can be
derived by using the fluctuation-dissipation theorem at zero temperature and one obtains

Exc[n] =
1

2

∫ 1

0

dλ

∫
d3r

∫
d3r′

e2

|r− r′|(
− 1

π

∫ ∞

0

dω Im χλ(r, r′, ω)− n(r)δ(r− r′)
)

. (38)

Here we have used the idea of the adiabatic connection method [48–52], i.e., we consider the
interacting response function χλ for a scaled electron-electron interaction λe2/|r− r′|while the
external potential is modified such that the density is fixed for all values of λ.
The time-dependent Kohn-Sham scheme allows to calculate the interacting density response
function as solution of the following integral equation which relates χλ to the response function
χs of the non-interacting Kohn-Sham system [53, 54]:

χλ(r, r′, ω) = χs(r, r
′, ω)

+

∫
d3x

∫
d3y χs(r,x, ω)

(
λe2

|x− y| + fλ
xc(x,y, ω)

)
χλ(y, r′, ω) . (39)

Here, fλ
xc is the so-called exchange-correlation kernel [53, 54] and has to be approximated in

practice. The Kohn-Sham linear density response function χs may be expressed in terms of the
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Fig. 1: Exchange potentials for Ne from various self-consistent exchange-only calculations.
PW91 denotes the GGA of Ref. [17].

static Kohn-Sham orbitals and orbital energies through

χs(r, r
′, ω) =

∑
σ

∑
i,j

(fiσ − fjσ)
ϕ∗iσ(r)ϕjσ(r)ϕ∗jσ(r′)ϕiσ(r′)

ω − (εjσ − εiσ) + iδ
(40)

where fiσ is the occupation number (0 or 1) of the orbital ϕiσ(r) in the Kohn-Sham ground-
state Slater determinant. Insertion of Eqs. (40) and (39) into Eq. (38) represents the exact
exchange-correlation energy as an explicitly orbital-dependent and therefore only implicitly
density-dependent functional.
In a sense, the representation (38) of Exc is much more powerful than the Görling-Levy ex-
pansion. While the latter provides an order-by-order expansion of Exc, the former provides
a prescription for resummation of an infinite power series if for the response function χλ one
inserts a solution of the integral equation (39). The simplest of these resummed functionals
is the so-called random phase approximation (RPA) which results if the exchange-correlation
kernel is set to zero, fRPA

xc ≡ 0. Recently, calculations have been performed in RPA and for
other approximate kernels, both for simple model systems such as jellium slabs [55] but also
for molecules [56, 57].

4 Selection of numerical results
In this Section we review some results obtained with the OEP method for various systems
ranging from atoms and molecules to solids. We concentrate on results obtained with the exact
exchange functional.
For atoms, the difference between HF, KLI and OEP total energies is in general very small.
As expected, the HF total energies are the lowest, and the KLI values are above the OEP ones.
However, at least from the point of view of the total energies, the KLI scheme provides a very
good approximation to the full OEP results. This statement is often true also for other quantities
such as single-particle eigenvalues and potentials [19, 26].
For the exchange potential this is demonstrated in Fig. 1 where we show self-consistent ex-
change potentials for the Ne atom in various approximations. The KLI potential follows the
OEP potential rather closely in most regions of space. The difference is largest in the atomic
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Atom/Ion EXX BLYP PW91 exact

He 0.9180 0.5849 0.5833 0.9037

Be2+ 5.6671 4.8760 4.8701 5.6556

Be 0.3089 0.2009 0.2072 0.3426

C2+ 1.6933 1.4804 1.4856 1.7594

Ne 0.8494 0.4914 0.4942 0.7945

Na+ 1.7959 1.3377 1.3416 1.7410

Table 1: Ionization potentials (in a.u.) from highest occupied Kohn-Sham orbital energies for
different functionals. EXX are results for the exact exchange functional in KLI approximation.
BLYP are results for the GGA for exchange from Ref. [15] combined with the correlation func-
tional of Ref. [16]. PW91 are results for the GGA of Ref. [17]. Values are taken from [19] and
references therein.

inter-shell region where the OEP potentials shows a pronounced hump while in the KLI poten-
tial the hump is less prominent. Since both OEP and KLI potentials are free of self-interaction
they tend to the correct −1/r asymptotic limit. Since LDA and GGA are not self-interaction
free, their potentials incorrectly decay exponentially fast far away from the nucleus.
The self-interaction problem has another consequence as well. Since both LDA and GGA
potentials decay exponentially fast, a neutral atom does not exhibit a Rydberg series of excited
states in these approximations. Also, negative ions are not stable. On the other hand, OEP
and KLI both show a Rydberg series and are also able to support negative ions. Moreover, if
one calculates the ionization potential as the negative eigenvalue of the highest occupied Kohn-
Sham orbital [58] one finds a much better agreement with experiment in OEP than in GGA. This
is illustrated for some atoms and ions in Table 1. It should be noted that the OEP numbers are
exchange-only while the GGA numbers include exchange and correlation. While in OEP the
self-interaction is absent for both occupied and unoccupied orbitals, in Hartree-Fock only the
occupied orbitals are self-interaction free. Therefore the unoccupied orbitals in Hartree-Fock
are usually too high in energy leading to HOMO-LUMO gaps which are too large.
In Section 2.2, in addition to the KLI approximation we also mentioned a slightly modified
approximate scheme for the solution of the OEP equation, the CEDA approximation. Total
energies, single-particle energies and potentials of atoms in CEDA approximation are very close
to both KLI and full OEP results [59].
DFT with orbital functionals has been applied to molecular systems as well. The first results
were obtained with the KLI approximation [60–62]. Later, both CEDA [59] and full OEP results
were reported [21, 63, 64]. For total energies, binding energies and vibrational frequencies the
exchange-only KLI, CEDA, and OEP results again are rather close to each other and also close
to Hartree-Fock values.
For molecular binding energies, exchange-only KLI, CEDA, and OEP results are of rather poor
quality. The errors, which are close to Hartree-Fock errors, are on average more than twice as
large as in LDA and almost an order of magnitude worse than GGA results [64]. This is not
unexpected since the exchange hole has a long-range component in the dissociation limit which
has to be compensated by a corresponding long-range component of the correlation hole. Cor-
relation functionals with this property are notoriously difficult to construct [65]. Combination
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α H4 H6 H8 H12 H18

HF 32.0 56.4 82.3 137.6 222.3

OEP 32.2 56.6 84.2 138.1

CEDA 59.3 149.4 244.2

KLI 33.1 60.2 90.6 156.3 260.7

Table 2: Linear polarizabilities α (in a.u.) for different hydrogen chains in various exchange-
only treatments. Values from Ref. [59] and Ref. [66]

of the exact exchange energy with LDA or GGA correlation leads to some improvement, giving
errors for the atomization energies of the same order of magnitude as LDA results (but typically
with the opposite sign). This shows that the success of explicit functionals relies on an error
cancellation between the approximate exchange and correlation parts of the total energy.
Not for all properties are KLI, CEDA and OEP results so similar as for total energies and related
quantities. Quite large differences emerge [59] for linear and non-linear response properties of
molecular chains where the high mobility of the valence electrons along the backbone leads to
a large directional electronic response. The response properties of these molecular chains can
be characterized by the linear polarizabilities α and the hyperpolarizabilities γ, defined as the
first and third derivatives, ∂µz/∂Ez and ∂3µz/∂

3Ez, of the dipole moment µz with respect to
the electric field Ez along the direction of the chain, respectively.
In LDA and GGA α and γ are usually overestimated by orders of magnitude in comparison to
Hartree-Fock results which are in reasonable agreement with results obtained from correlated
quantum chemical methods [59, 66]. As can be seen in Tables 2 and 3, for KLI and CEDA
the deviations are not orders of magnitude but can still be quite large. The improvement com-
pared to standard functionals is due to the orbital structure of the CEDA and KLI exchange
potentials which produces an exchange field counteracting the external field. Moreover, there
are pronounced differences between KLI and CEDA results. The latter gives considerable im-
provement as compared to KLI, but in order to reach Hartree-Fock quality a full solution of the
OEP equations is required [66].
A number of successful applications of the exact exchange functional have been reported for
solids. The first application is due to Kotani [67], who treated the exact exchange potential
within the linear muffin-tin-orbital method in the atomic-sphere approximation. Later Görling

γ/103 H4 H6 H8 H12 H18

HF 29.8 147 301.3

OEP 9.3 30 68 144

CEDA 34.7 209.2 468.4

KLI 10.7 36 90 300 778.1

Table 3: Hyperpolarizabilities γ (in a.u.) for different hydrogen chains in various exchange-
only teratments. Values from Ref. [59] and Ref. [66]
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Solid xcLDA EXX+cLDA ∆x Exp.

Si 0.52 1.43 5.84 1.17

C 4.16 5.06 8.70 5.47

GaN (Γ) 1.90 3.46 7.63 3.30

InN (Γ) -0.18 1.40 6.14 1.95

Table 4: Calculated Kohn-Sham and measured (Exp.) energy gap in in semiconductors (in
eV). EXX stands for OEP in pure exact exchange-only. cLDA stands for correlation in LDA
approximation. Values in eV, all taken from [69] and reference there in.

[68] proposed a procedure to solve the OEP equation for a solid exactly in a plane wave basis.
This technique was then applied [69, 70] to several semiconductors.
Lattice constants predicted by exact exchange plus LDA correlation generally agree as well
with experiment as the full LDA ones [70]. On the other hand, bulk moduli are overestimated
and a treatment of correlations beyond LDA is needed [70].
Probably the most interesting result of these calculations are the ones for the band gaps of semi-
conductors. Standard functionals such as LDA or GGA typically give Kohn-Sham band gaps
which are too small, often by a factor of two. This is a manifestation of two main shortcomings
of these functionals: on one hand there is the self-interaction error and on the other hand they
fail to reproduce a finite derivative discontinuity in the exchange-correlation potential.
The exact exchange functional eliminates the self-interaction problem and the corresponding
Kohn-Sham gaps often provide excellent estimates for the experimental gaps, as can be seen in
Table 4. On the other hand, EXX also leads to a derivative discontinuity ∆x which is actually
quite large. If this is included in the calculation of the gap, the agreement is ruined and the gaps
are too large.
Not always are the EXX Kohn-Sham gaps in such a good agreement with experimental gaps
as in semiconductors. In fact, results for noble-gas solids [71] show that the Kohn-Sham gaps
differ from the fundamental band gaps by several eV and reproduce about of 80% of the exper-
imental optical gaps.
As a final application of the OEP formalism to extended systems we mention a very recent
calculation within the non-collinear spin-DFT framework [72] for a magnetically frustrated
monolayer of chromium which shows how intra-atomic non-collinearity may be underestimated
by local functionals.
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[45] E. Engel, A. Höck, and R.M. Dreizler, Phys. Rev. A 61, 032502 (2000).

[46] E. Runge and E.K.U. Gross, Phys. Rev. Lett. 52, 997 (1984).

[47] E.K.U. Gross, J.F. Dobson, and M. Petersilka, in Density Functional Theory II, edited by
R.F. Nalewajski (Springer, Berlin, 1996), vol. 181 of Topics in Current Chemistry, p. 81.

[48] J. Harris and R.O. Jones, J. Phys. F 4, 1170 (1974).

[49] D.C. Langreth and J.P. Perdew, Solid State Commun. 17, 1425 (1975).

[50] D.C. Langreth and J.P. Perdew, Phys. Rev. B 15, 2884 (1977).

[51] O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 13, 4274 (1976).

[52] A. Görling, M. Levy, and J.P. Perdew, Phys. Rev. B 47, 1167 (1993).

[53] E.K.U. Gross and W. Kohn, Adv. Quantum Chem. 21, 255 (1990).



A3.16 Stefano Pittalis and Stefan Kurth

[54] M. Petersilka, U. Gossmann, and E.K.U. Gross, Phys. Rev. Lett. 76, 1212 (1996).

[55] J.F. Dobson, J. Wang, and T. Gould, Phys. Rev. B 66, 081108(R) (2002).

[56] F. Furche, Phys. Rev. B 64, 195120 (2001).

[57] F. Furche and T. V. Voorhis, J. Chem. Phys. 122, 164106 (2005).

[58] C.O. Almbladh and U. von Barth, Phys. Rev. B 31, 3231 (1985).
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[61] Y.-H. Kim, M. Städele, and R.M. Martin, Phys. Rev. A 60, 3633 (1999).
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