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1 Introduction

Many problems of physics and engineering require the accurate solution of field equations for
some complicated setup. The standard approach is to discretise the continuous equations and
solve the resulting finite system of equations. If the equations are nonlinear (e.g. magnetic field
equations in the presence of iron), they are linearised with an available approximation to the
solution to give a linear equation (or a sequence of linear equations). Now to achieve high accu-
racy, the discretisation has to be fine, and 106 unknowns are not much for a 3D problem. Simple
linear equation solvers are quite inefficient for such problem sizes. The number of arithmetic
operations needed to solve such a problem (e.g. ∆u = f ) with N unknowns to an accuracy
compatible with the accuracy of the discretisation is about O(N3) for full matrix direct elimina-
tion, O(N2.3) for band matrix direct elimination, O(N2) for successive overrelaxation (SOR),
O(N1.3) for a good preconditioned conjugate gradient(CG) method, and only O(N) for an op-
timal multigrid method (MG).
Other than CG or SOR, however, MG is not a linear equation solver, but a method for building
efficient hierarchical solvers. The typical application for MG is in the numerical solution of
elliptic partial differential equations in two or more dimensions, but MG is also applicable to
more complicated, non-symmetric and nonlinear systems of equations like the (Navier-) Stokes
equations and even to equations without a PDE background.
Many such problems have structures on a wide range of scales, so that an uniform resolution
of the small scales is beyond reach. Localised small features can be treated by local grid re-
finement. As MG as a solver operates on many scales in parallel, it is especially suited for
such problems. By necessity, only principles of MG and simple examples can be given here.
For more details and tuning a MG solver to the problem at hand, we refer to the literature
[2, 3, 1, 6, 9].
A different multiscale problem is posed by small scale oscillations or texture of materials. Here,
two combined problems must be solved simultaneously: An averaged smooth problem, and a
local oscillatory or textured problem. This situation allows a true separation of scales. The small
scale calculation will need the large scale solution for boundary conditions, while the large scale
calculation may need the small scale calculation for the definition of material coefficients.

2 Principles of multigrid

The basic requirement for MG to be applicable to a problem is that the problem can be solved
on different scales, that coarser scales are much easier to treat than fine ones, and that there is
an efficient way to connect solutions from different scales. All this is obviously true for linear
elliptic PDE’s, so we will explain MG by applying it to a specific PDE problem.

2.1 The model problem: Poisson’s equation in a rectangle

As model problem P, we treat the following PDE:

Lu = uxx + ε · uyy = −f(x, y) (x, y) ∈ Ω = [0, π]× [0, π] (1)
u(x, y) = g(x, y) (x, y) ∈ δΩ (2)
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We discretise this problem using a Cartesian equidistant grid, setting

h = π/n, xi = i h, i = 1, . . . , n, yj = j h, j = 1, . . . ,m (3)
uij = u(xi, yj), fij = f(xi, yj) (4)

and replacing the differential operator in Eq. (1) by its discrete analogue Lhu = −f :

(Lhu)ij = (ui−1,j + ui+1,j)/h
2 + ε · (ui,j−1 + ui,j+1)/h

2 − (2/h2 + 2ε/h2) ui,j = −fi,j (5)

For the definitions of discrete operators on Cartesian grids, stencil notations are a convenient
method. The stencil to the operator Lh is:

Lh =
1

h2




0 ε 0

1 −2(1 + ε) 1

0 ε 0


 (6)

For a start, we will consider the isotropic problem (ε = 1) with n = 2k, the anisotropic problem
(ε ¿ 1) will be discussed later.
The discretisation error always consists of two parts. The low frequency components will show
an error which is roughly proportional to h2, and components with a frequency higher than
the grid can show are simply absent. With iterative solvers there is always a truncation error,
too. This is the difference between the exact and the actually computed solution of the discrete
equations. A reasonable requirement is that the truncation error should be less than half the
discretisation error.

2.2 Simple iterative solvers and smoothing
With lexicographic ordering of points, the discrete problem is a linear equation Au = −f with
a sparse regular system matrix A of bandwidth n. For such matrices, Jacobi relaxation is often
used. It is the simplest (and easiest to analyse) solution method, though it is not very efficient.
For notation, we define u as solution of the problem Ph : Lhu = −f ; with u0 as the start vector
of the iteration, ul the iterated vectors, and wl = ul − u the error, which is just the iteration
vector of Lhw = 0 with start w0.
One step of the Jacobi relaxation is just one application of the relaxation operator

Sh = Eh − h2

4
Lh Eh: Identity matrix to grid h (7)

to the present error: wl+1 = Shw
l. Now the eigenvectors of Sh (and Lh) are sin(kxi)∗sin(lyj),

simply the sampled eigenfunctions of L, and the corresponding eigenvalues of Sh are

λkl = −(cos(kh) + cos(lh))/2 k, l = 1, . . . , n− 1 (8)

Obviously, the asymptotic convergence is given by the convergence of the smoothest compo-
nent, sin(xi) sin(yj), and the least smooth component, sin((n− 1)xi) sin((n− 1)yj), and the
convergence rates are cos(h) and −cos(h). For small h this is very slow convergence. The
convergence of the least smooth components, which is most important in a multigrid context,
may be enhanced by ω-damping: Sω,h = (1 − ω)Eh + ωSh. This will for the least smooth
component give a rate of (1 − ω) − ωcos(h), which for ω = 0.5 is close to zero. The conver-
gence of the smoothest component will get even worse by damping. Overrelaxation (ω > 1), on



D5.4 Bernhard Steffen

the other hand, will speed the convergence of the smoothest component while the least smooth
component will become divergent. Thus, if Jacobi relaxation is considered a solver, ω = 1 is
optimal. If the aim is just to smooth out the error, as it will be in a multigrid context, ω = 2/3
is a good choice.
For other common relaxations, e.g. Gauss-Seidel relaxation or line relaxation, the eigenvectors
of the iteration matrix allow no simple description, and all frequencies will be mixed in the
process. However, it is observed that these relaxations smooth out the error much faster than
reduce it, similar to damped Jacobi. However, overrelaxation is useful for these relaxations,
indicating that the least smooth component is reduced much more rapidly than the smoothest
one. A special case is the red/black (or chessboard) Gauss-Seidel (RBGS), where the ’red’ half
of points is updated first and the other half follows. One step of RBGS is on the ’black’ points
exactly equivalent to two steps of Jacobi relaxation, so for each Fourier component it has the
squared convergence rate. However, as the initial values of the ’red’ points do not contribute to
the result at all, and the frequencies with k + l > n do not show up on the ’black’ points due
to aliasing, the smoothing is considerably better than for Jacobi relaxation. On the full grid,
the staggered relaxation gives a good proportion of high frequency error as the ’red’ points lag
back by half an relaxation relative to the ’black’ points, but this error is coupled to the errors of
intermediate frequency and not propagated directly by the relaxation. Therefore, RBGS is an
effective smoother and, for the problem given, the most effective of the simple solvers, espe-
cially when combined with overrelaxation.
These results carry over with minimal adjustment to the 3D case and to more complicated, but
approximately isotropic problems. Problems with strong anisotropy will be considered later.

2.3 Two grid procedure - simple restriction and interpolation

Fig.1 shows the development of the solution to u”=0 discretised with 33 points under RBGS
relaxation with random start. Obviously, after 2 relaxations, the error can be represented quite
well on a grid with double spacing. On this coarse grid, the relaxations are cheaper (by a factor
of 0.5d, where d is the dimension of the problem), and the relaxation is going to converge faster,
factor cos(2h) instead of cos(h). After 7 relaxations, only the two lowest frequencies give a
big contribution to the solution. The effect of RBGS in higher dimensions is similar, as can be
seen by the eigenvalues of Sh. For the transfer of the problem to and from the coarse grid, two
different approaches are possible. The coarse grid problem may either be a correction to the
present fine grid approximation (correction scheme, CS), which is the preferred way for linear
problems, or the full problem on the coarse grid augmented with some fine grid information,
which is called ’full approximation scheme (FAS)’. FAS performs better for nonlinear systems,
it is described in detail in [4].
May ul

h be the present approximation to u. The correction problem on the fine grid reads: Solve
Lhvh = −f − Lhu

l
h.Then vh + ul

h is the exact solution of (5). This problem now has to be
restricted to the coarse grid:

Lhvh = −f − Lhu
l
h =⇒ L2hv2h = R2h

h (−f − Lhu
l
h) (9)

with L2h the coarse discretisation of ∆, and a restriction operator R2h
h that transports the

right hand side to the coarse grid. For the restriction, three different operators are common:
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start⊕ 3/2 sweeps× 8/2 sweeps♦

RGBS convergence

0 5 10 15 20 25 30 35
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 1: RBGS at start, after 3/2 and after 8/2 relaxations for u”=0; 33 points

Injection (IN), half weighting (HW), and full weighting (FW), with the 2D stencils

IN :




0 0 0

0 1 0

0 0 0


 HW :

1

8




0 1 0

1 4 1

0 1 0


 FW :

1

16




1 2 1

2 4 2

1 2 1


 (10)

IN is the easiest, but lacks accuracy and robustness and is therefore possible only if both the
error vl

h and the residue Lhv
l
h − f are smooth. This would at best require additional smoothing

steps, so IN is not very effective. HW is the restriction of choice for simple problems like our
model problem, while for complicated problems, the added robustness of FW pays for the added
effort. Other restrictions (e.g. anisotropic) are possible, but not common and usually give no
advantage.
There is a special feature with RBGS: for the model problem, −f −Lhu

l
h is zero on the ’black’

set of points. If the coarse grid point belong to ’red’, HW is just half injection, and therefore
very easy. IN gives a divergent coarse grid correction (CGS) in this case. For larger stencils of
Lh, −f − Lhu

l
h will not be zero on ’black’, but quite small.

After the correction equation (9) is solved on the coarse grid, v2h has to be interpolated to the
fine grid (vh ⇐= Ih

2h(v2h)) and added to ul
h. Polynomial interpolation introduces additional

high frequency errors, so a few smoothing steps afterwards are useful, producing uk
h.

Let’s look at the accuracy and cost of this procedure. The high frequency content of uk
h is treated

on the fine grid, and because of the rapid convergence of the iteration for high frequencies it
will be quite accurate. The low frequency content is treated on the coarse grid, where it’s
discretisation error is about 4 times the discretisation error on the fine grid. The smoothing
steps afterwards cannot improve the situation, the convergence of low frequency parts is to
slow. However, with uk

h, we can repeat the CGC process, only that this time the coarse grid
correction is not most of the solution, but only the coarse grid discretisation error. It is enough
to solve it up to a relative error of ≈10% to achieve a fine grid solution that is as accurate as
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the fine grid discretisation error permits. The computational cost for all of this is the cost of
the iterative coarse grid solution process plus a few fine grid relaxations plus interpolation and
restriction, together about 1/4 (2D) of the cost of solving the problem by iteration on the fine
grid only.
There are various options for the interpolation. Linear interpolation is simple, but causes a loss
of accuracy of vh . Second order interpolation gives asymmetric formulas, so cubic interpolation
is generally preferred if linear interpolation is not sufficient. In the first correction step, where
the function to be interpolated is a large part of the total result, a small relative interpolation error
is needed to get all the accuracy available. In the second correction step, where the correction
is small, the absolute interpolation error will be small enough even with linear interpolation.

2.4 A V-cycle full multigrid for the model problem
There is no reason why this process could not be applied to the coarser grid, also, as long as
this grid has too many points for fast convergence. This idea leads to a proper MG scheme,
where there is a hierachy of grids, starting at a fairly coarse one and doubling the resolution till
the finest grid gives the desired accuracy. In the model problem the coarsest grid may have just
one inner point, but in most problems it will have some hundred points, but still allow a direct
solver for solution. This needs some tuning, but when the solution needs only a few relaxations
on all grids except the coarsest, the method really starts flying.
The second improvement is not starting from scratch. In every iteration, it pays to choose the
best starting point that is readily available, and for a PDE this will, on all grids except the
coarsest, most likely be the interpolated solution from the next coarser grid. The process is
sketched in fig. 2. This is a simple variant of full multigrid (FMG), appropriate for the model
problem. For an estimate of the work required, the accuracy achieved, and the parameters of

Smooth

Solve

Restrict

Interpolate linear

Interpolate cubic

Fig. 2: FMG process using V-cycle

the procedure, let us assume that on all grids used the discretisation error is dominated by the
low frequencies and below 10%. For convenience, let’s number the grids from 1 (coarsest) to
k (finest). Then on grid l the discretisation error is about a quarter of the discretisation error
on grid l + 1. Assume, that the problem is solved on grid l. Interpolating this with cubic
interpolation to grid l + 1 gives an approximation u0

l+1 with an error of not more than 8 times
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the discretisation error on grid l + 1, resulting from the sum of the discretisation error plus the
truncation error on grid l, plus an allowance for a small error of the interpolation. Most of this
will result from low frequency components which are not sufficiently accurate on grid l, a part
from the high frequency components of the solution which are small, but not represented at all
in u0

l+1. So, on grid l + 1, the high frequency errors have to be smoothed by a factor of ≈6,
which asks for three relaxation steps, while a CGC reduces low frequency errors by a factor of
≈8. This CGC requires only low accuracy, therefore three smoothing steps before restriction
and after linear interpolation are sufficient to keep the absolute truncation error of the correction
well below the absolute discretisation error on grid l + 1.
Adding up the computation, we find that on each of the grids k−m+1, m = 1 . . . k, we need 6m
smoothing steps, m restrictions, m linear interpolations, and 1 cubic interpolation. Additionally,
we need k solutions on grid 1. Counting restrictions and interpolations like smoothing, and
considering that the work for smoothing etc. is reduced by a factor of 4 per coarsening step, and
defining SW as the work of one smoothing step on grid k, we get

TotalWork = SW ×
k∑

m=1

32m

4m
+ k × [Solution] (11)

This is less than 15 SW in 2D, 11 SW in 3D. Optimized implementations [5] even need a little
less work. Definitely, solving a linear equation will need more work than just touching every
matrix element once, which would be SW , so MG is close to the lower limit.

2.5 More complicated problems
While the problem P is well suited to explain the principles of multigrid, most practical prob-
lems are much more complicated. Higher dimension is no complication, the higher the dimen-
sion, the more efficient is MG.
Complicated domains require some attention. While the eigenvalue analysis presented above
is obviously not correct any more, on points away from the boundaries we can do a local Fourier
analysis to find the smoothing properties of a relaxation method and the effects of grid transfers
[1]. The results are the same as above, but they are not valid near the boundary. To get the
required smoothing near the boundary, too, a small number of extra relaxations of boundary
points is usually sufficient, but most implementations just add global relaxations. The coarse
grids may give problems, however. With finite differences, a grid coarse enough to allow an
efficient solution of the equation may not be able to represent the geometry accurately enough.
With the more flexible finite elements, the problem is that there is no good method for the
construction of a coarse grid when starting with a fine one. Either the discretisation has to be
done by recursive refinement of the coarsest mesh, or coarse and fine mesh will not be properly
aligned, and restriction and interpolation operators will become complicated and inefficient.
This is the most serious obstacle to the combination of existing FEM codes with multigrid.
Anisotropy of the discrete operator, whether caused by an anisotropic problem or an anisotropic
grid, requires special measures. With a stencil like eq. (6), the eigenvalues of Sh change to
λkl = −(cos(kh)+ ε · cos(lh))/(1+ ε), and with small ε the smoothing with simple relaxation
will be efficient only in x direction. This means that either the smoother has to be modified -
line relaxation or incomplete LU decomposition would help in this (simple) case - or the coarse
grid has to contain all modes that are not smoothed out on the fine grid - e.g. coarsening in
x direction only. Now in most cases the anisotropy is not aligned with the grid and may vary
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in strength and direction. This asks for rather robust smoothing procedures, e.g. alternating
direction line (in 2d) or plane (in 3D) [11] or transforming smoothers [10].
Nonlinear problems In nonlinear problems, the linear residual equation (9) does not apply.
Instead, we can use the nonlinear residual equation L(u + v) − L(u) = r and transfer this to
the coarse grid as

Lh(uh + vh)− L(uh) = −f − Lhu
l
h =⇒ L2h(u2h + v2h) = R2h

h (−f − Lhu
l
h) (12)

We solve for w2h = u2h + v2h and update the fine grid approximation with the change only:

uh ←− uh + Ih
2h(w2h −R2h

h uh) (13)

Multiphysics, e.g. the modelling of the geodynamo, where thermal convection and conduction
coupled with Maxwell’s equation shape the earth’s magnetic field, is an interesting field of
application for multigrid. To utilize the full potential of MG, the coupling has to be incorporated
on all grids, not just on the finest. This way, the iterations of the coupling needed for self-
consistency of the equations are done on coarse grids, and the workload is not much more than
just solving the equations for the different quantities independently. However, the different
physical quantities may exhibit quite differnt features of the equations, and the optimal choice
of MG components may differ e.g. between the equations for convective flow, temperature and
magnetic induction.
Caveat For a perfectly designed and tuned multigrid, the total work should be not to large a
multiple of the work for one relaxation sweep. For many practical problems perfection is out
of reach, and we have to settle for just reasonable speed. This usually means more smoothing
steps and frequently a more complicated cycle. The W-cycle [3], performing two coarse grid
corrections before moving on to the next finer grid, is an example. It is only moderately more

Fig. 3: Full FMG process using W-cycle

programming effort to get an adaptive control of the MG process, doing smoothings as long as
they are efficient, correction steps until the desired level of truncation is achieved, etc., and this
effort is generally rewarded. One big benefit of monitoring the performance of the steps of MG
is the boost it gives to debugging: Small errors in the algorithm design or programming are often
hidden by the robustness of the entire MG process. They slow the convergence down, but do
not change the results. Only when a monitoring of all steps is done do they reveal themselves.

3 Treatment of multiscale problems
Many practical problems operate on vastly different spatial or temporal scales, such that a reso-
lution of the fine scales for the entire problem is completely out of reach. The character of these
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problems, as well as the ways to treat them, differ much for individual applications, so we can
only look into a few types of multiscale behaviour and methods to treat them. The multigrid
approach is obviously helpful here, as it operates naturally on scales differing by two or three
magnitudes, but that is simply not enough for many problems. We will give some examples
showing different kind of multiscale behaviour.

3.1 Singularities and local grid refinement
For a 2D flow around a corner, the analytical solution of potential is known: φ = rα cos(αθ).
For a 60 wedge, α = 3/5. Thus the streamlines are circles around the origin. The velocity field
is given by

(u, v) =
[
α ∗ rα−1 cos((α− 1)θ) , −α ∗ rα−1 sin((α− 1)θ)

]
(14)

Note that the velocities go as rα−1, and at the origin are infinite. Numerical calculations of the
situation need a very fine grid near the origin. This can be achieved by local grid refinement. Of

Fig. 4: 9- and 13-level refined grids for flow around a corner [12]

course, the 2D problem is of little interest, but 3D flow around with wedges will appear e.g. in
the calculation of air ducts for buildings. Even though potential flow is not a proper assumption
here, it is a good guide for meshing.
At first look, it seems that the computational effort for the calculations with MG is quite small,
as the number of points in the finest grid is moderate. However, the work done on intermediate
grids is not smaller than on the finest, so the estimate of (11) is not valid any more. The actual
effort depends on the number of points in all grids, and writing an optimal procedure with CGS
for selected parts of the domain only is tricky.

3.2 High frequency oscillations
Many applications have spatial or temporal high frequency variations, such that there is a large
gap in scales. One example is the magnetic field in a transformer, where one characteristic
length scale is given by the dimensions of the iron (1 cm for a small device power supply, 1 m
for a power station transformer) and the other by the lamination of the iron (0.5 mm). Another
example is the calculation of the magnetisation of an magnetic resonance (MR) system [13] via
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Bloch’ equation
d ~M

dt
= γ( ~M × ~B)− A1( ~M − ~M0)− A2( ~M) (15)

~B is composed of a strong (≈ 4T ) solenoidal field ~B0, inhomogeneities, a gradient field of
shape ~B0(~G · ~r), and a radio frequency (RF) field approximately vertical to ~B0. All these are
several orders of magnitude weaker than ~B0. A1 and A2 are tensors giving the spin-spin and the
spin-lattice relaxations. Here three frequencies are present: the Lamour frequency γ · | ~B| which
is in the order of 10 MHz, the frequency of the RF part of ~B which is about 1000 Hz, and the
relaxation frequencies close to 1 Hz.
In both cases, averaging over the high frequency is the method of choice. For the MR mag-
netisation, after going into cylindrical coordinates with z-axis parallel to ~M0 we can average all
effects over one period of the rotation of ~M . This way, all phase information on ~M is lost, but
the phase information is not used and could by no means be calculated in MR, as ~B0 is certainly
not known to the accuracy necessary for this. Mz and Mr vary not faster than the RF timescales,
thus allowing an efficient calculation.
For a transformer with lamination of 0.35mm iron and 0.15mm insulation, this means re-
placing the permeability µFe of iron and µI = 1 of insulation by an averaged permeability
µ
‖
av = 2 (0.35µFe + 0.15 · µI) and µ⊥av = 0.5 /(0.35/µFe + 0.15/µI in the direction parallel to

the lamination and in the perpendicular direction. For high H applications, from the perme-
ability curve µFe(H) there has to be calculated a curve µFe(Hav) taking into account that H
varies between iron and insulation. Of course, this data is available for all laminated iron in use.
In other problems, such a separation of scales often leads to two coupled problems, where the
small scale problem provides parameters for the large scale problem, which in turn defines the
boundary conditions for the small scale problem.

3.3 Irregular scale separation

Frequently, the small scales have no apparent periodicity. There may be statistical information
that allows averaging, but in general, the averaging itself is a formidable problem. A well
investigated such multiscale problem is the calculation of the flow of air in weather forecast.
Here again, the small scale process is parameterized and these parameters fed into the large
scale calculation. E.g. kinetic energy is fed into the system at a scale of kilometres, through
thermal convection. It is taken out of the system only by viscous forces, which operate at a scale
of centimeters. Turbulence models [14, 15] are used to link the large scale motion to the energy
dissipation.
In most multiscale processes with irregular small scales, the definition of the coupling of the
large scale and the small scale model requires in depth analysis of the situation, and does not
allow black box solutions.

4 Conclusion
Multigrid methods have the potential of being effective tools for the solution of multiscale and
multiphysics problems, but they are not ready made solvers. Of course, there exist MG solutions
for many practical problems (fluid mechanics, electrodynamics, mechanics etc.), but for others
the full potential of MG has not been realised yet, and further research is needed.
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