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1 Introduction

Neutron scattering and computational techniques are highly complegnémtaone simple
reason. From a model of atomic positions possibly as a function @fittisi straight forward
to calculate the expected neutron scattering spectrum and to comparegernmextal results
on an absolute scale. There are no unknown or difficult to calculateirgpudphctions,
neutron scattering therefore provides the best method for testidg banchmarking
computational methods like e.g. Monte Carlo and molecular dynamic simulations.

In this lecture we will first address some principles of neuscattering, will then briefly

describe molecular dynamic simulations done by commercial aatwand then address
results on primary and secondary relaxations of glass forming @oitgise and

polybutadiene. Using measurements of the quasielastic neutron spsctrafunction of

momentum transfer, we will benchmark computer simulation and thendgaiper insights

into the underlying dynamics in exploiting the detailed informapoovided by the space
time dependent trajectories available in computer simulation. Itdke of the secondary
relaxation we will use concepts developed to model scatteringragpemw in real space, in
order to extract more detailed insight from simulated correlation functions.

2 Neutron scattering principles

The velocity of neutrons has the same order of magnitude astong@c velocities in
condensed matter. Therefore even slow relaxational motions ardabéteby a velocity
change of the neutron. The spatial character of the motion thefersed from the angular
distribution of the scattered neutrons.

In general scattering of thermal neutrons yields informatiorhersample by a measurement
and analysis of the double differential cross section .

= 2§ (9e) @

l.e. the intensity of scattered neutrons with endfginto a given directiord. The energy
transfer, i.e. the difference of kinetic energy before and sdtteringAE = E; — E; relates to
ok =25

/)

The momentum transferQ respectively the scattering wave vector is givenQoy ki — ki
wherek; andk; are the wave vectors of the incoming and outgoing (scatterattpns. They
2ir
relate to the neutron wave Iengt’i@sqf ‘: T the neutron momentum apg = M, Vi = 7iki .
i f

Therefore
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the energyAE and wcan be determined by measurements of the neusiocittesv; andvy.
Note that for all problems we will discuss in thesturek; (ki and therefore

Q=" sin(gj = 2| sir(gj ©)

can be assumed. Finalll, denotes the scattering length of atom nucleasd <> is the
assemble average.

The unique features of neutrons that render théonarpowerful tool for the investigations of

polymers are

= the isotope and spin dependencé;pf

= typical wavelength of cold and thermal neutronat thatch molecular and atomic distances
and

= even slow motions of molecules cause neutron wgl@tianges that are large enough to be
detectable.

In particular neutron spin echo spectroscopy s abresolve changes of the order of 18
Vi.

In order to proceed further we introduce the intlrate scattering function as the Fourier
transform of§Q, «):

0

s(Q)=[qQu) ¢ o (4)

—00

The intermediate scattering function directly defgeron the (time dependent atomic
positions).

s(Q1 =< ég[””“‘r”> ©

Note that Eq.[5] relates the experimental accesssiohttering function directly to the time
dependent atomic coordinates which are accesstbleomputer simulation, establishing
thereby the quoted important relationship betweenilation and neutron scattering.

Considering the ensemble average of Eq.[1] we haw®nsider that chemically equivalent
atoms may have a number of different scatteringtlenthat are randomly distributed over
the ensemble of all atoms of the same kind in #mapte. Most important in the present
context is the variation due to the spin dependentponent of the proton scattering length,
where is the average valgle) leads to the coherent scattering, the fluctuapag b; - (b;)
leads to incoherent scattering i.e. scattering,clwhis not giving rise to constructive
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interference and therefore yields as an additionatribution, the atom-atom self correlation
function.

g(Q = () ©

Note, that in Eq.[6] the coordinate of the samerasppears at different times. Theref@&"

informs about the motion of a given atom. Applyittte Gaussian approximation i.e.
assuming that the atomic displacement distributumctions are Gaussian, Eq.[6] transforms
into

s(ag=enf - (7 (9)| g

Where<ri2(t)> is the mean square displacement of at@mThis quantity again is directly

accessible to simulations and facilitates a direct comparisove®e neutron scattering and
simulation results. In this lecture we will only discuss isotaggamples. Therefore in the
following we only need to consider the magnitud€djut not its direction.

We further remark that (i) the scattering length of hydrogehdeuterium are very different,
facilitating a specific labelling of certain moleculesnoolecular components and (ii) that the
magnitude of the incoherent scattering from hydrogen is sgnily larger than that of
deuterium or carbon and therefore outside the range of smadl sacaftering, the incoherent
scattering from hydrogen dominates the spectra and providing esmi® selectively
emphasizing certain molecules or part of molecules by specific hydatige or deuteration.

3 Simulations procedures

All simulations which are discussed in this lecture were edrout by using the INSIGHT

(INSIGHT 11.4.0.0P version) and the Discover-3 module from Molecularuiitions inc.

with the Polymer Consortium Force Field [1]. The functional fofmthis force field include

terms that can be divided into two categories. Valence ternisding diagonal and off-
diagonal cross coupling terms and non-bonded interaction terms.

» The valence terms represent internal coordinates of the bond, ngjen angle and out
of plane angle and the cross coupling terms include combinations afrtthieee internal
coordinates. These cross coupling terms are important for predigilmgtional
frequencies and structural variations associated with conformiatdmenges. The
analytical expression employs quartic polynomials for bond strefcmid angle bending
and a three term Fourier expansion for torsions.

* The non-bonded interaction terms include a columbic function for therastatic
interaction and a Lennard-Jones 9-6 potential function rather than dhe constant
customary Lennard-Jones 12-6 potential for the van der Waals term.

The model systems were build by means of the well known amorphibysratcol [2]. The
amorphous cells were constructed with a given density and pebodidary conditions are
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assumed in order to model a bulk system. In the next stepndérgyeof the so obtained
structure was minimized and then subsequent dynamic runs assutieea éguilibration of

the structure. Typical MD runs extended between 1ns and 100ns withtinglldata every

one hundreds of a picosecond. The results of the MD runs were validatechparing with

actual neutron scattering results as we will discuss later.

4 Neutron scattering techniques

It is a task of inelastic neutron scattering to measurelsineously the energy transfew

and the momentum transféQ of the scattered neutrons. In the following we will briefly
discuss two different techniques which are important for this kchamely backscattering
and neutron spin echo .

Neutron backscattering exploits the fact, that at a soajtangle of Z= 18C0C the selected
wavelength in reflection from a crystal depends only to second ordire divergence of the
incoming beam. Choosing backreflection from a perfect crystal irbic@ton with relaxed
collimation of the neutron beam, leads to an acceptable intensignangy resolutions in the
order of 1¢%. Figure 1 displays the general layout of the backscatteringrepeter (BSS) at
the FRJ-2 reactor in Julich. The neutrons are monochromatized byeat glicon crystal,
mounted on a Doppler driver which similar as in Mo3bauer experimenés \the incident
energy of the neutrons by a Doppler shifting. These monochromatinedmeare deflected
by a graphite crystal and directed towards the sample. Thezanalystals are mounted on
spherically hollowed plates with a radius of curvature such that finus the reflected
neutrons into detectors which are set up behind the sample. In this \age solid angle is
covered on the analyzers side. The typical resolution achievedhistinstrument is in the
order of ueV.

W, Analyzer
W Rings

Analyzer
Flates

qupler
Monochromator Drive

—L e = SE = 3 I--I:-IIJ—‘I=

Meutron Guide

Fig. 1. Schematic sketch of the Julich backscattering instrument BSS.

While in backscattering the energy transfer at the sampletésmined by first measuring the
energy of the incident neutron and thereafter that of the schttezatron taking the
difference, the unique feature of neutron spin echo (NSE) &bilitsy to determine energy
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changes of neutrons during scattering in a direct way [3]. N&Asures the neutron
velocities of the incoming and scattered neutrons utilizing thvenda precession of the
neutron spin in an external magnetic field. Since the neutron spior\zxs like the hand of
an internal clock attached to each neutron which stores the resulbheofvelocity
measurements on the neutron itself, this measurement is perfdoneelach neutron
individually. Therefore, the incoming and outgoing velocities of one andgdhee neutron
can be compared directly and a velocity difference measutelbeeomes possibly. In this
way, the energy resolution and the monochromatization of the primarg bee decoupled
and an energy resolution in the order of°1€an be achieved with an incident neutron
spectrum of 20% bandwidth. Figure 2 displays a photo of the Julichihsment, the
salient features are the two large magnetic coils provith@d.armor precession fields before
and after the sample.

Fig. 2: Display of the Julich Neutron Spin Echo instruments featuring the mainocarm
precession coils and the sample position in between them. On the fasidgtihe analyzer
system and the detector are visible.

We note that NSE is a Fourier technique and provides directlinteenediate scattering
function §Q,t) where the Fourier timeis proportional to the applied magnetic field and the
third power of the wave length.

5 Relaxation processes in polymers

The classical relaxation processes in polymer,dheand Frelaxations have been studied
since more than 50 years by spectroscopic techniques like detgsctroscopy, mechanical
spectroscopy and NMR. Figure 3 displays a typical outcome ofesgogriments for the case
of polybutadiene (PB) (-CHCH=CH-CH>-),.
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Fig. 3: Relaxation map for polybutadiene. Solid lirerelaxation , dashed line: secondary
Sprocess. At higher frequency the so called fast dynamics is indimat@orising the Boson
peak as well as the fast relaxation.

The dominant relaxation process, theelaxation , is related to the macroscopic flow and
freezes at a finite temperatures, the glass transitiopebeturely. Aside from this process a
secondary relaxatiofiow = £ departs from ther branch at a temperature of about 20% above
Ty This relaxation displays an Arrhenius behaviour and passes unchtanrmegh the glass
transition. As already mentioned, tlwerelaxation is at the basis of the viscous flow of
polymers. Its relaxation function may be phenomenologically desciiye@d stretched

exponential function .
¢ Y
% (1) =exp{—[ J } )
Z-KWW

Tkww IS the Kohlrausch-Williams-Watts relaxation tiswed S < 1 the stretching exponent. To
a good approximatiorixww follows a Vogel-Fulcher temperature dependence

T (T) = exp{T ?T} 9)

The temperature offset in the denominator of thgoarnt leads to a divergencerni@uw at T,

a temperature belowy which, however, never is reached in equilibriurheTdielectric
relaxation is considered to be a result of pargafientations of molecular building blocks in
the substance. It is interpreted as a local a@t/ptocess, where the dipole or the bond vector
hops between positions separated by an activatienggE. Its relaxation time follows an
Arrhenius behaviour
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1,(T) =15 exp{%} (10)

Due to the disorder in the material, the activagoergie<€ are distributed around an average
valueE,. For the distribution function in general a Gaasss assumed.

g(E) = eXp(-(E_J—ZE")Z] (11)

Empirically it is found that the widtl(T) decreases with increasing temperature.

Though such processes have been investigated welplectroscopic techniques their
molecular origin is still unclear. Here we discassombined quasielastic neutron scattering
and MD simulation approach. Width their ability poovide space time resolution on the
proper scales these investigations contribute tordner understanding of the molecular
mechanisms behind these relaxations.

5.1 The structural or a-relaxation

As discussed above spectroscopic techniques réweaklaxation time and the shape of the
relaxation function at each temperature, while wvifie exception of some information on
rotational processes no spatial resolutions isigeal On the other hand via the dependence
on the momentum transfer, quasielastic neutrontescag (QENS) informs on the spatial
evolution of relaxation processes. As an examplguiei 4 presents the characteristic
relaxation times for a polyisobutylene melt at eliéint temperatures as the function of
momentum transfe®.

While in e.g. dielectric spectroscopy at each tawipee one characteristic time would be
revealed, QENS results in an ensembla@in(Q). These relaxation times exhibit a strong
dispersion which over a large range may be destiiyea power lawkww= Q3°[4]. Such a
dispersion is a signature for a diffusive procedsctv would be expected from the-
relaxation being at the basis of the macroscdpw properties. The relationship between the
shape of the relaxation function and @sdependence now allows to address the issue of
heterogeneity in the dynamics of undercooled liguathd connected with it, the deviations
from Gaussianity of the dynamic correlation funoto

There exists a long standing debate whether theicked exponential shape of tlme
relaxation function is a result of a superpositadrheterogeneous relaxation processes in a
material or whether it results from an intrinsioperty of the dynamical process.
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Fig. 4: Kohlrausch-Williams-Watts (KWW) relaxation timesixww Observed for
polyisobutylene at three different temperaturese $hlid lines demonstrate the power law
behaviour of the characteristic timaww = Q% wheregis the stretching exponent

Since a monotonous function can always be writkea haplace transform of a non-negative
function, the KWW function can easily be interpcetas arising from a superposition of
different simple exponential relaxations weightgdabbroad distribution of relaxation times

g(¢n7).

o(t) = exp[_[ TK:[NW jﬁj - jjg (¢tn7) exp{—lr) d/ nr (12)

This picture is usually known as the heterogeneous scenario.

The other extreme picture, the homogenous scenario considers thiatntiseirathe systems
relax identically but by an intrinsically non-exponential procésghis scenario, the mean

square displacement (MSD) is supposed to be sublinear in <11iﬁ(e)>=t/3. Using the
Gaussian assumption we may now compare Eq.[7] and Eq.[8]

_%2<r2(t)>:—( t jﬁ (13)

r KWW

resulting in a dispersion prediction for the Kohlrausch-Williams-Watts time .
Fn = Q (14

Thus in the homogenous scenario there exists a prediction conndwtinghape of the

relaxation function characterized by the stretching expogeand the dispersion of the
characteristic timaxww(Q). Thus, an investigation of th@ dependent spectra resulting from
the a-process in a polymer melt allows to scrutinize the issue ¢térdgeneous vs.

homogenous behaviour.
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Starting from a Gaussian correlation function, the leading tlengaare measured by the so
called non-Gaussianity parameter

-1 (15)

where(r® are moments of the selfcorrelation functiGy(r,t).

5.1.1 Neutron scattering experiments [5,6]

Figure 5 presents neutron spin echo data from a monodisperse pelyesgample (Pld3)
with deuterated methyl groups: -(&88H=C(CD;)-CH,)-,. For such a sample the scattering is
dominated by the high incoherent cross section of the hydrogens asetbitheeveals the
selfcorrelation function . Due to the deuteration of the meghglips effects from the methyl
group motions are avoided. The solid lines display fits with theich#d exponential
functions (Eq.[8]). The spectra qualitatively display the stidisgersion of th€ dependent
relaxation: while at lowQ the relaxation function only decays by about 25% at higher
values a full relaxation is observed. The lower part of FigypeeSents a spectrum obtained
with a backscattering instrument; for illustration also tkigeemental resolution function is
indicated. All data taken at different momentum transfers and tatopes were evaluated in
terms of stretched exponential functions revealing both the chasticttimes as well as the
respective stretching parameters.

Figure 6 displays the obtained relaxation times in the invésti@gaT regime. We note that
for PI the stretching parameter changes from al®uat0.4 atT = 280K to f=0.57 at
T = 340K. The solid lines in the upper part of Figure 6 displayptieglictions within the
homogenous scenario (Eq.[14])= Q. As may be seen, where experimentally accessible,
the corresponding relaxation times in the IQaegime follow well this prediction. On the
other hand abov€ 01A™ the times deviate from this behaviour and follow a weaer
dependence. In the lower part of Figure 6 all data are condenssthgggeamaster curve. This
is done first of all by exponentiation afww(Q) to the power of3. According to the Gaussian
prediction 7%,,, = Q” (Eq.[14]). In this way the effect of the changifis eliminated.
Secondly, the temperature dependence is removed in applying stufts cobtained from
dielectric spectroscopy relative to a reference temperagig = 300K in Figure 6).

Within experimental uncertainties all data collapse very niteby single master curve. @
dependence of?,,, is obtained at low crossing over to a weaker power lawcagaround
1.3A*. While at lowQ the dynamics of polyisoprene follows well the Gaussian prediction
indicating homogenous relaxation f@r> 1.3A" a cross over to a weak€ dependence

occurs indicating a non-Gaussian character of dhrelaxation . Indications for such a
crossover are also evident in Figure 4 for data on polyisobutylene.
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Fig. 5: Spectra obtained for PId3 (a) by the Julich NSE at 340K and Q = 0.10, 0.15, 0.20,
and 0.30A" (top to bottom), and (b) by IN13 at the ILL at 2’9And 300K. Solid lines

correspond to KWW descriptions wifh= 0.57 (a) andg = 050 (b). The dotted line shows
the IN13 instrumental resolution function obtained at 1.5 K
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Fig. 6: (a) Q dependence af, obtained for PId3 by IN13{: 260K; a: 280K; 4: 300K),

IN11lc (A: 280K; <>: 300K; O: 320K; O: 340 K) and Julich NSE spectromet®:(340K).

(b) Master curve built with the data in (a) (see the text). Streght solid lines display the Q
dependence expected from the Gaussian approximation . The dashed line shows the
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description of the master in terms of the anomalous jump diffusion m@ite[22]) with
%=0.42A .

5.1.2 Molecular dynamics simulations [7]

In order to achieve a deeper understanding of these experimestdts, atomistic MD
simulations are necessary. They were performed as describedtion 3 for a polyisoprene
chain ofN = 100 monomers at a temperatiire 363K. First of all such simulations provide
structural information in terms of the so called radial distrdsufunction or its counter part,
the static structure fact&Q) . In the case of amorphous polym&®) can be measured by
neutron diffraction using a fully deuterated sample, where afdgyens are replaced by
deuteriums. The cross section then follows from Eq.[5] taking the gosigctors at equal
times. Further information is achieved from experiments, wheretaop#he deuterons are
replaced by hydrogens. In this way different groups of atomsnapdasized and so called
partial structure factors are accessible. Figure 7 displagsnparison of simulated structure
factors for 4 differently labelled PI materials with the correspondingrempstal results. hPI
denotes a fully protonated material, dPI the fully deuterated ofé adBolyisoprene with the
protonated methyl group and the deuterated main chain and finallyadBfaterial with a
deuterated methyl group and a protonated main chain.

Fig. 7. Static structure factors for polyisoprene with different hd labellingl: fully
protonated material, dPI: fully deuterated material, d5PI: main chain deutérptdymer,
d3PI: methyl group deuterated polyisoprene. The solid lines are the reksulie MD
simulation [8].

In all cases we observe good agreement between the simstaieture factors and the
experimental counter parts indicating the basic correctneb® structure represented by the
amorphous cell.

In addition to structural features we can also investigatehehehe force field used in the
simulations reproduces the main vibrational properties of polyiso@eluav temperatures.
The vibrational density of states (VDOSY(E) may be obtained on the one hand from



Dynamics of Glass Forming Polymers B7.13

inelastic neutron scattering experiments [9]. Both for the rheptopp hydrogens as well as
for those from the main chain. From the MD simulations the vibraterdity of states can
be calculated in general as the spectral density of the velocity auto corralattor.

z(E)o [T e™(0) Y} d (16)

Figure 8 compares the experimental results withMBecalculation. As can be seen, there is
a good agreement between the simulation and theriexgntal data sets, at least in the energy
range E < 40meV, where experimental data are available. Béyihe neutron results the
simulatedZ(E) also shows maxima at higher energies. Though tquareffects certainly
affect the high energy range @E) the obtained maxima correspond rather well with
different infrared bands reported for PI. Thusaddition to the amorphous structure also the
vibrational properties of Pl are well depicted bg simulations.

Z(E)

P e

P 1 IO S |
0 50 100 150 200
E (meV)

Z(E)

R R

0 50 100 150 200
E (meV)

Fig. 8: Vibrational density of statesof the methyl group hydrogens (a) and main chain
hydrogens (b) as obtained for Pl from inelastic tn@u scattering measurement®) and
from our MD simulations (solid lines). The arrows® the energy of some infrared bands.

From the atomic trajectories in the simulationsoatise selfcorrelation function may be
calculated directly. Assuming isotropic behavidus function is given by

N

6,(r) = & (3 ofr i) - (0] a7)

i=1
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wherer is the radial distance from a given partidieis the number of particles amdis the
position vector of th&'s particle. The angular brackets denote canonical avera@ifrgt) is
related to Eq.[6] through Fourier transformation. In the simplest tas self correlation
function can be approximated by a Gaussian function.

GEs(r t) = [i;)rzexp[—a(t) r’] (18)

This form holds rigorously for an ideal gas, for harmonic crystdlfar a system where the
motion of the atom is governed by Langevin equations. First ordertidegidrom this form
are characterized by the above mentioned non-Gaussianity parame{€qg.[15]). If G4(r,t)

is strictly Gaussiang,(t) is 0 and(r’(t)) = 3/(2a(t)).

Figure 9 displays the simulated Fourier transformed selfcdomeldunction for different
momentum transfer®. S(Q,t) exhibits a two step decay which is characteristic of glass
forming supercooled liquids in general. The initial decay takesepat times below 1ps and
corresponds to the so called fast dynamics in glass formirtgriala. It is outside the
observation window of the discussed experiments and therefore wéeul here on the
slower decay o which relates to ther-relaxation. The solid lines in Figure 9 present fits
with a stretched exponentials to the data. ThereQydapendent prefactor was considered in
order to account for the initial fast decay.

Sself(Q , t)

0 10° 10" 14 10 10 10 1
t (ps)

Fig. 9: Incoherent intermediate scattering function obtained by MD simulation for
polyisoprene at T = 363K. The structure factor is given from above for Q £.6.30.7, 1.0,
1.5, 2.0, 2.5, 3.0, 4.0 and 5.6A0or the main chain protons for polyisoprene. The solid lines
are the curves corresponding to a fit of the data with a stretclkpdnentials for times

t >5ps.

Figure 10 displays the resultirgww (Q). As the experimental results which were displayed
in Figure 6, also the simulated data display a clear crossfravera Gaussian regime at low
Q to a non-Gaussian range at higerFigure 10b compares the simulation results with the
condensed experimental data of Figure 6. Thereby again we have eigtedeait data with
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the stretching exponemt in order to remove the influence of the different stretchinghef t
relaxation curves. As may be seen, both the experimental asawethe simulated
characteristic times agree exceptionally well.

In order to address the question of Gaussianity more deeplynth&agon results were also
used in order to calculate the non-Gaussianity parametdiEq.[15]) which may be obtained
from calculating the moments of Eq.[17]. The results are displayEigure 11 together with
the mean square displacement of the main chain prdté(ty. displays three typical dynamic
ranges:

(i) a microscopic regime until about 1ps,

(i) a cross over regime until about 10ps and

(i) a sublinear time dependence extending until the limit of the simulations (20ns).

10 ———— — 1025-- —
) ;
Sl BN (@ e |
) S 10}
10k \) ?-“-_
c i % € |
§ 10| | Gaussian % § 1
10[ . [
% 0.1f
1 1 o1 N MR |
0.2 0.4 0.60.81 3 0.1 1
QA" QA™

Fig. 10: (a) Dispersion of the simulated Kohlrausch-Williams-Watts timgw (Q) as a
function of Q. The solid line displays tl@*"” law valid for homogenous dynamics. (b)

Comparison with the experimental master curve (Figure 6b). For thipgger the riww
times were exponentiated to the power/fThe solid line indicates a ®law. Open
symbols: simulation, full symbols: experimental points

ao(t) displays a double peak structure, where the short time maxicoar@sponds to the
microscopic regime ofr(t)) and another is centered in the cross over regime of the MSD.
While the short time peak is atom specific and appears tie teldhe librational motions of
the CH bonds, the second peak @{t) shows a similar behaviour to that observed in
computer simulations of Lennard-Jones systems. It shows a maxititim 4ps centered in

the cross over regime &f(t)). Once the sublinear behaviour of the MSD is well established
a(t) decreases to its long time limit zero.
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Fig. 11: Time evolution off?) (<) and a» (O) obtained from the simulations at 363K for the
main chain protons. The anomalous jump diffusion med#i the parameters deduced from

the experimental data at 320K yields the functions displayed as lines: sqfid)fand dash-
dotted fora; [5,6].

Tww (PS)

02 04 06081 1 3
_ 0@

Fig. 12: Momentum transfer Q dependence of the characteristic tim@(Q) of the a-
relaxation obtained from the slow decay of the incoherent intermedgtteraeg function of

the main chain protonsJ). The solid lines through the points show the Q dependences of
kww(Q) indicated. The estimated error bars are shown for two Q valuesQTdependence

of the value of the non-Gaussian parametern@iw(Q) is also included 4) as well as the
static structure factor S(Q) on the linear scale in arbitrary sinfthe horizontal shadowed

area marks the range of the characteristic tingggr . The values of, and t* are indicated
by the dashed-dotted and dotted lines, respectively (see the tene fiefinitions of the time

scales). The temperature is 363K in all cases.
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How to relate the non-Gaussianity parameter with the obs€napendence ofiww? For

this purpose we compare the observed dispersi@n(Q) with the value ofa, at the
correspondindQ-dependent correlation time. This comparison is displayed in Fiurét

low Q where we observa= Q% the value ofa, is very low indicating a Gaussian
correlation function. Aroun® 00.8 A* o is rising and reaches a value of about 0.25 in the
regime where the crossover @ occurs. The higl) non-Gaussian regime expresses itself
both in strong deviations from ti@?” law as well as in high values of. For illustration we
have also included the structural relaxation timée. the time at which the structure factor
at its maximum relaxes, as well as the range of typid4R relaxation times which may be
computed from bond vector relaxations. Finally, we note that tymiealaxation times
observed with dielectric spectroscopy correspond to correlatios timeerved with neutrons
at aQ value of abouf) = 1A™. Thus, spectroscopic techniques always relate to characteristi
times in a range where the non-Gaussianity parameter wli®ambn-negligible. This may
explain why e.g. NMR techniques reveal heterogeneous contributionis arei@bsent in the
low Q neutron data [10].

5.1.3 Interpretation within a simple model [5,6]

As was outlined above the characteristic times from the diffespectroscopic techniques are
observed in a time range where the non —Gaussianity parametealready non-negligible
and therefore those results should be more sensitive to heterogeneamscdy®n the other
hand we note that in most of the studies which invoke the concept ainttyheterogeneity,
the origin of non-vanishing values ot is usually concentrated with the origin of the non-
exponential behaviour of therelaxation , i.e. the stretching of the relaxation function.

In the following we will show that within a simple model considgrfinite jumps of the
atoms in thea-process all observed features may be naturally explained.

In jump diffusion models finite jump length tend to cause a benditigeadispersion for the
diffusive relaxation times away from ti@? which is valid for simple diffusion at lo®. The
jump diffusion model assumes that an atom remains at a giveforsiéetime 1, where it
moves around a center of equilibrium. Aftgrit moves rapidly to a new position located at a

distance/ with respect to the original side. For such a process the incohetemhediate
scattering function assumes the form

s(Q9)= {Q G- o(;ﬂ (=1 @s)

where b(Q) depends on the particular jump geometry &ud is the vibrational MSD.
Assuming randomly oriented jump direction with apenential distribution of jump lengths

fo(¢) = £ exp[—ij (20)

where/, is the most likely jump distance.
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262
b(Q)= [ A (21)

1+ Q)

We note that foQ¢, — 0, b(Q) - Q¢;. In that limit S3;" (Q 1) has a Gaussian form with

an associated MSD that increases linearly with titneglass forming systemS*{(Qt)
exhibits the form of stretched exponential (Eq]Z,#n incoherent scattering function
analogous to that for the simple jump diffusion .(E8]) may be constructed by introducing

the stretching in the time dependent pgft<(l). In this way in the limitQ/, — O the
Gaussian approximation is recuperated (see Eq$4[)3out now a sublinearly increasing
MSD would be obtained for sma) values as observed from experiments and simukation
By comparing Eq.[7] and [19] we obtain fadww

1/
1
T (Q) = 7 {1 + Qz—%} (22)
As displayed in Figure 6b, Eq.[22] provides a ga@scription of the experimental results
(dashed line). Al = 300K we findz = 28ps and, = 0.42A, the latter being independent

within the uncertainties. Obviously the experiméptabservedQ dependence ofiww iS
compatible with a scenario of sublinear diffusiofor the segmental relaxation with an

underlying distribution of elemental jump length&hwa most probable value @§ ~ 0.4A.
From Figure 12 we have seen that deviationsgf(Q) from the Gaussia®?” law set in if
ww(Q) reaches a time regime whargt) becomes significantly different from zero.

Within the jump diffusion approacti, may be calculated straight forwardly. Startingmiro
Eq.[19] and inserting Eq.[21] we may expand witlspect to Q°/2. The result may be
directly compared with a general expression foretkgansion o8°(Q,t) with respect ta.

Sself(Q t) - ex{_@ g+ % g < Iz( t)>2 + ] (23)
revealing

ez e

and
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B
720 (t]
— z-0

a,(t) = [2<u2> o (:ojﬁr (25)

Using the experimental value fqu®, @, and the mean square displacement may be
calculated. The results are displayed in Figuread kolid and dashed dotted lines. We note
that for simulation times longer than microscopimes the simple models reveals very
similar results as the MD simulations. This goodeagnent suggests that at least to a
reasonable approximation the non-Gaussianity obdefer thea process at short enough
times finds a simple explanation in terms of a mdalr diffusion process with a distribution
of finite jump length. This process is heterogerseat short length scales and (hiGh
becomes homogenous at larger scales pw

5.2 Local dynamics [11]

In this chapter we will show that a real space ysigl of the correlation functions obtained by

MD simulations may reveal more clear and definggsuits than an evaluation in Fourier

space. We demonstrate this approach in order tiisize contradictory experimental results

on polybutadiene (PB) in the neighbourhood of i&sg transition. PB is a simple main chain

glass forming polymer with a glass transition terap@e Tg= 178K. Aside of thea-

relaxation several additional processes were ifishexperimentally. At 200K the following

observations are reported:

= dielectric spectroscopy reveals a secondary retaxatith a characteristic time of 430ns.

» from the damping of longitudinal Brillouin modesreélaxation process at a time of 2ns
was deduced.

» the dynamic structure factor§Q,t) from NSE spectroscopy indicated a secondary
relaxation at 19ns.

» depolarized Raman scattering indicates a relaxatiooess at 0.3ns.

Simulations were performed on PB exhibiting a nmstmacture as in the experiment (39% cis,
58% trans, 8% vinyl; see Figure 14) using again @hwrphous cell protocol. This time
equilibration was performed first & + 100K, then the temperature was gradually lowéved
200K performing density and energy equilibrationg@and finally a 100ns MD simulation for
further equilibration. The presented MD data steomfa 160ns run. Finally a further 300ns
run confirmed the absence of aging phenomena.

The simulations were validated in comparing todbkective dynamic structure factd(Q,t)
(see Eq.[5] where a sum over all atoms specieschbe performed). Figure 13 displays the
comparison between simulation and the correspond®Bf experiment at 200K for different
Q values. As may be seen the simulations well repzedhe experimental findings.
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Fig. 13: Dynamic structure factorobtained for PB at 200K by NSE (full symbols) and M
simulations (empty symbols). Circles: 1’'6Aquares: 1.9A and triangles: 2.7A. The NSE
amplitudes have been corrected for bandpass effects
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Fig. 14: Radial selfcorrelation functiorfor the double-bond hydrogens of the trans unijs (a
and the cis units (b) at 200K and different timasiradicated. For clarity, the origins are
shifted to the levels displayed by the horizontatet! lines. For comparison in (b) we also
display the results at t=1psx) The solid lines show the description obtained thg
proposed model (see text). For t = 60000ps in (b)have magnified the curves such as to
show the effect of a distribution of jump distanoesthe quality of the data description
(dashed line).
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Now we focus on the hydrogen selfcorrelation fumedi which may be measured by
incoherent neutron scattering in reciproc@l space. Here we will evaluate the MD
simulations directly in real space. Figure 14 digpl the radial selfcorrelation function
471°G4r 1) at different times for the two type of hydrogdtes showing the most diversive
behaviour:

(a) at the double bond in the trans conformation,Ghfiand

(b) at the double bond in cis conformation (LH

Their different dynamic behaviour is striking. Asifom some diffusive broadening already
at early times (100ps) the selfcorrelation functidor 1H.ans (Figure 14a) develops a well
resolved second maximum raf] 2.7A that displays a stable growth with time. Ewelution

of this peak indicates a well defined hopping psscehich is significantly faster than the
overall diffusion. In contrast the selfcorrelatiimction for 1H;s (Figure 14b) is dominated
by the overall diffusive broadening which as forydidleads to a slight shift of the first peak
with time. In addition at later timest ¥ 3000ps) a weak shoulder mf13-4A evolves
indicating a much slower jump process.

We now consider a simple model depicting the esslefieiatures of the observed dynamics.
We consider the hydrogen atoms hopping in an asynursouble well potential . At the
same time it undergoes sublinear diffusion . Thepimy process is characterized by a jump
distanced and a distribution of hopping times which is mdellby a stretched exponential
with a characteristic timen,, and a stretching exponeffo,. The sublinear or anomalous
diffusion is represented by diffusion coefficidbtand the stretching exponefii. Finally,
the asymmetry of the potential is depicted by theranetry energe. In terms of this model
the selfcorrelation function may be written as

Bnop t
_ . _?Oplghop i
G,(rt)=|m +/7§+2f71f72e[“°J G" (ry)+ 29, | 1- e[ | G (r=dd ¢

B

-1
With the thermal occupation facters= {1+ exp[— kAE'H N, =1, ex{—%} and the

r2 ~

_(4(Dt)ﬁdm +02) v

ois the width of the initial Gaussian distributions (actually thaiributions were used which
were kept fixed later on). The solid lines in Figure 14a and teptesfit of Eq.[26] to the
data. Over the full time range the simple model describesrthéagion data very accurately.
The strong separation in time scales allows a separate dtaldf the overall sublinear
diffusion characteristics and the hopping process.

self correlation function for anomalous diffusi@f" (r,t) = ex
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The fit reveals an average jump distance fog.34bf 2.5A and for 1s of 3+1 A. The

evolving jump times are<r,‘{§gs> = 2.6ns and <r,ffp> = 230ns. The stretching exponents

amount to £° = 0.5 and ,B,ffp = 0.6 indicating broad distributions of hopping times.

Finally, the fit reveals a weak asymmetry of theillle well potentialAg [(01.2ksT for 1Hyans
The average jump time for Lkks is in the range of the experimental findings frone
damping of the Brillouin modes and the secondatgixedion time from NSE. The jump
distancedyans= 2.5A corresponds well to conformational jumpstieé 1H.s atom. The
hopping time for a 1kL is much longer and remarkably close to ftheslaxation time. We
note that the cis unit carries the electric dipmlement. Aside of the hopping motion the
broadening of the two peaks in the self correlafiomction reveals in anomalous diffusion

process withd = 2.21107 A" /ps and a stretching exponefi = 0.4.

Fourier transformation of Eq.[26] yields the dynarsiructure factor for self motion.

5(Q9= exp{—QZfT ex;{- @ ( oy } x

. . Brop
1+ 05+ 204, Sm(ggd) + 2/7{72(1- —S'négd) ] exr{-(%] ]

Figure 15 displays the prediction of Eq.[27] foveel Q values and compares them with the
simulated structure factors . Obviously, the simpiedel reveals an overall very good
description of the MD data and thus depicts allandiynamic features of the system. While
in the real space the local jump dynamics is veell separated in time from the anomalous
diffusion (a-relaxation) in Fourier space no evidence for pasgte process other than an
anomalous stretching appears. Finally, the dottezs Ipresent predictions for the anomalous
diffusion neglecting the hopping term. At &) values strong deviations between the
simulated structure factors and the predictedusiifin structure factors are evident. This
holds even for lowQ values where common wisdom would not suspect afiyence from
local motions. Figure 15 also includes a comparigdh neutron spin echo data on PB
which were obtained at 280K. There the anomalotfasibn is the overwhelming process
and dominates strongly any local dynamics .

(27)

The insert in Figure 15 displays tiedependent relaxation times obtained from a fihvait
stretched exponential yielding a stretching expooéig = 0.5. As discussed in section 4.1
anomalous diffusion connects the shape of the aétax function with the&) dispersion of the
relaxation time asr,,,, = Q ~*" , a relation well fulfilled by the data. In order compare

with the simulations we first construct a masterveuin scaling the time variable wit®*.
Then we shift ther time scale with the known viscosity shift factor PB. The resulting data
points are also displayed in Figure 15 - the rasutunning. Without any further adjustment
the shifted data agree with a predicted diffusimacture factor g-relaxation) obtained from
the modellisation of the simulation results. Theerimental data however, do not agree with
the fully simulated structure factor which inclgdde local dynamics . Thus, in a system
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with important internal degrees of freedom dispigya dynamics well separated from the
overall motional processes, the dynamics of sudjreds of freedom have an important
impact on the selfcorrelation function even in tbe Q regime (see Figure 18 = 0.5A*
data).
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Fig. 15: S(Q,t) obtained from the MD simulations at 200K ftf;ans (Squares, Q = 1A and

2AY and 1H; (circles, Q = 0.5& and 1AY) atoms. The prediction of the model is shown by

the solid lines and the dotted lines represent d¢betribution of the diffusion. The insert

shows the Q-dependence of the characteristic twbésined from the NSE results at 280K;

the solid lines is a description in terms of & Qower law. The triangles represent the time

temperature shifted NSE data corresponding to Q32 (see text).

10-! 101

6 Summary and conclusions

In this lecture we have demonstrated that atomMix simulations and neutron scattering
reveal strongly related information which propeéyploited leads to a deeper insight into
atomic motions.

From the combination of atomistic MD simulationsda@xperiments ther-relaxation in
polyisoprene has been scrutinized and a simplengicf the motional process underlying the

a-relaxation evolved.

= Atlow Q corresponding to large distances we deal withradgenous sublinear diffusion
process. This result is by now supported by a nurobeletailed investigations into the
relationship between the shape of the relaxatiorctian and theQ dispersion of the
characteristic relaxation times also in other paysn

= At higherQ the relationship between the shape and the disperslation demanded by
Gaussianity breaks down and a weaker dispersifoursl.

» This crossover in th€ dispersion ofrxww is related to a strong increase of the time
dependent non-Gaussianity parametes(t). It has been shown that typical relaxation
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times measured with spectroscopic techniques argedo this crossover regime and
therefore are effected by heterogeneity effects.

» The existence of the crossover clearly shows thatstretched exponential shape of the
relaxation function cannot be explained entirelyhieyerogeneity but depending on length
scale relates to intrinsic sublinear diffusion gasses.

* In terms of a minimal model the changi@gdispersion may be explained in terms of a
sublinear jump diffusion model , featuring a distition of jump lengths. The distribution
thereby seems to vary little with temperature. Fréms model a non-Gaussianity
parameter a»(t) may be calculated which agrees well with the $athon.

» This good agreement suggests that at least tosamable approximation the apparent
non-Gaussianity observed for teprocess at short enough times is indeed a reéalt o
local diffusion process with a distribution of fi@jump length.

On glass forming polybutadiene close to the gleamssition temperaturéy we have shown
atomistic simulations and validated them in compariwith dynamic structure factor
measurements. We have demonstrated that in cagelladeparated time scales the nature of
the local dynamics is much more clearly revealdle selfcorrelation function is evaluated
in real space.

» There the radial selfcorrelation function revatdslf in terms of well separated diffusive
and hopping contributions.

* In reciprocal space the two processes cannot binglisshed and give rise to an
anomalous stretching of the relaxation functionefhe fullQ regime the corresponding
structure factor is strongly effected by the |lggad motions.

The approach demonstrates that the proper combmatireal space analysis of simulations
and neutron scattering experiments has the poteatigield deep insight into motional
processes which are hidden if one only consideustsire factors in Fourier space.
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