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1 Introduction

These lecture notes cover the topics quantum computation and quantum information theory
on an introductory level. We assume that the reader is familiar with the basic concepts of
quantum mechanics (see for instance [8]). Instead of getting lost in details we tried to present
the underlying ideas in a comprehensible manner. The only exception is Grover’s algorithm
which has been described more thoroughly in order to achieve a deeper understanding of the
workflow of a typical quantum algorithm. Suggestions for further readings are given in the
references, of which we particularly recommend [4, 5].

1.1 Why quantum computation?

According to Moore’s law [1] the number of transistors of an integrated circuit, with respect
to minimum component costs, doubles approximately every 18 – 24 months. Up to now, this
exponential growth has not saturated and by simply extrapolating this behavior the space for
storing a single bit of information will scale down to the atomic size around 2020. At that point,
quantum effects will become unavoidably dominant and instead of pushing the silicon-based
transistor to its physical limits it might be more reasonable to exploit the principles of quantum
mechanics in an intrinsic way.
The power of quantum computation is due to typical quantum phenomena, such as the superpo-
sition of quantum states and entanglement. There is an inherent quantum parallelism associated
with the superposition principle. In simple terms, a quantum computer can process a large num-
ber of classical inputs in a single run. On the other hand, this would lead to a large number of
possible outputs. It is the task of quantum algorithms to amplify the desired output by inter-
ference of all states. To be useful, quantum computers require the development of appropriate
quantum algorithms. In specific cases — like the factoring of numbers (Shor’s algorithm ) or
the searching of an unstructured data base (Grover’s algorithm) — a remarkable speedup in
comparison with classical solutions can be achieved. We discuss the most prominent examples
of such algorithms in chapter 3.
Around 1980 Richard Feynman suggested that a quantum computer would be ideal for simu-
lating quantum mechanical systems. Because of the exponentially large Hilbert space of such
systems the simulation on conventional computers is extremely memory consuming.
Last but not least, the unitary evolution in quantum mechanics is reversible, thus there is no
energy dissipation. Therefore, no a priori limitation upon the length scale of devices is given by
power requirements.
A large number of different proposals to build quantum computers exist. They range from cold-
ion traps to nuclear magnetic resonance and quantum-dots on semiconductor basis. Even though
in some cases elementary quantum gates have been implemented and quantum algorithms with
a small number of qubits have been performed, it is too early to say what type of implementation
will be the most suitable to build a scalable piece of quantum hardware. A short overview of
different hardware types is given in chapter 4.

1.2 Complexity classes

Complexity theory addresses the question how difficult it is to solve a given mathematical prob-
lem. Problems are classified according to the increase of time, a classical computer would need
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to solve the task, when increasing its “size”. For example, the size can be the number of bits
that define the problem.
We say that a problem belongs to the computational class P if it can be solved in polynomial
time, i.e., in a number of steps that is polynomial in the input size. Instead, the computational
class NP is the class of problems whose solution can be verified in polynomial time. It is clear
that P is a subset of NP. Here we find all the problems whose solution can be easily verified and
that are also easy to solve. It is an open problem whether P 6= NP. If this were the case, there
would be problems hard to solve but whose solution could be easily checked. For instance, the
integer factoring problem belongs to the class NP, since it is easy to check if a number m is
a prime factor of an integer N , but no algorithm is known that allows to efficiently compute
the prime factors of N on a classical computer. Therefore, it has been conjectured, though not
proven, that the integer-factoring problem does not belong to the class P.

2 Quantum computation
The elementary unit of quantum information and the basic building block of quantum computa-
tion is the qubit, a two-level quantum system that can be prepared, manipulated, and measured
in a controlled way. A quantum computer can be seen as a collection of n qubits and therefore
its wave function resides in a 2n-dimensional complex Hilbert space. As far as coupling to the
environment may be neglected, its evolution in time is unitary and governed by the Schrödinger
equation.
A quantum computation is composed of three basic steps: preparation of the input state, im-
plementation of the desired unitary transformation acting on this state, and measurement of the
output state. The output of the measurement process is inherently probabilistic and the proba-
bilities of the different possible outputs are set by the basic postulates of quantum mechanics.
Therefore, in a quantum algorithm we must, in general, repeat the algorithm several times to
obtain the correct solution of our problem with probability as close to one as desired. In this
sense, quantum algorithms are analogous to classical probabilistic algorithms. However, the
superposition principle and quantum entanglement open up new possibilities for computation.
Quantum computers are potentially more powerful than classical (deterministic or probabilistic)
computers due to quantum interference and entanglement.

2.1 The qubit
A classical bit is a system that can exist in two distinct states, which are used to represent 0
and 1, that is, a single binary digit. The only possible operations (gates) in such a system are
the identity (0 → 0, 1 → 1) and NOT (0 → 1, 1 → 0). In contrast, a quantum bit (qubit) is
a two-level quantum system, described by a two-dimensional complex Hilbert space. In this
space, one may choose a pair of normalized and mutually orthogonal quantum states,

|0〉 ≡
(

1

0

)
, |1〉 ≡

(
0

1

)
, (1)

to represent the values 0 and 1 of a classical bit. These two states form a computational basis.
From the superposition principle, any state of the qubit may be written as

|ψ〉 = α |0〉+ β |1〉 , (2)
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Fig. 1: The state of a qubit can be represented graphically by a point on the Bloch sphere.

where the amplitudes α and β are complex numbers, constrained by the normalization condition

|α|2 + |β|2 = 1 . (3)

Since state vectors are defined only up to a global phase of no physical significance, one may
choose α real and positive (except for the basis state |1〉, for which α = 0). Thus, the generic
state of a qubit may be written as

|ψ〉 = cos θ
2
|0〉+ eiφ sin θ

2
|1〉 =

(
cos θ

2

eiφ sin θ
2

)
(0 ≤ θ ≤ π, 0 ≤ φ < 2π) . (4)

Therefore, unlike the classical bit, which can only be set equal to 0 or 1, the qubit resides
in a vector space, parameterized by the continuous variables α and β (or θ and φ). Thus, a
continuum of states is allowed. At this stage, one might be tempted to say that a single qubit
could be used to store an infinite amount of information. However there is a catch: to extract
this information we must perform a measurement which gives 0 with chance |α|2 and 1 with
probability |β|2 = 1 − |α|2. Thus, we obtain only a single bit of information. Infinitely many
measurements on identically prepared states are required to obtain α and β.

2.1.1 The Bloch sphere

The Bloch sphere provides a geometric picture of the qubit and of the transformations that
operate on its state: Due to the normalization condition (3), the qubit’s state can be represented
by a point on a sphere of unit radius, called the Bloch sphere. Fig. 1 illustrates such a graphical
representation of a state vector. The angles shown correspond to those denoted in eqn. (4).
For the generic state of a qubit

|ψ〉 = α |0〉+ β |1〉 with α ≥ 0 (5)
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the angles θ and φ can be calculated according to

θ = 2 arccos (α) (6)

φ =





arctan

(
Im( β

|β|)
Re( β

|β|)

)
+





0 Re
(

β
|β|

)
> 0

π Re
(

β
|β|

)
< 0

Im
(

β
|β|

)
π
2

Re
(

β
|β|

)
= 0

. (7)

The condition α ≥ 0 of eqn. (5) can always be fulfilled by extracting a global phase.

2.2 The circuit model of quantum computation
In contrast to classical computers, which are assembled from different functional components
like the CPU, memory and a hard disk drive, a quantum computer may be thought of as a finite
collection of n qubits, a quantum register of size n. Thus, there is no subdivision in CPU and
memory, the qubits are stored in the quantum register and also manipulated there. Hence, the
state of an n-qubit quantum computer can be described by

|ψ〉 =
2n−1∑
i=0

ci |i〉

=
1∑

in−1=0

· · ·
1∑

i1=0

1∑
i0=0

cin−1,...,i1,i0 |in−1〉 ⊗ · · · ⊗ |i1〉 ⊗ |i0〉 , (8)

in which the complex numbers ci obey the normalization condition
2n−1∑
i=0

|ci|2 = 1 . (9)

The wave function |ψ〉 resides in a 2n-dimensional Hilbert space which is constructed as the
tensor product of n 2-dimensional Hilbert spaces, one for each qubit. Thus, the number of basis
states grows exponentially with the number of qubits which limits the simulation of quantum
computers by the memory of the conventional computer used [9].
As an example, we consider a 2-qubit quantum computer described by a generic state

|ψ〉 = c0 |0〉+ c1 |1〉+ c2 |2〉+ c3 |3〉
= c0,0 |0〉 ⊗ |0〉+ c0,1 |0〉 ⊗ |1〉+ c1,0 |1〉 ⊗ |0〉+ c1,1 |1〉 ⊗ |1〉
= c00 |00〉+ c01 |01〉+ c10 |10〉+ c11 |11〉 . (10)

In the last line we have used the shorthand notation |i1i0〉 = |i1〉 ⊗ |i0〉 which allows us to write
the state (8) in a more compact form

|ψ〉 =
1∑

in−1,...,i1,i0=0

cin−1...i1i0 |in−1 . . . i1i0〉 . (11)

While n classical bits can store only a single integer i, the n-qubit quantum register can be pre-
pared also in a superposition of those states. In contrast to classical computers where different
inputs require separate runs, a quantum computer can handle exponentially many inputs in a
single computation.
A quantum computation consists of the following steps:
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1. Preparation of the quantum computer in a well-defined initial state |ψi〉, for instance
|0 . . . 00〉.

2. Manipulation of the wave function in terms of unitary transformations |ψ′〉 = U |ψ〉. The
sequence of unitary transformations corresponds to the quantum program.

3. Measurement of the polarization of each qubit at the end of the algorithm.

The state |ψ〉 of the quantum computer evolves according to the Schrödinger equation. As a
result, the time-evolution is described by a unitary operator. In the following we neglect non-
unitary decoherence effects, due to the undesired coupling of the qubits to the environment,
which is inherent in physical realizations of quantum computers (see chapter 4), and focus on
the ideal quantum computer.
Even though the evolution of an n-qubit wave function is described by a 2n×2n unitary matrix,
it is always possible to decompose this matrix into a product of single- and two-qubit operations.
These are the elementary quantum gates of the circuit model of quantum computation.

2.3 Single-qubit gates
The operations on a qubit must preserve the normalization condition (3) and are thus described
by unitary 2× 2 matrices. In this section, we will introduce the Hadamard and the phase-shift
gates and show that they are sufficient to perform any unitary operation on a single qubit.
The Hadamard gate is defined as

H = 1√
2

(
1 1

1 −1

)
(12)

and we have

H |0〉 = 1√
2
(|0〉+ |1〉) ≡ |+〉

H |1〉 = 1√
2
(|0〉 − |1〉) ≡ |−〉 . (13)

Thus, the computational basis {|0〉 , |1〉} is turned into the superposition states {|+〉 , |−〉}.
We define the phase-shift gate as

Rz(δ) =

(
1 0

0 eiδ

)
(14)

and get

Rz(δ) |0〉 = |0〉
Rz(δ) |1〉 = eiδ |1〉 . (15)

Since global phases are physically unobservable, the states of the computational basis, |0〉 and
|1〉 remain unchanged. However, the action of Rz(δ) on a generic single-qubit state |ψ〉, gives
(cf. eqn. (4))

Rz(δ) |ψ〉 =

(
1 0

0 eiδ

)(
cos θ

2

eiφ sin θ
2

)
=

(
cos θ

2

ei(φ+δ) sin θ
2

)
. (16)

This corresponds to a counterclockwise rotation of |ψ〉 through an angle δ about the z-axis of
the Bloch sphere (see Fig. 1).
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By using only Hadamard and phase-shift gates, we can construct any unitary operation on a
single qubit. To demonstrate this, we show that the generic state (4) can be reached by starting
from |0〉:

Rz(
π
2

+ φ)HRz(θ)H |0〉 = ei θ
2

(
cos θ

2
|0〉+ eiφ sin θ

2
|1〉) (17)

More generally, the operator

Rz(
π
2

+ φ2)HRz(θ2 − θ1)HRz(−π
2
− φ1) (18)

transfers the state parameterized by (θ1, φ1) into the one given by (θ2, φ2).

2.3.1 Rotations of the Bloch sphere

We now consider rotations of the Bloch sphere about the axes of the Cartesian coordinate sys-
tem. First of all, let us define the Pauli matrices σx, σy and σz as

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
. (19)

Since σ2
¤ = 1 for ¤ = x, y, z, we have for k ∈ N

σk
¤ =

{
1 k even
σ¤ k odd

. (20)

Hence, we obtain for the Taylor expansion

e−i δ
2
σ¤ =

[
1 + 1

2!

(
δ
2

)2
+ . . .

]
1− i

[
δ
2

+ 1
3!

(
δ
2

)3
+ . . .

]
σ¤

= cos
(

δ
2

)
1− i sin

(
δ
2

)
σ¤ . (21)

For example by choosing ¤ = z we get

e−i δ
2
σz = cos

(
δ
2

)
1− i sin

(
δ
2

)
σz = e−i δ

2

(
1 0

0 eiδ

)
≡ Rz(δ) , (22)

which corresponds exactly to the phase-shift gate defined in the last section. Geometrically,
Rz(δ) induces a counterclockwise rotation through the angle δ about the z-axis of the Bloch
sphere. This can be seen by applying Rz(δ) to |ψ〉 given by eqn. (4)

Rz(δ) |ψ〉 = cos δ
2
|0〉+ ei(φ+δ) sin δ

2
|1〉 . (23)

Analogously, one can obtain the unitary matrices corresponding to counterclockwise rotations
about the other axes of the Cartesian coordinate system

e−i δ
2
σx =

(
cos δ

2
−i sin δ

2

−i sin δ
2

cos δ
2

)
≡ Rx(δ)

e−i δ
2
σy =

(
cos δ

2
− sin δ

2

sin δ
2

cos δ
2

)
≡ Ry(δ)

e−i δ
2
σz = e−i δ

2

(
1 0

0 eiδ

)
≡ Rz(δ) . (24)
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For those who remember the lectures in quantum mechanics: a rotation about the x-, y- or
z-axis is generated by

G¤ = ~
2
σ¤ (25)

and the rotation operator in counterclockwise direction is given by (cf. for instance [8])

R¤(δ) = e−
i
~G¤δ , (26)

where ¤ stands for x, y or z, respectively. This is in direct agreement with eqn. (24).

2.4 Two-qubit gates
In order to prepare an entangled1 state one needs inter-qubit interactions which can be generated
by 2- or 3-qubit gates. The controlled-NOT gate is the prototypical two-qubit gate that is able
to generate entanglement. Here, the first qubit acts as a control and the second as a target. The
gate flips the state of the target qubit if the control qubit is in the state |1〉 and leaves the target
position unchanged if the control qubit is equal to |0〉. If we denote the basis states as column
vectors

|0〉 = |00〉 =




1

0

0

0


 , |1〉 = |01〉 =




0

1

0

0


 , |2〉 = |10〉 =




0

0

1

0


 , |3〉 = |11〉 =




0

0

0

1


 , (27)

we have the following matrix representation of the CNOT gate

CNOT =




1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0


 . (28)

This gate acts on the basis states as the classical XOR gate: CNOT(|x〉 |y〉) = |x〉 |x⊕ y〉,
with x, y = 0, 1 and ⊕ indicating addition modulo 2. Furthermore, the CNOT can be used to
generate entangled states. For example,

CNOT(α |0〉+ β |1〉) |0〉 = α |00〉+ β |11〉 , (29)

which is non-separable as far as α, β 6= 0.
In contrast to the CNOT gate, the controlled phase shift has no classical analog:

CPHASE(δ) =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 eiδ


 (30)

This gate applies a phase shift to the target qubit only when the control qubit is in the state |1〉
and the target position is equal to |1〉: CPHASE |11〉 = eiδ |11〉.
Without proof, we emphasize that the Hadamard gate (12), the phase-shift gate (14) and the
CNOT gate (28) form a set of universal operations [2], i.e. by using only those universal quan-
tum gates we can construct any arbitrary quantum operation.

1An entangled state can not be represented as a product of subsystem wave functions |ψ〉 6= |ψ1〉 ⊗ . . .⊗ |ψn〉.
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3 Quantum algorithms

3.1 Deutsch’s algorithm: constant or balanced function

Deutsch’s problem illustrates the computational power of quantum interference. We consider a
black box called the oracle which evaluates the function f : {0, 1} → {0, 1}. There are four of
such functions which are listed in the following table:

x f0 f1 f2 f3

0 0 0 1 1
1 0 1 0 1

Those functions can be classified according to a global property: two of them are constant (f0

and f3) and two balanced (f1 and f2). The problem is to decide whether a given function is
constant or balanced. On a classical computer this task requires two queries of the oracle. A
quantum computer can solve the same problem with only one oracle query:
We need one ancillary qubit |y〉. On a quantum level the oracle corresponds to a unitary trans-
formation Uf

Uf |x〉|y〉 = |x〉 |y ⊕ f(x)〉 (31)

where⊕ denotes addition modulo 2. That is, the second qubit is flipped if and only if f(x) = 1.
In the case that the second qubit is in a superposition we obtain

1√
2
|x〉 (|0〉 − |1〉) Uf−→ 1√

2
|x〉 (|0⊕ f(x)〉 − |1⊕ f(x)〉)

=

{
1√
2
|x〉 (|0〉 − |1〉) if f(x) = 0

1√
2
|x〉 (|1〉 − |0〉) if f(x) = 1

= (−1)f(x) 1√
2
|x〉 (|0〉 − |1〉) . (32)

Both qubits remain in their primary state with (−1)f(x) acting as a global phase factor. For a
superposition of both qubits we obtain

1
2
(|0〉+ |1〉)(|0〉 − |1〉) Uf−→ 1

2

(
(−1)f(0) |0〉+ (−1)f(1) |1〉) (|0〉 − |1〉)

= (−1)f(0)

2

(|0〉+ (−1)f(0)⊕f(1) |1〉) (|0〉 − |1〉) . (33)

The relevant information is now coded in the relative phase of the superposed states of the first
register. By applying a Hadamard operation we get

(−1)f(0)

2

(|0〉+ (−1)f(0)⊕f(1) |1〉) (|0〉 − |1〉) H−→ (−1)f(0) |f(0)⊕ f(1)〉|1〉 (34)

which corresponds to |0〉|1〉 if f is constant and |1〉|1〉 in the case that f is balanced. Therefore,
a global property of the function f(x) has been encoded in a single qubit after a single call of f .
This is because a quantum computer can evaluate both f(0) and f(1) simultaneously. The main
point is that these two alternative “paths” are combined by the final Hadamard gate, giving the
desired interference pattern. The interference is constructive for the outcome f(0) ⊕ f(1) and
destructive for the alternative outcome.
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3.2 Grover’s algorithm: How to find a needle in a haystack?
Imagine that you have a telephone number of a person who is living in your town and you
want to find out whose number it is by just using your telephone book. The best you can do,
classically, is to go through the names one by one until you find the corresponding number.
If the phone book contains N entries, you would have to check on average N/2 numbers.
Fortunately, a quantum search can do better: in 1996 Lov Grover could show [10] that only√

N queries are needed. Furthermore, Grover’s algorithm is known to be optimal [11], i.e., no
classical or quantum algorithm can solve the problem (of searching an unstructured database)
faster. Since the quantum algorithm does not lie in a different complexity class than the best
classical one,2 the speedup is still quadratic.
The underlying idea of Grover’s algorithm is to start with a superposition of all states and
amplify the amplitude of the state searched for step by step by repeatedly applying a certain
sequence G of operations. After a fixed number k of iterations the amplitude of this state has
gained a value close to 1, which means a measurement yields the searched element with a high
probability.
For simplicity3 let us assume that we have an unstructured database that contains N = 2n

different elements. We label the items as {0, 1, . . . , N − 1} and x0 is the element searched for.
The result of the quantum search process is stored in a register |x〉 which yields the index x0

with a high probability when measured. In addition a single ancillary qubit |y〉 is needed to
store the result of the oracle query. The oracle O computes the n-bit binary function

f : {0, 1}n → {0, 1} , (35)

defined as

f(x) =

{
1 if x = x0 ,

0 otherwise.
(36)

Grover’s algorithm in detail:

• Start with the state
|x〉|y〉 = |00 . . . 0〉|1〉 . (37)

• Apply H⊗n+1 (n + 1 Hadamard gates) =⇒ equal superposition of all basis states:

|00 . . . 0〉|1〉 → 1√
2n

2n−1∑
x=0

|x〉 1√
2
(|0〉 − |1〉) (38)

• Evaluate the oracle function4 |x〉|y〉 O−→ |x〉|y ⊕ f(x)〉.
This flips the sign of the |x0〉 amplitude:

1√
2n+1

2n−1∑
x=0

(−1)f(x) |x〉 (|0〉 − |1〉) (39)

2Both grow polynomial in time with the number of database elements.
3Grover’s algorithm does also work with partially identical elements, but this issue is a little bit more compli-

cated (see e.g. [2]). In the case 2n−1 < N < 2n the database can be filled up with distinguishable items so that
Ñ = 2n holds.

4⊕ means addition modulo 2 which corresponds to a XOR operation.
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• Let us define the Grover iteration G, with G = IMO, where O denotes the oracle query
and

IM = −H⊗n(1− 2 |0〉〈0|)H⊗n = −(1− 2 |S〉〈S|︸ ︷︷ ︸
R|S〉

) (40)

is often referred to as the “inversion about the mean”.5 The uniform superposition |S〉 is
given by |S〉 ≡ H⊗n |0〉 = 1√

2n

∑2n−1
x=0 |x〉 and the operator6 R|S〉 mirrors a given state at

the hyperplane perpendicular to |S〉 (cf. section 3.2.1).

• Now apply IM (remember: we have already used O, so one Grover iteration G is now
completed).

• (For N > 4):7 Apply G several times until a measurement of |x〉 gives x0 with maximal
probability.8

• Perform a measurement of the first register in the computational basis, giving outcome
x = x̄. If f (x̄) = 1 the search was successful, otherwise repeat the algorithm.

3.2.1 Geometric visualization

The underlying idea of Grover’s algorithm gets much clearer in terms of a geometric interpre-
tation. Since this visualization goes back to the fact that geometrically a reflection operator
induces a mirroring, let us start with a short warm-up.

Preliminary consideration: reflection operator and mirroring Consider a bidimensional
space spanned by the vectors {|x0〉 ,

∣∣x⊥0
〉} and a generic vector |ψ〉 = α |x0〉 + β

∣∣x⊥0
〉
. The

action of the reflection operator R|x0〉 = 1− 2 |x0〉〈x0| on |ψ〉 isR|x0〉 |ψ〉 = −α |x0〉+ β
∣∣x⊥0

〉
.

Therefore, R|x0〉 changes the sign of the |x0〉 amplitude. Geometrically this corresponds to a
mirroring at the axis

∣∣x⊥0
〉
, that is, at the hyperplane perpendicular to |x0〉 (see Fig. 2).

Next, let us prove that −R|S〉 = R|S⊥〉. We consider a generic vector |u〉 = µ |S〉 + ν
∣∣S⊥〉

.

Application of R|S〉 yields −µ |S〉 + ν
∣∣S⊥〉

while R|S⊥〉 |u〉 = µ |S〉 − ν
∣∣S⊥〉

= −R|S〉 |u〉.
As a result, the “inversion about the mean” operator IM in eqn. (40) can be written as

IM = R|S⊥〉 . (41)

Grover’s algorithm begins with the uniform superposition state (38)

5The operation IM applied to a general state
∑

x αx |x〉 yields
∑

x [−αx + 2 〈α〉] |x〉, where 〈α〉 ≡ ∑
x αx/N

is the mean value of the amplitudes αx.
6A projection Operator P = |a〉〈a| satisfies P2 = P . Since (1− P)2 = 1− P , the right side of this equation

is also a projection operator. In contrast, 1 − 2P is a reflection operator, (1 − 2P)2 = 1, which changes the sign
of the projection onto |a〉.

7In the case N = 4 we are already done. This means that quantum mechanically we can search an unsorted
data base containing 4 different elements with a single query. Classically we can handle only 2 different items with
one question (e.g. by asking: “Is this the element that I want?”). As a remarkable coincidence nature uses also four
different nucleotide bases to code the genetic information in DNA. This gave rise to the speculation that quantum
search processes might be involved on a genetic level [12].

8The exact number of iterations k will be derived in section 3.2.1.
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˛̨
x⊥0
¸

|x0〉

|ψ〉

R|x0〉 |ψ〉

Fig. 2: The reflection operator R|x0〉 flips the sign of the |x0〉 amplitude: R|x0〉(α |x0〉 +
β

∣∣x⊥0
〉
) = −α |x0〉+ β

∣∣x⊥0
〉
. This mirrors |ψ〉 at the

∣∣x⊥0
〉

axis.

|ψ0〉 ≡ |S〉 = 1√
2n

2n−1∑
x=0

|x〉 (42)

(for simplicity, we drop the second register whose value will not change during the rest of the
algorithm). Since the plane spanned by {|S〉 , |x0〉} can also be generated by9 {|x0〉 ,

∣∣x⊥0
〉}, we

have
|ψ0〉 ≡ |S〉 = sin θ |x0〉+ cos θ

∣∣x⊥0
〉

(43)

where θ denotes the angle between the vectors
∣∣x⊥0

〉
and |S〉. As illustrated in Fig. 3, the oracle

O mirrors |ψ〉 at
∣∣x⊥0

〉
and afterwards the result O |ψ〉 is mirrored at |S〉 by virtue of IM . Since

both mirrorings take place in the same plane the result of the whole operation is a rotation.
Fig. 3 demonstrates that the Grover iteration G rotates a generic vector |ψ〉 by an angle of 2θ
towards the searched element |x0〉. After j steps of Grover’s iteration the n-qubit state is given
by

|ψj〉 ≡ Gj |ψ0〉 = sin((2j + 1)θ) |x0〉+ cos((2j + 1)θ)
∣∣x⊥0

〉
(44)

since all rotations take place in the primary plane. The process must stop after k steps, where k
is such that |ψk〉 is very close to the marked state |x0〉. This is the case when sin((2k+1)θ) ≈ 1.
The smallest integer k that fulfills this condition is determined by

(2k + 1)θ ≈ π

2
, (45)

which implies

k = round

(
π

4θ
− 1

2

)
, (46)

where round specifies the nearest integer. Since we started from the uniform superposition
state (42) we have

sin θ = 〈x0|ψ0〉 =
1√
N

, (47)

which leads to the following relation between the number of Grover iterations k and the volume
of the database N :

k = round

(
π

4 arcsin(1/
√

N)
− 1

2

)
(48)

9In fact, this condition defines
∣∣x⊥0

〉
.
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˛̨
x⊥0
¸

|S〉

|x0〉˛̨
S⊥
¸

|ψ〉

G |ψ〉

O |ψ〉

2θ θ ˛̨
x⊥0
¸

|S〉

|ψ〉

G |ψ〉

O |ψ〉

2θ

β

β
θ α

α

Fig. 3: Left figure: Geometric visualization of the Grover iteration G. The oracle query O
mirrors |ψ〉 at

∣∣x⊥0
〉

(which is achieved by R|x0〉). The “inversion about the mean” IM mirrors
O |ψ〉 at the uniform superposition |S〉, by virtue of R|S⊥〉 or the application of −R|S〉 (cf.
eqn. (40)). Right panel: Since θ = β − α, we have 2θ = β + θ − α. Thus, ^(|ψ〉 ,G |ψ〉) = 2θ
so that the Grover iteration G rotates |ψ〉 by 2θ towards |x0〉.

For large N the approximative behavior arcsin(1/
√

N) ≈ 1/
√

N holds and we can demonstrate
the quadratic speedup of Grover’s algorithm

k = round
(

π

4

√
N − 1

2

)
= O

(√
N

)
(49)

in contrast to classical algorithms in which the number of database queries grows like O(N).

3.3 Shor’s algorithm: Factoring of numbers
In 1994 Peter Shor — employed by the US company AT&T Labs Research — published a quan-
tum algorithm which allows to compute the prime factors of a given number with an exponential
speed up [13]. The time needed by a classical computer to solve this problem grows exponen-
tially with the number of digits. For instance, to factorize a number with 130 digits, about 1018

operations are needed. If we assume 1012 floating point operations per second (1 Tflops) this
would take 42 days. In the case we would double the number of digits to 260 the calculation
would consist of about 1025 operations which would last 1 million years. In practice it is not
possible to solve the task. On the other hand, the verification of the result is trivial, we just have
to multiply the numbers. This asymmetry is the crucial point that makes the RSA encryption
scheme so successful.
Let us examine an illustrative example: 15 is the product of the prime numbers 3 and 5. In this
case it is possible to find the factors by trial and error: first we try 2 as a factor which fails. Next
we try 3 and succeed. If we denote the number we want to factorize by N , it takes

√
N trials to

find the factors in the worst case. According to the binary representation of the number, which
we assume to have L digits, this corresponds to 2L/2 attempts which means that the time for
this simple algorithm grows exponentially with the number of digits. The best algorithm known
grows like eL/3. In contrast, Shor’s algorithm grows polynomial in time like L3.
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It has been known that the factorization of a number is connected to the period of a certain
function of that number. Unfortunately, the finding the period of a given function is also ex-
ponentially time consuming. However, quantum mechanically this can be done in polynomial
time.
In the following we will focus on the underlying idea of Shor’s algorithm. For further details
see, e.g., [2]. The factorization of N is equivalent to finding the period of

f(x) = ax mod N , (50)

where a is an arbitrary fixed number a < N which does not divide N and x ∈ N. Let’s
reconsider the example N = 15. We choose a = 7, which yields f(x) = 7x mod 15. The
following table shows f(x) in dependence on x:

x 1 2 3 4 5 6 . . .

f(x) 7 4 13 1 7 4 . . .

In this case we have the period r = 4. Once the period of f(x) has been found, we can calculate
factors of N = p · q according to

p = gcd
(
ar/2 + 1, N

)

q = gcd
(
ar/2 − 1, N

)
, (51)

where gcd denotes the greatest common divisor. In case of our example we get

p = gcd
(
74/2 + 1, N

)
= gcd (50, 15) = 5

q = gcd
(
74/2 − 1, N

)
= gcd (48, 15) = 3 (52)

and thus 15 = 5 · 3. Finally, we remark that the computation of the gcd is only of polynomial
complexity (already 300 B.C. Euclid found an algorithm for this task).
Classically, the period finding of f(x) is as hard as the factoring of N itself. Fortunately,
quantum mechanics helps in this case. As in Grover’s algorithm we need a second register. We
start with the uniform superposition

|0〉|0〉 → 1√
2L

2L−1∑
x=0

|x〉|0〉 . (53)

In the next step the value of the function f is calculated and stored in the second register. Since
we started from a uniform superposition state all function values are calculated in a single step

1√
2L

2L−1∑
x=0

|x〉|0〉 → 1√
2L

2L−1∑
x=0

|x〉|f(x)〉 . (54)

In a third step we carry out a measurement on the second register. As we will illustrate on our
example, as a result of this measurement the first register will be in a superposition of states
with the periodicity searched for. The period can be extracted with a special technique called
fast quantum Fourier transform.
In the case N = 15 and a = 7 we have

|0〉 |0〉 → |1〉 |0〉+ |2〉 |0〉+ |3〉 |0〉+ . . . . (55)
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due to the initialization process (for simplicity we omit the normalization factor). In the next
step the value of the function f(x) is written in the second register

→ |1〉 |7〉+ |2〉 |4〉+ |3〉 |13〉+ |4〉 |1〉+ |5〉 |7〉 . . . . (56)

Now we measure the second register. Since all of the amplitudes occur with equal probability
we get 7, 4, 13 or 1. Let us assume that the result is 7. In this case the first register corresponds
to

|ψ〉 ∝ |1〉+ |5〉+ |9〉+ . . . . (57)

Those states differ by 4 which is the period we are looking for. The period can be extracted by
the fast quantum Fourier transform.
The crucial point is that the period manifests itself as a global property of the wave function.
This global feature can efficiently be read out. This leads to the remarkable exponential speed-
up in comparison to classical algorithms.

4 How to build a quantum computer?

4.1 Ion traps
In 1995 I. Cirac and P. Zoller – both working at the time at Innsbruck University – proposed the
implementation of quantum gates on the basis of ion traps [14]. Charged ions are trapped in a
small region by a time dependent electrical field. The sophisticated arrangement of potentials
allows only the motion in one direction and leads to a linear alignment of the ions. The typical
distance between the ions is about 10µm which is large enough to address them individually by
laser pulses.
Each ion represents a qubit in which two of the internal states correspond to |0〉 and |1〉: the
state |0〉 is represented by the ground state while |1〉 is given by a metastable excited level.
In order to implement an 1-qubit gate one has to focus an ion by a certain laser pulse with a
frequency that corresponds to the difference of the |1〉 and |0〉 energies.
The interaction between qubits can be realized by exploiting the external degrees of freedom.
Since the ions are electrically charged they repel each other. In order to keep them at rest
the ions have to be cooled strongly by laser cooling so that the temperature is in the range
of a few milli-Kelvin. If the energy of the ion chain is increased, the whole chain starts to
oscillate. Depending on the energy, different oscillation modes can occur: for example all ions
can oscillate in the same direction or antipodal to each other. It is also possible that the ion in
the middle stays at rest while the outer qubits oscillate in reversed directions on the right and
left side. This collective motion is used as a bus to implement 2-qubit gates between arbitrary
ions. The excitation of the first ion is transfered to the chain as oscillatory energy; afterwards
the second ion is addressed in a way that the ion chain transfers their energy to this qubit.

4.2 Nuclear magnetic resonance
Nuclear magnetic resonance (NMR) is based on the resonant excitation of nuclear magnetic
moments. Since nuclear spins are the central resource in this field, NMR seems to be a promis-
ing technology for the construction of quantum computers. The first investigations on this field
were carried out by D. Cory et al. in 1996 and N. Gershenfeld in collaboration with I. Chuang
in 1997 [15].
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Fig. 4: Left: The molecule that has been used by L. Vandersypen et. al [16] in order to im-
plement Shor’s algorithm on an NMR quantum computer. Right: Isaac L. Chuang at the IBM
Almaden Research Center holding a sample of those molecules.

In case of quantum computation on NMR basis the qubits are represented by the nuclear spins
of certain atoms in a specially designed molecule. A strong magnetic field is used to align the
spins in a specific orientation. The parallel adjustment according to the B-field is energetically
favored and thus interpreted as |0〉 while the antiparallel orientation corresponds to state |1〉.
As a crucial difference to other technologies, NMR is operated at room temperature which
makes it much easier to handle than experiments which need extreme cooling. On the other
hand this advantage implies also a drawback: in the thermal equilibrium only a few more spins
are oriented parallel to the magnetic field than antiparallel. Therfore, the initialization of the
initial state is a nontrivial issue.

One-qubit operations can be easily implemented by standard NMR techniques: the state of the
qubit is rotated by a resonant oscillating field perpendicular to the primary field. The frequency
of the oscillating pulse is in the range of 500 MHz and corresponds to the energy gap between
the initial and final state. Since each of the nuclei is located in a slightly different chemical
environment, their resonance frequencies differ by a small amount. This allows to address each
of them separately.

In order to implement 2-qubit operations interaction between two nuclear spins must be es-
tablished: this is possible because two parallel spins have different physical properties than
antiparallel ones. Due to the coupling the first spin rotates faster (slower) if the second is par-
allel (antiparallel) aligned. This dependence of the transformation property of one qubit by a
second one is exactly the idea underlying the CNOT gate, which can be implemented in this
manner.

So far NMR has been very promising: it was possible to implement different algorithms. Shor’s
algorithm was carried out on seven qubits in order to factorize the number 15 = 3 · 5. The
molecule that has been used by L. Vandersypen et. al [16] for this task is shown in Fig. 4.
Fluorine atoms represent five of the qubits and the further two correspond to carbon.

In spite of this success NMR does not seem to be the technique of choice for future applications
since it does not scale: On the one hand it is difficult to design special molecules with a larger
number of qubits, on the other hand the strength of the signal decreases exponentially with the
number of qubits.
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Fig. 5: A simple two quantum dot model. The interaction of the qubits can be achieved by
decreasing the potential barrier in the middle.

4.3 Quantum dots
Promising ideas for the implementation of quantum computers arise also from solid state physics
even though the realization is beyond todays technical feasibility. The hope is to advance semi-
conductor technology in order to utilize it for quantum devices.
D. Loss and D. DiVincenzo proposed in 1998 to use quantum dots in semiconductors as qubits
[17]. A quantum dot is a structure of a few cubic nanometers in which a single electron can be
trapped. Quantum dots behave like artificial atoms. The spin of the single electron is used as
a qubit. Due to a local magnetic field the spin can be rotated – in this manner one qubit gates
can be carried out. Two neighboring spins are separated by a potential barrier. By lowering
this barrier tunneling processes take place and the two spins are able to interact with each other.
Through a sophisticated steering of the barrier it is in principle possible to construct two qubit
gates. A simple model of two quantum dots is shown in Fig. 5.

4.4 Outlook
It is difficult to foresee the future development of quantum information. Realistically, it will
not be possible to build a quantum computer with one hundred qubits within the next few years.
At the moment quantum cryptography has been developed on a level which is much closer to
commercial application. New ideas about precision measurements as a quantum technology
are also an important issue. Nevertheless, a huge benefit from the present research on quantum
information is a deeper understanding of quantum phenomenons.
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