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1 Introduction 
Neutron scattering and computational techniques are highly complementary for one simple 
reason. From a model of atomic positions possibly as a function of time it is straight forward 
to calculate the expected neutron scattering spectrum and to compare it to experimental results 
on an absolute scale. There are no unknown or difficult to calculate coupling functions, 
neutron scattering therefore provides the best method for testing and benchmarking 
computational methods like e.g. Monte Carlo and molecular dynamic simulations.  
 
In this lecture we will first address some principles of neutron scattering, will then briefly 
describe molecular dynamic simulations done by commercial software and then address 
results on primary and secondary relaxations of glass forming polyisoprene and 
polybutadiene. Using measurements of the quasielastic neutron spectra as a function of 
momentum transfer, we will benchmark computer simulation and then gain deeper insights 
into the underlying dynamics in exploiting the detailed information provided by the space 
time dependent trajectories available in computer simulation. In the case of the secondary 
relaxation we will use concepts developed to model scattering spectra now in real space, in 
order to extract more detailed insight from simulated correlation functions.  
 
 

2 Neutron scattering principles 
The velocity of neutrons has the same order of magnitude as the atomic velocities in 
condensed matter. Therefore even slow relaxational motions are detectable by a velocity 
change of the neutron. The spatial character of the motion then is inferred from the angular 
distribution of the scattered neutrons.  
 
In general scattering of thermal neutrons yields information on the sample by a measurement 
and analysis of the double differential cross section . 
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I.e. the intensity of scattered neutrons with energy Ef into a given direction θ. The energy 
transfer, i.e. the difference of kinetic energy before and after scattering ∆E = Ef – Ei relates to 

E
Eω ∆=

h
. 

 
The momentum transfer hQ respectively the scattering wave vector is given by Q = ki – kf 
where ki and kf are the wave vectors of the incoming and outgoing (scattered) neutrons. They 

relate to the neutron wave lengths ,
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the energy ∆E and ω can be determined by measurements of the neutron velocities νi and νf. 
Note that for all problems we will discuss in this lecture ki ≅ kf  and therefore 
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can be assumed. Finally, bi denotes the scattering length of atom nucleus i and ....  is the 

assemble average. 
 
The unique features of neutrons that render them into a powerful tool for the investigations of 
polymers are  
� the isotope and spin dependence of bi, 
� typical wavelength of cold and thermal neutrons, that match molecular and atomic distances 

and  
� even slow motions of molecules cause neutron velocity changes that are large enough to be 

detectable. 
 
In particular neutron spin echo  spectroscopy is able to resolve changes ∆ν of the order of 10-5 

νi. 
 

 
In order to proceed further we introduce the intermediate scattering function as the Fourier 
transform of S(Q,ω): 
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The intermediate scattering function directly depends on the (time dependent atomic 
positions). 
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Note that Eq.[5] relates the experimental accessible scattering function directly to the time 
dependent atomic coordinates which are accessible to computer simulation, establishing 
thereby the quoted important relationship between simulation and neutron scattering.  
 
Considering the ensemble average of Eq.[1] we have to consider that chemically equivalent 
atoms may have a number of different scattering lengths that are randomly distributed over 
the ensemble of all atoms of the same kind in the sample. Most important in the present 
context is the variation due to the spin dependent component of the proton scattering length, 
where is the average value 〈bi〉 leads to the coherent scattering, the fluctuating part bi - 〈bi〉 
leads to incoherent scattering i.e. scattering, which is not giving rise to constructive 
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interference and therefore yields as an additional contribution, the atom-atom self correlation 
function.  
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Note, that in Eq.[6] the coordinate of the same atom appears at different times. Therefore self

iS  

informs about the motion of a given atom. Applying the Gaussian approximation  i.e. 
assuming that the atomic displacement distribution functions are Gaussian, Eq.[6] transforms 
into  
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where ( )2
ir t  is the mean square displacement of atom “i”. This quantity again is directly 

accessible to simulations and facilitates a direct comparison between neutron scattering and 
simulation results. In this lecture we will only discuss isotropic samples. Therefore in the 
following we only need to consider the magnitude of Q but not its direction. 
 
We further remark that (i) the scattering length of hydrogen and deuterium are very different, 
facilitating a specific labelling of certain molecules or molecular components and (ii) that the 
magnitude of the incoherent scattering from hydrogen is significantly larger than that of 
deuterium or carbon and therefore outside the range of small angle scattering, the incoherent 
scattering from hydrogen dominates the spectra and providing a means to selectively 
emphasizing certain molecules or part of molecules by specific hydrogenation or deuteration. 
 
 

3 Simulations procedures 
All simulations which are discussed in this lecture were carried out by using the INSIGHT 
(INSIGHT II.4.0.0P version) and the Discover-3 module from Molecular Simulations inc. 
with the Polymer Consortium Force Field [1]. The functional form of this force field include 
terms that can be divided into two categories. Valence terms including diagonal and off-
diagonal cross coupling terms and non-bonded interaction terms.  
� The valence terms represent internal coordinates of the bond, angle, torsion angle and out 

of plane angle and the cross coupling terms include combinations of two or three internal 
coordinates. These cross coupling terms are important for predicting vibrational 
frequencies and structural variations associated with conformational changes. The 
analytical expression employs quartic polynomials for bond stretching and angle bending 
and a three term Fourier expansion for torsions.  

� The non-bonded interaction terms include a columbic function for the electrostatic 
interaction and a Lennard-Jones 9-6 potential function rather than the more constant 
customary Lennard-Jones 12-6 potential for the van der Waals term.  

 
The model systems were build by means of the well known amorphous cell  protocol [2]. The 
amorphous cells were constructed with a given density and periodic boundary conditions are 
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assumed in order to model a bulk system. In the next step the energy of the so obtained 
structure was minimized and then subsequent dynamic runs assure a further equilibration of 
the structure. Typical MD runs extended between 1ns and 100ns with collecting data every 
one hundreds of a picosecond. The results of the MD runs were validated in comparing with 
actual neutron scattering results as we will discuss later. 
 
 

4 Neutron scattering techniques 
It is a task of inelastic neutron scattering to measure simultaneously the energy transfer hω 
and the momentum transfer hQ of the scattered neutrons. In the following we will briefly 
discuss two different techniques which are important for this lecture, namely backscattering  
and neutron spin echo . 
 
Neutron backscattering exploits the fact, that at a scattering angle of 2θ = 180°C the selected 
wavelength in reflection from a crystal depends only to second order on the divergence of the 
incoming beam. Choosing backreflection from a perfect crystal in combination with relaxed 
collimation of the neutron beam, leads to an acceptable intensity and energy resolutions in the 
order of 10-4. Figure 1 displays the general layout of the backscattering  spectrometer (BSS) at 
the FRJ-2 reactor in Jülich. The neutrons are monochromatized by a perfect silicon crystal, 
mounted on a Doppler driver which similar as in Mößbauer experiments varies the incident 
energy of the neutrons by a Doppler shifting. These monochromatized neutrons are deflected 
by a graphite crystal and directed towards the sample. The analyzer crystals are mounted on 
spherically hollowed plates with a radius of curvature such that they focus the reflected 
neutrons into detectors which are set up behind the sample. In this way, a large solid angle is 
covered on the analyzers side. The typical resolution achieved with this instrument is in the 
order of 1µeV.  
 

 
Fig. 1: Schematic sketch of the Jülich backscattering  instrument BSS. 
 
While in backscattering  the energy transfer at the sample is determined by first measuring the 
energy of the incident neutron and thereafter that of the scattered neutron taking the 
difference, the unique feature of neutron spin echo (NSE)  is its ability to determine energy 
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changes of neutrons during scattering in a direct way [3]. NSE measures the neutron 
velocities of the incoming and scattered neutrons utilizing the Larmor precession of the 
neutron spin in an external magnetic field. Since the neutron spin vector acts like the hand of 
an internal clock attached to each neutron which stores the result of the velocity 
measurements on the neutron itself, this measurement is performed for each neutron 
individually. Therefore, the incoming and outgoing velocities of one and the same neutron 
can be compared directly and a velocity difference measurement becomes possibly. In this 
way, the energy resolution and the monochromatization of the primary beam are decoupled 
and an energy resolution in the order of 10-5 can be achieved with an incident neutron 
spectrum of 20% bandwidth. Figure 2 displays a photo of the Jülich NSE instrument, the 
salient features are the two large magnetic coils providing the Larmor precession fields before 
and after the sample.  
 

 

Fig. 2: Display of the Jülich Neutron Spin Echo  instruments featuring the main Larmor 
precession coils and the sample position in between them. On the far right side the analyzer 
system and the detector are visible. 
 
We note that NSE is a Fourier technique and provides directly the intermediate scattering 
function S(Q,t) where the Fourier time t is proportional to the applied magnetic field and the 
third power of the wave length.  
 
 

5 Relaxation processes in polymers 
The classical relaxation processes in polymer, the α-  and β-relaxations have been studied 
since more than 50 years by spectroscopic techniques like dielectric spectroscopy, mechanical 
spectroscopy and NMR. Figure 3 displays a typical outcome of such experiments for the case 
of polybutadiene (PB) (-CH2-CH=CH-CH2-)n.  
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Fig. 3: Relaxation map for polybutadiene. Solid line: α-relaxation , dashed line: secondary 
β-process. At higher frequency the so called fast dynamics is indicated comprising the Boson 
peak as well as the fast relaxation. 
 
The dominant relaxation process, the α-relaxation , is related to the macroscopic flow and 
freezes at a finite temperatures, the glass transition temperature Tg. Aside from this process a 
secondary relaxation βslow ≡ β departs from the α branch at a temperature of about 20% above 
Tg. This relaxation displays an Arrhenius behaviour and passes unchanged through the glass 
transition. As already mentioned, the α-relaxation  is at the basis of the viscous flow of 
polymers. Its relaxation function may be phenomenologically described by a stretched 
exponential function . 
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τKWW is the Kohlrausch-Williams-Watts  relaxation time and β < 1 the stretching exponent. To 
a good approximation, τKWW follows a Vogel-Fulcher temperature dependence 
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The temperature offset in the denominator of the exponent leads to a divergence to τKWW at T0, 
a temperature below Tg which, however, never is reached in equilibrium. The dielectric β-
relaxation is considered to be a result of partial reorientations of molecular building blocks in 
the substance. It is interpreted as a local activated process, where the dipole or the bond vector 
hops between positions separated by an activation energy E. Its relaxation time follows an 
Arrhenius behaviour  
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Due to the disorder in the material, the activation energies E are distributed around an average 
value E0. For the distribution function in general a Gaussian is assumed. 
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Empirically it is found that the width σ(T) decreases with increasing temperature. 
 
Though such processes have been investigated well by spectroscopic techniques their 
molecular origin is still unclear. Here we discuss a combined quasielastic neutron scattering 
and MD simulation approach. Width their ability to provide space time resolution on the 
proper scales these investigations contribute to a further understanding of the molecular 
mechanisms behind these relaxations. 
 
 

5.1 The structural or αααα-relaxation   
As discussed above spectroscopic techniques reveal the relaxation time and the shape of the 
relaxation function at each temperature, while with the exception of some information on 
rotational processes no spatial resolutions is provided. On the other hand via the dependence 
on the momentum transfer, quasielastic neutron scattering (QENS) informs on the spatial 
evolution of relaxation processes. As an example Figure 4 presents the characteristic 
relaxation times for a polyisobutylene melt at different temperatures as the function of 
momentum transfer Q.  
 
While in e.g. dielectric spectroscopy at each temperature one characteristic time would be 
revealed, QENS results in an ensemble of τKWW(Q). These relaxation times exhibit a strong 
dispersion which over a large range may be described by a power law τKWW ≈ Q-3.6 [4]. Such a 
dispersion is a signature for a diffusive process which would be expected from the α-
relaxation  being at the basis of the macroscopic flow properties. The relationship between the 
shape of the relaxation function and its Q-dependence now allows to address the issue of 
heterogeneity in the dynamics of undercooled liquids and connected with it, the deviations 
from Gaussianity of the dynamic correlation functions.  
 
There exists a long standing debate whether the stretched exponential shape of the α-
relaxation function is a result of a superposition of heterogeneous relaxation processes in a 
material or whether it results from an intrinsic property of the dynamical process. 
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Fig. 4: Kohlrausch-Williams-Watts (KWW) relaxation times. τKWW observed for 
polyisobutylene at three different temperatures. The solid lines demonstrate the power law 
behaviour of the characteristic time. τKWW ≈ Q-2/β where β is the stretching exponent 
 
Since a monotonous function can always be written as a Laplace transform of a non-negative 
function, the KWW function can easily be interpreted as arising from a superposition of 
different simple exponential relaxations weighted by a broad distribution of relaxation times 
g(lnτ). 
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This picture is usually known as the heterogeneous scenario. 
 
The other extreme picture, the homogenous scenario considers that the atoms in the systems 
relax identically but by an intrinsically non-exponential process. In this scenario, the mean 

square displacement (MSD) is supposed to be sublinear in time ( )2r t t β≈ . Using the 

Gaussian assumption we may now compare Eq.[7] and Eq.[8] 
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resulting in a dispersion prediction for the Kohlrausch-Williams-Watts time . 
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 (14) 

 
Thus in the homogenous scenario there exists a prediction connecting the shape of the 
relaxation function characterized by the stretching exponent β and the dispersion of the 
characteristic time τKWW(Q). Thus, an investigation of the Q dependent spectra resulting from 
the α-process in a polymer melt allows to scrutinize the issue of heterogeneous vs. 
homogenous behaviour.  
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Starting from a Gaussian correlation function, the leading deviations are measured by the so 
called non-Gaussianity parameter  
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where 〈r2n〉 are moments of the selfcorrelation function  Gs(r,t). 
 
 
5.1.1 Neutron scattering experiments [5,6] 
Figure 5 presents neutron spin echo  data from a monodisperse polyisoprene sample (PId3) 
with deuterated methyl groups: -(CH2-CH=C(CD3)-CH2)-n. For such a sample the scattering is 
dominated by the high incoherent cross section of the hydrogens and therefore reveals the 
selfcorrelation function . Due to the deuteration of the methyl groups effects from the methyl 
group motions are avoided. The solid lines display fits with the stretched exponential 
functions   (Eq.[8]). The spectra qualitatively display the strong dispersion of the Q dependent 
relaxation: while at low Q the relaxation function only decays by about 25% at higher Q 
values a full relaxation is observed. The lower part of Figure 5 presents a spectrum obtained 
with a backscattering  instrument; for illustration also the experimental resolution function is 
indicated. All data taken at different momentum transfers and temperatures were evaluated in 
terms of stretched exponential functions  revealing both the characteristic times as well as the 
respective stretching parameters.  
 
Figure 6 displays the obtained relaxation times in the investigated Q-T regime. We note that 
for PI the stretching parameter changes from about β = 0.4 at T = 280K to β = 0.57 at 
T = 340K. The solid lines in the upper part of Figure 6 display the predictions within the 
homogenous scenario (Eq.[14]). τ ≈ Q-2/β. As may be seen, where experimentally accessible, 
the corresponding relaxation times in the low Q regime follow well this prediction. On the 
other hand above Q ≅ 1Å-1 the times deviate from this behaviour and follow a weaker Q 
dependence. In the lower part of Figure 6 all data are condensed to a single master curve. This 
is done first of all by exponentiation of τKWW(Q) to the power of β. According to the Gaussian 
prediction 2

KWW Qβτ −≈  (Eq.[14]). In this way the effect of the changing β is eliminated. 

Secondly, the temperature dependence is removed in applying shift factors aT obtained from 
dielectric spectroscopy relative to a reference temperature TR

 (TR = 300K in Figure 6).  
 
Within experimental uncertainties all data collapse very nicely to a single master curve. A Q-2 
dependence of KWW

βτ  is obtained at low Q crossing over to a weaker power law at Q around 

1.3Å-1. While at low Q the dynamics of polyisoprene follows well the Gaussian prediction 
indicating homogenous relaxation for Q > 1.3Å-1 a cross over to a weaker Q dependence 
occurs indicating a non-Gaussian character of the α-relaxation . Indications for such a 
crossover are also evident in Figure 4 for data on polyisobutylene. 
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Fig. 5: Spectra obtained for PId3 (a) by the Jülich NSE at 340K and Q = 0.10, 0.15, 0.20, 
and 0.30Å-1 (top to bottom), and (b) by IN13 at the ILL at 2.9Å-1 and 300K. Solid lines 
correspond to KWW descriptions with β = 0.57 (a) and β = 050 (b). The dotted line shows 
the IN13 instrumental resolution function obtained at 1.5 K 
 
 

ττ ττ K
W

W
(n

s)
ββ ββ /

a T
ττ ττ K

W
W

(n
s)

ττ ττ K
W

W
(n

s)
ββ ββ /

a T
ττ ττ K

W
W

(n
s)

 
Fig. 6: (a) Q dependence of τw obtained for PId3 by IN13 (✕: 260K; ▲: 280K; �: 300K), 
IN11c (�: 280K; �: 300K; �: 320K; : 340 K) and Jülich NSE spectrometer (�: 340K). 
(b) Master curve built with the data in (a) (see the text). The straight solid lines display the Q 
dependence expected from the Gaussian approximation . The dashed line shows the 
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description of the master in terms of the anomalous jump diffusion model  (Eq.[22]) with 
l0 = 0.42Å . 
 
 
5.1.2 Molecular dynamics simulations [7] 
In order to achieve a deeper understanding of these experimental results, atomistic MD 
simulations are necessary. They were performed as described in section 3 for a polyisoprene 
chain of N = 100 monomers at a temperature T = 363K. First of all such simulations provide 
structural information in terms of the so called radial distribution function or its counter part, 
the static structure factor S(Q) . In the case of amorphous polymers S(Q) can be measured by 
neutron diffraction using a fully deuterated sample, where all hydrogens are replaced by 
deuteriums. The cross section then follows from Eq.[5] taking the position vectors at equal 
times. Further information is achieved from experiments, where a part of the deuterons are 
replaced by hydrogens. In this way different groups of atoms are emphasized and so called 
partial structure factors  are accessible. Figure 7 displays a comparison of simulated structure 
factors  for 4 differently labelled PI materials with the corresponding experimental results. hPI 
denotes a fully protonated material, dPI the fully deuterated one, d5PI a polyisoprene with the 
protonated methyl group and the deuterated main chain and finally d3PI a material with a 
deuterated methyl group and a protonated main chain.  
 

h PIh PI

d PId PI

dd55 PIPI dd33 PIPI

 
Fig. 7: Static structure factors  for polyisoprene with different hd labelling. hPI: fully 
protonated material, dPI: fully deuterated material, d5PI: main chain deuterated polymer, 
d3PI: methyl group deuterated polyisoprene. The solid lines are the result of the MD 
simulation [8]. 
 
In all cases we observe good agreement between the simulated structure factors  and the 
experimental counter parts indicating the basic correctness of the structure represented by the 
amorphous cell. 
 
In addition to structural features we can also investigate whether the force field used in the 
simulations reproduces the main vibrational properties of polyisoprene at low temperatures. 
The vibrational density of states (VDOS) , Z(E) may be obtained on the one hand from 
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inelastic neutron scattering experiments [9]. Both for the methyl group hydrogens as well as 
for those from the main chain. From the MD simulations the vibrational density of states  can 
be calculated in general as the spectral density of the velocity auto correlation function. 
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∝ ∫ r r
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Figure 8 compares the experimental results with the MD calculation. As can be seen, there is 
a good agreement between the simulation and the experimental data sets, at least in the energy 
range E ≤ 40meV, where experimental data are available. Beyond the neutron results the 
simulated Z(E) also shows maxima at higher energies. Though quantum effects certainly 
affect the high energy range of Z(E) the obtained maxima correspond rather well with 
different infrared bands reported for PI. Thus, in addition to the amorphous structure also the 
vibrational properties of PI are well depicted by the simulations.  
 

 
Fig. 8: Vibrational density of states  of the methyl group hydrogens (a) and main chain 
hydrogens (b) as obtained for PI from inelastic neutron scattering measurements () and 
from our MD simulations (solid lines). The arrows show the energy of some infrared bands. 
 
From the atomic trajectories in the simulations also the selfcorrelation function  may be 
calculated directly. Assuming isotropic behaviour this function is given by  
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where r is the radial distance from a given particle. N is the number of particles and r i is the 
position vector of the i’s particle. The angular brackets denote canonical averaging. Gs(r,t) is 
related to Eq.[6] through Fourier transformation. In the simplest case the self correlation 
function can be approximated by a Gaussian function. 
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This form holds rigorously for an ideal gas, for harmonic crystal and for a system where the 
motion of the atom is governed by Langevin equations. First order deviations from this form 
are characterized by the above mentioned non-Gaussianity parameter   α2 (Eq.[15]). If Gs(r,t) 
is strictly Gaussian, α2(t) is 0 and 〈r2(t)〉 = 3/(2α(t)). 
 
Figure 9 displays the simulated Fourier transformed selfcorrelation function  for different 
momentum transfers Q. Sself(Q,t) exhibits a two step decay which is characteristic of glass 
forming supercooled liquids in general. The initial decay takes place at times below 1ps and 
corresponds to the so called fast dynamics in glass forming materials. It is outside the 
observation window of the discussed experiments and therefore we will focus here on the 
slower decay of Sself which relates to the α-relaxation. The solid lines in Figure 9 present fits 
with a stretched exponentials to the data. Thereby a Q dependent prefactor was considered in 
order to account for the initial fast decay.  
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Fig. 9: Incoherent intermediate scattering function obtained by MD simulation for 
polyisoprene at T = 363K. The structure factor  is given from above for Q = 0.3, 0.5, 0.7, 1.0, 
1.5, 2.0, 2.5, 3.0, 4.0 and 5.0Å-1 for the main chain protons for polyisoprene. The solid lines 
are the curves corresponding to a fit of the data with a stretched exponentials for times 
t ≥ 5ps. 
 
Figure 10 displays the resulting τKWW (Q). As the experimental results which were displayed 
in Figure 6, also the simulated data display a clear cross over from a Gaussian regime at low 
Q to a non-Gaussian range at higher Q. Figure 10b compares the simulation results with the 
condensed experimental data of Figure 6. Thereby again we have exponentiated all data with 
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the stretching exponent β in order to remove the influence of the different stretching of the 
relaxation curves. As may be seen, both the experimental as well as the simulated 
characteristic times agree exceptionally well. 
 
In order to address the question of Gaussianity more deeply, the simulation results were also 
used in order to calculate the non-Gaussianity parameter   α2 (Eq.[15]) which may be obtained 
from calculating the moments of Eq.[17]. The results are displayed in Figure 11 together with 
the mean square displacement of the main chain protons. 〈r2(t)〉 displays three typical dynamic 
ranges: 
(i) a microscopic regime until about 1ps, 
(ii)  a cross over regime until about 10ps and  
(iii)  a sublinear time dependence extending until the limit of the simulations (20ns). 
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Fig. 10: (a) Dispersion of the simulated Kohlrausch-Williams-Watts time  τKWW (Q) as a 
function of Q. The solid line displays the 2/Q β−  law valid for homogenous dynamics. (b) 

Comparison with the experimental master curve (Figure 6b). For this purpose the τKWW  
times were exponentiated to the power of β. The solid line indicates a Q-2 law. Open 
symbols: simulation, full symbols: experimental points 
 
 
α2(t) displays a double peak structure, where the short time maximum corresponds to the 
microscopic regime of 〈r2(t)〉 and another is centered in the cross over regime of the MSD. 
While the short time peak is atom specific and appears to relate to the librational motions of 
the CH bonds, the second peak of α2(t) shows a similar behaviour to that observed in 
computer simulations of Lennard-Jones systems. It shows a maximum at t* ~ 4ps centered in 
the cross over regime of 〈r2(t)〉. Once the sublinear behaviour of the MSD is well established 
α2(t) decreases to its long time limit zero. 
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Fig. 11: Time evolution of 〈r2〉 (�) and α2 () obtained from the simulations at 363K for the 
main chain protons. The anomalous jump diffusion model  with the parameters deduced from 
the experimental data at 320K yields the functions displayed as lines: solid for 〈r2〉 and dash-
dotted for α2 [5,6]. 
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Fig. 12: Momentum transfer Q dependence of the characteristic time τKWW(Q) of the α-
relaxation  obtained from the slow decay of the incoherent intermediate scattering function of 
the main chain protons (). The solid lines through the points show the Q dependences of 
τKWW(Q) indicated. The estimated error bars are shown for two Q values. The Q dependence 
of the value of the non-Gaussian parameter at τKWW(Q) is also included (▲) as well as the 
static structure factor  S(Q) on the linear scale in arbitrary units. The horizontal shadowed 
area marks the range of the characteristic times τNMR . The values of τa and t* are indicated 
by the dashed-dotted and dotted lines, respectively (see the text for the definitions of the time 
scales). The temperature is 363K in all cases. 
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How to relate the non-Gaussianity parameter  with the observed Q-dependence of τKWW? For 
this purpose we compare the observed dispersion τKWW(Q) with the value of α2 at the 
corresponding Q-dependent correlation time. This comparison is displayed in Figure 12. At 
low Q where we observe τ ≈ Q-2/β the value of α2 is very low indicating a Gaussian 
correlation function. Around Q ≅ 0.8 Å-1 α2 is rising and reaches a value of about 0.25 in the 
regime where the crossover in Q occurs. The high Q non-Gaussian regime expresses itself 
both in strong deviations from the Q-2/β law as well as in high values of α2. For illustration we 
have also included the structural relaxation time τα i.e. the time at which the structure factor  
at its maximum relaxes, as well as the range of typical NMR relaxation times which may  be 
computed from bond vector relaxations. Finally, we note that typical α-relaxation  times 
observed with dielectric spectroscopy correspond to correlation times observed with neutrons 
at a Q value of about Q = 1Å-1. Thus, spectroscopic techniques always relate to characteristic 
times in a range where the non-Gaussianity parameter  already is non-negligible. This may 
explain why e.g. NMR techniques reveal heterogeneous contributions which are absent in the 
low Q neutron data [10].  
 
 
5.1.3 Interpretation within a simple model [5,6] 
As was outlined above the characteristic times from the different spectroscopic techniques are 
observed in a time range where the non –Gaussianity parameter α2 is already non-negligible 
and therefore those results should be more sensitive to heterogeneous dynamics. On the other 
hand we note that in most of the studies which invoke the concept of dynamic heterogeneity, 
the origin of non-vanishing values of α2 is usually concentrated with the origin of the non-
exponential behaviour of the α-relaxation , i.e. the stretching of the relaxation function.  
 
In the following we will show that within a simple model considering finite jumps of the 
atoms in the α-process all observed features may be naturally explained. 
 
In jump diffusion models  finite jump length tend to cause a bending of the dispersion for the 
diffusive relaxation times away from the Q-2 which is valid for simple diffusion at low Q. The 
jump diffusion model  assumes that an atom remains at a given site for a time τ0 where it 
moves around a center of equilibrium. After τ0 it moves rapidly to a new position located at a 
distance l with respect to the original side. For such a process the incoherent intermediate 
scattering function assumes the form 
 

( ) ( ) ( )
2

2, exp 1
3

self
JD

u t
S Q t Q b Q

β

β
τ

   = − − =    
 (19) 

 
where b(Q) depends on the particular jump geometry and 〈u2〉 is the vibrational MSD. 
Assuming randomly oriented jump direction with an exponential distribution of jump lengths  
 

( )0 2
0 0

expf
 

= −  
l l

l
l l

 (20) 

 
where l0 is the most likely jump distance. 
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We note that for 0 0Q →l , ( ) 2 2

0b Q Q→ l . In that limit ( ),self
jdS Q t  has a Gaussian form with 

an associated MSD that increases linearly with time. In glass forming systems Sself(Q,t) 
exhibits the form of stretched exponential (Eq.[7,8]). An incoherent scattering function 
analogous to that for the simple jump diffusion (Eq.[19]) may be constructed by introducing 
the stretching in the time dependent part (β < 1). In this way in the limit Ql0 → 0 the 
Gaussian approximation  is recuperated (see Eqs.[13,14]) but now a sublinearly increasing 
MSD would be obtained for small Q values as observed from experiments and simulations. 
By comparing Eq.[7] and [19] we obtain for τKWW  
 

( )
1/

0 2 2
0

1
1KWW Q

Q

β

τ τ
 

= +  l
 (22) 

 
As displayed in Figure 6b, Eq.[22] provides a good description of the experimental results 
(dashed line). At TR = 300K we find τ0 = 28ps and l0 = 0.42Å, the latter being T independent 
within the uncertainties. Obviously the experimentally observed Q dependence of τKWW is 
compatible with a scenario of sublinear diffusion  for the segmental relaxation with an 
underlying distribution of elemental jump lengths with a most probable value of l0 ~ 0.4Å. 
From Figure 12 we have seen that deviations of τKWW(Q) from the Gaussian Q-2/β law set in if 
τKWW(Q) reaches a time regime where α2(t) becomes significantly different from zero. 
 
Within the jump diffusion approach α2 may be calculated straight forwardly. Starting from 
Eq.[19] and inserting Eq.[21] we may expand with respect to 2 2

0Q l . The result may be 

directly compared with a general expression for the expansion of Sself(Q,t) with respect to Q.  
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revealing 
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and  
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Using the experimental value for 〈u2〉, α2 and the mean square displacement may be 
calculated. The results are displayed in Figure 11 as solid and dashed dotted lines. We note 
that for simulation times longer than microscopic times the simple models reveals very 
similar results as the MD simulations. This good agreement suggests that at least to a 
reasonable approximation the non-Gaussianity observed for the α process at short enough 
times finds a simple explanation in terms of a sublinear diffusion  process with a distribution 
of finite jump length. This process is heterogeneous at short length scales and (high Q) 
becomes homogenous at larger scales (low Q).  
 
 

5.2 Local dynamics [11]  
In this chapter we will show that a real space analysis  of the correlation functions obtained by 
MD simulations may reveal more clear and definite results than an evaluation in Fourier 
space. We demonstrate this approach in order to scrutinize contradictory experimental results 
on polybutadiene (PB) in the neighbourhood of its glass transition. PB is a simple main chain 
glass forming polymer with a glass transition temperature Tg = 178K. Aside of the α-
relaxation  several additional processes were identified experimentally. At 200K the following 
observations are reported: 
� dielectric spectroscopy reveals a secondary relaxation with a characteristic time of 430ns. 
� from the damping of longitudinal Brillouin modes a relaxation process at a time of 2ns 

was deduced. 
� the dynamic structure factor  S(Q,t) from NSE spectroscopy indicated a secondary 

relaxation at 19ns. 
� depolarized Raman scattering indicates a relaxation process at 0.3ns.  
 
Simulations were performed on PB exhibiting a microstructure as in the experiment (39% cis, 
58% trans, 8% vinyl; see Figure 14) using again the amorphous cell  protocol. This time 
equilibration was performed first at Tg + 100K, then the temperature was gradually lowered to 
200K performing density and energy equilibration runs and finally a 100ns MD simulation for 
further equilibration. The presented MD data stem from a 160ns run. Finally a further 300ns 
run confirmed the absence of aging phenomena.  
 
The simulations were validated in comparing to the collective dynamic structure factor  S(Q,t) 
(see Eq.[5] where a sum over all atoms species has to be performed). Figure 13 displays the 
comparison between simulation and the corresponding NSE experiment at 200K for different 
Q values. As may be seen the simulations well reproduce the experimental findings. 
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Fig. 13: Dynamic structure factor  obtained for PB at 200K by NSE (full symbols) and MD 
simulations (empty symbols). Circles: 1.6Å-1, squares: 1.9Å-1 and triangles: 2.7Å-1. The NSE 
amplitudes have been corrected for bandpass effects. 
 

 

Fig. 14: Radial selfcorrelation function  for the double-bond hydrogens of the trans units (a) 
and the cis units (b) at 200K and different times as indicated. For clarity, the origins are 
shifted to the levels displayed by the horizontal dotted lines. For comparison in (b) we also 
display the results at t = 1ps (×). The solid lines show the description obtained by the 
proposed model (see text). For t = 60000ps in (b) we have magnified the curves such as to 
show the effect of a distribution of jump distances on the quality of the data description 
(dashed line). 
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Now we focus on the hydrogen selfcorrelation functions  which may be measured by 
incoherent neutron scattering in reciprocal Q space. Here we will evaluate the MD 
simulations directly in real space. Figure 14 displays the radial selfcorrelation function  
4πr2Gs(r,t) at different times for the two type of hydrogen sites showing the most diversive 
behaviour: 
(a) at the double bond in the trans conformation (1Htrans) and 
(b) at the double bond in cis conformation (1Hcis). 
 
Their different dynamic behaviour is striking. Aside from some diffusive broadening already 
at early times (100ps) the selfcorrelation function  for 1Htrans (Figure 14a) develops a well 
resolved second maximum at r ≅ 2.7Å that displays a stable growth with time. The evolution 
of this peak indicates a well defined hopping process which is significantly faster than the 
overall diffusion. In contrast the selfcorrelation function  for 1Hcis (Figure 14b) is dominated 
by the overall diffusive broadening which as for 1Htrans leads to a slight shift of the first peak 
with time. In addition at later times (t > 3000ps) a weak shoulder at r ≅ 3-4Å evolves 
indicating a much slower jump process. 
 
We now consider a simple model depicting the essential features of the observed dynamics. 
We consider the hydrogen atoms hopping in an asymmetric double well potential . At the 
same time it undergoes sublinear diffusion . The hopping process is characterized by a jump 
distance d and a distribution of hopping times which is modelled by a stretched exponential 
with a characteristic time τhop and a stretching exponent βhop. The sublinear or anomalous 
diffusion is represented by diffusion coefficient D and the stretching exponent βdiff. Finally, 
the asymmetry of the potential is depicted by the asymmetry energy ∆E. In terms of this model 
the selfcorrelation function  may be written as 
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σ is the width of the initial Gaussian distributions (actually two distributions were used which 
were kept fixed later on). The solid lines in Figure 14a and b present a fit of Eq.[26] to the 
data. Over the full time range the simple model describes the simulation data very accurately. 
The strong separation in time scales allows a separate stable fit of the overall sublinear 
diffusion  characteristics and the hopping process. 
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The fit reveals an average jump distance for 1Htrans of 2.5Å and for 1Hcis of 3 ± 1 Å. The 

evolving jump times are 2.6trans
hop nsτ =  and 230cis

hop nsτ = . The stretching exponents 

amount to 0.5trans
hopβ =  and 0.6cis

hopβ =  indicating broad distributions of hopping times. 

Finally, the fit reveals a weak asymmetry of the double well potential �E ≅ 1.2kBT for 1Htrans. 
The average jump time for 1Htrans is in the range of the experimental findings from the 
damping of the Brillouin modes and the secondary relaxation time from NSE. The jump 
distance dtrans = 2.5Å corresponds well to conformational jumps of the 1Htrans atom. The 
hopping time for a  1Hcis is much longer and remarkably close to the β relaxation time. We 
note that the cis unit carries the electric dipole moment. Aside of the hopping motion the 
broadening of the two peaks in the self correlation function reveals in anomalous diffusion 

process with 2/72.2 10 Å /diffd psβ−= ⋅  and a stretching exponent βdiff = 0.4. 
 
Fourier transformation of Eq.[26] yields the dynamic structure factor  for self motion. 
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(27) 

 
Figure 15 displays the prediction of Eq.[27] for several Q values and compares them with the 
simulated structure factors . Obviously, the simple model reveals an overall very good 
description of the MD data and thus depicts all major dynamic features of the system. While 
in the real space the local jump dynamics is very well separated in time from the anomalous 
diffusion (α-relaxation)  in Fourier space no evidence for a separate process other than an 
anomalous stretching appears. Finally, the dotted lines present predictions for the anomalous 
diffusion neglecting the hopping term. At all Q values strong deviations between the 
simulated structure factors  and the predicted diffusion structure factors  are evident. This 
holds even for low Q values where common wisdom would not suspect any influence from 
local motions. Figure 15 also includes a comparison with neutron spin echo  data on PB 
which were obtained at 280K. There the anomalous diffusion is the overwhelming process 
and dominates strongly any local dynamics .  
 
The insert in Figure 15 displays the Q dependent relaxation times obtained from a fit with a 
stretched exponential yielding a stretching exponent of βdiff = 0.5. As discussed in section 4.1 
anomalous diffusion connects the shape of the relaxation function with the Q dispersion of the 

relaxation time as 2/ diff

KWW Q βτ −≈ , a relation well fulfilled by the data. In order to compare 

with the simulations we first construct a master curve in scaling the time variable with Q4. 
Then we shift the α time scale with the known viscosity shift factor for PB. The resulting data 
points are also displayed in Figure 15 - the result is stunning. Without any further adjustment 
the shifted data agree with a predicted diffusion structure factor  (α-relaxation)  obtained from 
the modellisation of the simulation results. The experimental data however, do not agree with 
the fully simulated structure factor  which includes the local dynamics . Thus, in a system 
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with important internal degrees of freedom displaying a dynamics well separated from the 
overall motional processes, the dynamics of such degrees of freedom have an important 
impact on the selfcorrelation function  even in the low Q regime (see Figure 15 Q = 0.5Å-1 
data).  
 

 
Fig. 15: Ss(Q,t) obtained from the MD simulations at 200K for 1Htrans (squares, Q = 1Å-1 and 
2Å-1)  and 1Hcis (circles, Q = 0.5Å-1 and 1Å-1) atoms. The prediction of the model is shown by 
the solid lines and the dotted lines represent the contribution of the diffusion. The insert 
shows the Q-dependence of the characteristic times obtained from the NSE results at 280K; 
the solid lines is a description in terms of a Q-4 power law. The triangles represent the time 
temperature shifted NSE data corresponding to Q = 1Å-1 (see text).  
 
 
 

6 Summary and conclusions 
In this lecture we have demonstrated that atomistic MD simulations and neutron scattering 
reveal strongly related information which properly exploited leads to a deeper insight into 
atomic motions.  
 
From the combination of atomistic MD simulations and experiments the α-relaxation  in 
polyisoprene has been scrutinized and a simple picture of the motional process underlying the 
α-relaxation   evolved. 

� At low Q corresponding to large distances we deal with a homogenous sublinear diffusion  
process. This result is by now supported by a number of detailed investigations into the 
relationship between the shape of the relaxation function and the Q dispersion of the 
characteristic relaxation times also in other polymers. 

� At higher Q the relationship between the shape and the dispersion relation demanded by 
Gaussianity breaks down and a weaker dispersion is found.  

� This crossover in the Q dispersion of τKWW is related to a strong increase of the time 
dependent non-Gaussianity parameter  α2(t). It has been shown that typical relaxation 
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times measured with spectroscopic techniques are close to this crossover regime and 
therefore are effected by heterogeneity effects. 

� The existence of the crossover clearly shows that the stretched exponential shape of the 
relaxation function cannot be explained entirely by heterogeneity but depending on length 
scale relates to intrinsic sublinear diffusion  processes.  

� In terms of a minimal model the changing Q dispersion may be explained in terms of a 
sublinear jump diffusion model , featuring a distribution of jump lengths. The distribution 
thereby seems to vary little with temperature. From this model a non-Gaussianity 
parameter   α2(t) may be calculated which agrees well with the simulation. 

� This good agreement suggests that at least to a reasonable approximation the apparent 
non-Gaussianity observed for the α-process at short enough times is indeed a result of a 
local diffusion process with a distribution of finite jump length. 

 
On glass forming polybutadiene close to the glass transition temperature Tg we have shown 
atomistic simulations and validated them in comparing with dynamic structure factor  
measurements. We have demonstrated that in case of well separated time scales the nature of 
the local dynamics  is much more clearly revealed if the selfcorrelation function  is evaluated 
in real space. 

� There the radial selfcorrelation function  reveals itself in terms of well separated diffusive 
and hopping contributions. 

� In reciprocal space the two processes cannot be distinguished and give rise to an 
anomalous stretching of the relaxation function. Over the full Q regime the corresponding 
structure factor  is strongly effected by the localized motions. 

 
The approach demonstrates that the proper combination of real space analysis  of simulations 
and neutron scattering experiments has the potential to yield deep insight into motional 
processes which are hidden if one only considers structure factors  in Fourier space. 
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