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1 Introduction

Macroscopic descriptions of fluid properties have been extensively studied on the basis of the
work of Navier and Stokes from the first half of the 19th century. The Navier-Stokes equation
(see Chapter B1) accounts for the global and local conservation of momentum. The complete
description of the fluid requires also the continuity equation for the mass conservation and
the heat equation for the energy conservation. In a few cases these equations can be solved
analytically, but in general fluid behavior predictions require to solve coupled sets of nonlinear
partial differential field equations by use of finite difference or finite element methods. This is
the basis for a well established set of methods which is still widely employed. Nevertheless,
there are many situations where these methods can not be applied. This can be due to the no
applicability of the continuum equations, to the difficulties in obtaining numerical convergence
or to the lack of thermal fluctuations. Relevant examples of such limitations appear in problems
in which the microscopic properties of the fluid components are important in determining the
overall fluid behavior.
From a different perspective, the previous chapters have been devoted to simulation methods
based on a microscopic description of fluids, like Molecular dynamics simulation (MD) . These
techniques would reproduce the exact dynamical, equilibrium or steady state properties of the
complex fluids if unlimited computing power would be available. For example, colloidal sus-
pensions are dispersions of solid particles whose sizes range into those defined as mesoscopic
scales (10nm - 1µm). These particles are composed themselves of a large number of atoms
(106-109) and the same amount or one order of magnitude higher would be required for the
surrounding solvent. To simulate in all detail suspensions of a certain number of colloids with
the surrounding solvent and reach a relevant time scale is, therefore, far away from our com-
putational possibilities. However, these intermediate scales (see Fig. 1) are essential to under-
stand a large number of macroscopic phenomena. Most soft matter systems fall into this range
of mesoscopic systems ranging from polymers, colloids, droplets, liquid crystals, mixtures,
porous media and many biological matter like membranes, or vesicles. Furthermore, many are
the processes in which these systems display interesting features like shear flow, microfluidics,
microphase separation, or membrane structuring among others. The understanding of these
phenomena is still an outstanding challenge for our basic knowledge of fluid mechanics, and
moreover, have a considerable practical relevance.
The aim to ’bridge the length and time scales gap’, and the increasing availability of computing
power, has stimulated the development of several mesoscale simulation techniques in recent
years. This has been done fundamentally either from the ’top-down’ approach which consists
on discretizations of the continuum equations, or from the ’bottom-up’ approach which consist
in a coarse grained description of the fluid where the microscopic scale is strongly simplified,
but relevant effects are still taken into account.
In this line, a first mesoscopic model of colloids would be to treat them as hard spheres, such
that the whole structure is summarized as impenetrable objects. This has indeed been successful
in predicting static properties of colloidal dispersions in quite early simulations. However, in
order to describe dynamical properties of colloidal dispersions, one should also consider solvent
effects, and the detail in which this has to be done will depend on the particular effect that one
wants to reproduce.
In this chapter, I will first briefly mention most of the existing mesoscopic hydrodynamic sim-
ulation techniques as they have historically appeared, giving then a closer description of the
basic implementation details of the three methods which could be considered the most competi-
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Fig. 1: Mesoscale dynamics bridges microscopic and macroscopic scales.

tive ones nowadays, namely Lattice Boltzmann (LB), Dissipative particle dynamics (DPD) and
Multiparticle collision dynamics (MPC). Note however, that this chapter is only intended as a
first approach to the emerging filed of mesoscopic hydrodynamic simulation techniques, and
it only includes the basic implementation steps, since a detailed explanation of all the relevant
extensions existing in literature would by far exceed the scope of this lecture. On the other
hand, the selection of the aspects that will be discussed has unavoidable be biased by my own
experience in the field. For further explanations, I refer the interested reader to more extended
reviews [1–4] and to the original literature.

1.1 Brownian dynamics (BD)

In BD the solvent particles are omitted from the simulation [5], and their effects upon the solute
is represented by a combination of random forces and frictional terms (see Chapter B4). The
BD method computes the space trajectories of a collection of particles that individually obey
Langevin equations in a field of force, which reproduces the diffusive behavior of for instance
colloidal dispersions. The main drawback of the method is that momentum is not a locally
conserved quantity, which means that the behavior is not hydrodynamic but diffusive. Hydro-
dynamic interactions between particles can be incorporated through a tensorial dependence in
the Langevin equations. The most common choice for such a dependence is the hydrodynamic
Oseen tensor (see Chapter B1). This method has reproduced the behavior of polymer and col-
loidal dispersions, but the two main problems are that detailed time dependent information
about the solvent is lost, and that the size of the considered tensor increases with the the number
of particles, what limits dramatically the size of the systems that can be considered (see more
extensive introduction of this method in Chapter B4).
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1.2 Smoothed particle hydrodynamics (SPH)

This technique was developed in the 1970s in the context of astrophysical flow problems [6, 7]
and more recently it has been applied to the study of fluid dynamic problems like viscous [8]
and thermal flows [9] in simple geometries. This new application is frequently named Smoothed
Particle Applied Mechanics (SPAM). The essence is to discretize the macroscopic partial dif-
ferential equations, such as the Navier-Stokes equations for Newtonian fluids or the elasticity
equation for solids. The discretization takes place in an irregular and Lagrangian moving grid
in such a way that the nodes can be interpreted as soft particles. In fact, the technique allows
one to solve partial differential equations with molecular dynamic simulation codes. SPH has
not been applied to study hydrodynamic problems where fluctuations are relevant, as those oc-
curring in colloidal suspensions. Actually, there are some subtleties in discretizing the random
stress and random heat flux that appear in the equations of fluctuating hydrodynamics of Landau
and Lifschitz [10].

1.3 Direct simulation Monte Carlo (DSMC)

Developed for simulating flow of relatively dilute gases [11], DSMC consists in a set of parti-
cles that alternate streaming and collision steps. In the streaming step all particles move ballisti-
cally, and then collisions are performed among randomly selected pairs of particles. The space
is divided into collision boxes inside which the mentioned pairs are chosen. The number of
collisions per time step is fixed by the known collision frequency at the specified density. The
precise rules for the collisions depend on the molecular model that one wants to reproduce. The
only requirement for these collisions is that mass, linear momentum, and energy are conserved
quantities. An extension of the DSMC for dense gases has been recently proposed [12].

1.4 Lattice gas automata (LGA)

In lattice gas automata [13,14] the continuum macroscopic picture is replaced by a set of parti-
cles that move from site to site on a fixed regular lattice. During each time step all the particles
move simultaneously according to their current momentum vector. If two particles happen to
end up on the same lattice site, they collide and change their velocities according to certain
collision rules, whose only restriction is that particle number, momentum and energy should be
conserved quantities.
This system, provided an adequate symmetry of the lattice, is a valid fluid-dynamical model
yielding the correct Navier-Stokes hydrodynamics at a coarse-grained scale. A noticeable ad-
vantage is that any lattice node can be marked as solid, what allows the integration of arbitrarily
complex geometries that would be difficult to model with conventional continuum methods
due to convergence problems. Comparing with a purely microscopic description, the number
of elementary operations per particle and per time step is smaller for LGA than for MD as a
consequence of the discretization. Moreover, the time intervals simulated with LGA are orders
of magnitude larger: in a single LGA time step changes in the relative particle positions are
typically comparable to the mean free path of the particles, whereas in MD the corresponding
changes in local particle configurations usually require hundreds of time steps. Examples of
complex fluid systems characterized by a multiplicity of length scales that have been simulated
with success using LGA are colloidal suspensions [15] or polymer solutions [16].
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However, fundamental problems are displayed by this technique, isotropy and Galilean invari-
ance are both broken by the lattice and large density fluctuations appear. Anisotropy in the
flow behavior can be eliminated by choosing a lattice with sufficient rotational symmetry. The
consequences of the lack of Galilean invariance for the flow behavior, such as unphysical ad-
vection terms, can be removed by rescaling the velocities. The occurrence of large fluctuations
can be smeared out by local averaging procedures, where a group of neighboring vectors are
summarized into a coarse grained vector. However, for dispersed systems and other fluid sys-
tems which are more complex than single-phase fluids, these problems show up in a much
more severe form. When going to more complicated fluid systems the model becomes quite
cumbersome. The appealing initial simplicity is lost and further progress is difficult.

2 Lattice Boltzmann (LB)

The Lattice Boltzmann Equation was first developed empirically [17] from LGA and it was
introduced to circumvent two of its major shortcomings: intrinsic noise and limited values of
transport coefficients. Later it has been demonstrated that the LBE can be directly derived from
the continuous Boltzmann equation [18].
The main purpose is to incorporate the physical nature of fluids from a more statistical point
of view. Particle density distribution functions are used instead of single particles, according to
the underlying picture of the Boltzmann transport equation, and the dynamics is implemented
directly to the distribution functions instead on the individual particles. For a more detailed
review of the method see [2, 19, 20].
In the following sections, I will introduce first a brief introduction to the Boltzmann equation
with the standard approximations employed for its discretization. Second, I will give the basic
concepts for the implementation of the method.

2.1 Boltzmann equation

The primary variable of interest is the one-particle distribution function f(r,v, t) (see Chapter
B1) which is the probability of one particle to be at time t, at the position r, with velocity v.
The general time evolution of this distribution is

(∂t + v · ∇) f(r,v, t) = (∂tf)coll (1)

in the absence of external forces. In order to define the Boltzmann equation, the collision
operator (∂tf)coll has to be explicitly specified. Two fundamental assumptions need to be made.
One is the molecular chaos assumption (velocity and position of a molecule are uncorrelated
quantities), and the second one is that only binary collisions are taken into account (valid in
the case of a dilute gas). A further simplification, known as the collision interval theory, can
be made for states close to equilibrium. Given the relaxation time τ , the collision interval
theory assumes that during a time interval h a fraction h/τ of the particles in a small volume
collide making the one particle distribution function change from its instantaneous value to the
equilibrium one. The equilibrium state is given by the Maxwell-Boltzmann distribution

f eq =
ρ

(2πkBT )d/2
exp

[
−(v − u)2

2kBT

]
, (2)
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where d is the space dimension, kB is the Boltzmann constant, T the temperature, ρ the density
and u the macroscopic velocity. With these considerations, the collision term can be expressed
in the form known as the ’BGK collision operator’ (Bhatnagher-Gross-Krook) ,

(∂tf)coll = −f − f eq

τ
. (3)

The Boltzmann equation in Eq. (1) is then,

(∂t + v · ∇) f = −f − f eq

τ
. (4)

In order to discretize the differential operators in the l.h.s. of this equation, the original form of
LB made the following choice

f(r + vh, t + h)− f(r, t) = −f(r, t)− f eq(r, t)

τ
h, (5)

where h is a discrete time step.

2.2 Lattice Boltzmann method
The Lattice Boltzmann method was historically developed from LGA in an empiric manner.
Therefore, similar to LGA, LB consists in a set of particles that move in a space restricted
to the nodes of a regular lattice. Particle distributions propagate from node to node, with a
rate proportional to a discrete velocity ck and interchange mass and momentum with other
particle distributions in the corresponding node before the next propagation step. In fact, the
LB method corresponds to a formal discretization in the phase space of the Boltzmann equation
with f → fk and v → ck in Eq. (5).

Typical mesh types for LB - Lattice Boltzmann models are spatially discrete approaches to
fluid dynamics. This means that the underlying grids of such simulations must fulfill certain
symmetry conditions in order to recover hydrodynamic behavior with full rotational symmetry
of space. The most frequent mesh types are the D1Q3, D2Q9, D3Q15 and D3Q19-lattice (see
two of them in Fig. 2), where the terminology DdQn refers to the space dimensionality d and
to the discrete number n of velocity vectors ck which will constitute the vector basis of the
distribution function. Lattices are composed of r sublattices defined by velocity vectors with
the same velocity magnitude, the most common ones are 0, 1,

√
2, and

√
3.

The D1Q3-lattice has 2 sublattices and 3 velocity vectors (identity, and 2 to the sides). The
D2Q9-lattice has 3 sublattices and 9 discrete velocities vectors (identity, 4 towards the face
centers and 4 towards vertices of a square). The D3Q15-lattice has 3 sublattices and 15 discrete
velocities vectors (identity, 6 towards the face centers and 8 towards vertices of a cube). The
D3Q19-lattice has 3 sublattices and 19 discrete velocities vectors (identity, 6 towards the face
centers and 12 towards the edge centers of a cube). While the D3Q15-lattice requires less
computation and less memory than the D3Q19-lattice, it suffers more from finite size effects
and it is less accurate.
For more clarity, I will focus on the D2Q9-lattice (see Fig. 2), whose velocity vectors are

c0 = (0, 0); c1 = (0, 1); c2 = (1, 0); c3 = (−1, 0); c4 = (0,−1);
c5 = (1, 1); c6 = (−1, 1); c7 = (−1,−1); c8 = (1,−1)

(6)
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Fig. 2: LB velocity vectors of the D2Q9 (left) and D3Q19 lattice geometry (right).

LB algorithm - A set of one particle distribution functions fk(xi, t) is defined in each lattice
node i with k denoting to the n velocities of the corresponding DdQn-lattice. Each of these
fk can be interpreted as the density of fluid that will move in direction k at time t. Since the
LB method corresponds to the discretization of the Boltzmann equation in the phase space, the
evolution of the densities in each time step can be written from Eq. (5) as,

fk(xi + ck, t + 1) = fk(xi, t) +
1

τ
[f eq

k (xi, t)− fk(xi, t)] , (7)

with the time step made one for simplicity. In numerical applications the above evolution equa-
tion is usually split into two subroutines, a collision and a streaming step. In the collision step
the set of densities at a given node are relaxed towards equilibrium

f̃k(xi, t) = fk(xi, t) +
1

τ
[f eq

k (xi, t)− fk(xi, t)] . (8)

This relaxation is performed ensuring mass and momentum conservation at each node. The en-
ergy is usually not conserved (although energy conserving schemes also exist). In the streaming
step densities are moved along their corresponding velocity vectors to the appropriate neighbor-
ing site,

fk(xi + ck, t + 1) = f̃k(xi, t). (9)

Given the structure of a particular lattice, local mass and momentum densities can be calculated
in each lattice site as,

ρ(xi, t) =
∑

k

fk(xi, t),

ρ(xi, t)u(xi, t) =
∑

k

fk(xi, t)ck. (10)

Lattice units - It should be noted, that in the previous expressions all the quantities have
been chosen to be dimensionless. This corresponds to the most common description of the LB
model in which lattice units correspond to,
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Mass unit: m ≡ particle mass → mfk

Length unit: a ≡ lattice constant → axi

Time unit: h ≡ time between collisions → ht, hτ

where the last column corresponds to the dimensionalized version of the elementary variables in
Eqs. (7)-(10), and similarly for composed quantities like the velocity (a/h)ck, the mass density
%(xia, th) = m

a3 ρ(xia, th) or the momentum density j(xia, th) = m
a2h

ρ(xia, th)u(xia, th). In
the following I will adopt the dimensionless notation in lattice units.

Relaxation time, τ - For incompressible isothermal materials, the relaxation time τ is a pa-
rameter which quantifies the rate of change towards local equilibrium. With the BGK relaxation
in Eq.(7) all particle distribution functions relax at the same rate, ω = 1/τ , towards their cor-
responding equilibrium value. For the method to be stable [21], and for the particle density
and viscosity to be positive, the relaxation rate must obey 0 < ω < 2. The condition where
0 < ω < 1 is called the sub-relaxation regime, while 1 < ω < 2 is referred to as over-relaxation
regime.
Furthermore, the relaxation time characterizes the behavior of the simulated material since, in
the hydrodynamic limit of this equation, it is related with the macroscopic kinematic viscosity
ν according to

ν =
(2τ − 1)c2

s

2
, (11)

for incompressible isothermal flows, where cs is the sound speed which depends on the lattice.
For D2Q9 and D3Q19, this is cs = 1/

√
3.

Determining the equilibrium distribution - The choice of the equilibrium densities f eq
k (xi, t)

is one of the key ingredients of the model and they are determined by enforcing that the colli-
sion operator conserves mass and momentum. The zeroth and first moments of the equilibrium
distribution function should then take the form,

ρ(xi, t) =
∑

k

f eq
k (xi, t),

ρ(xi, t)u(xi, t) =
∑

k

f eq
k (xi, t)ck. (12)

Note that these distributions are the same as those in Eq. (10). It follows then immediately from
the evolution equation Eq.(7) that density and momentum are locally conserved.
A low velocity expansion of the Maxwellian distribution in Eq. (2) for constant temperature can
be calculated as,

f eq ' ρ

(2πkBT )d/2
exp

[
− v2

2kBT

]
×

{
1 +

v·u
kBT

+
(v·u)2

2(kBT )2
− u2

kBT

}
+O (

u3
)
. (13)

Based on this expansion, a suitable form for the discretized equilibrium distribution function is
a quadratic function in velocities,

f eq
k = Aa + Back ·u + Cau

2 + Da [ck ·u]2 , (14)

where a labels the different sublattices, Aa, Ba, Ca, and Da are coefficients calculated for every
lattice geometry, such that symmetry and conservation requirements are satisfied.
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As an example, I illustrate now how to calculate the coefficients in Eq. (14) with the restrictions
in Eq.(12) in the case of a D2Q9 lattice. Using the velocity vectors in Eq.(6) and the general
2-d velocity vector u = (ux, uy), one finds

f eq
0 = A0 + C0u

2

∑

k=1,4

f eq
k = 4A1 + 4C1u

2 + 2D1u
2

∑

k=5,8

f eq
k = 4A2 + 4C2u

2 + 4D2u
2





=⇒ ρ ≡ A0 + 4A1 + 4A2

+u2(C0 + 4C1 + 4C2 + 2D1 + 4D2),

(15)∑

k=0,8

f eq
k ck = (2B1 + 4B2)u ≡ ρu.

A non-trivial set of parameters that satisfies the previous relations is

A0 = ρ/2,
A1 = ρ/12,
A2 = ρ/24,

B1 = ρ/4,
B2 = ρ/8,

C0 = −3ρ/4,
C1 = −ρ/8,
C2 = −ρ/16,

D1 = ρ/2,
D2 = ρ/8.

(16)

More complicated lattices symmetries follow the same procedure and further conservation laws
can be performed as well.

Implementation of walls - For many situations, it is necessary to implement of walls as
boundary conditions. Two main types of boundary conditions are possible when simulating a
solid wall, these are stick and slip. This classification is performed attending the difference of
velocity between the fluid and the wall. Slip boundary conditions allow that the fluid in contact
with the wall and the wall itself have different velocities. Stick boundary conditions (also called
no-slip) impose a continuous change of velocity between the wall and the fluid. The standard
procedure to obtain stick is known as bounce-back . When a particle hits the wall its trajectory is
reverted and its velocity is inverted. These considerations apply to many simulation techniques.

stick b.c. (fixed wall)
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Fig. 3: Schematic implementation of boundary conditions in the LB method.

In the LB method, solid boundary conditions can be implemented by identifying some of the
nodes in the lattice as solid nodes. A simple case would be the implementation of a fixed
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solid wall, what is implemented by a bounce-back algorithm as illustrated in Fig. 3. During
the streaming step, the component of the distribution function that would reach the solid node
returns to the fluid node with a velocity in the opposite direction. This rule produces stick
boundary conditions at approximately half the distance along the vector joining the fluid and
the solid nodes, ensuring that the velocity of the fluid at the wall is precisely the wall velocity.
In the cases where the zero velocity plane must be located at a more complicated geometry one
should use suited interpolation schemes for each problem [2, 19]. This easy implementation
of non-slip boundary conditions supports the idea that LB is quite advantageous for simulating
complicated geometries, such as flow through porous media. Nevertheless, it was found such
bounce-back condition is only first order accuracy at the boundaries and a several improvements
have been proposed to overcome the problem (see [19]).
The second boundary condition illustrated in Fig. 3 corresponds to a solid wall which moves at
the same velocity as the fluid in the bulk. In this case, the component of the distribution function
that would reach the wall is specularly reflected to the corresponding node.

Initial conditions - As the last aspect I discuss the initial configuration which can be an
equilibrium distribution in which all node densities have a constant value. This means that,
before any streaming or collision step is performed, all the velocity nodes are vanishing since
ρ(x, t) =

∑
k f eq

k (x, t). A flow can be induced by imposing constant velocity boundary condi-
tions (see Fig. 3) which approaches a constant flow rate. Another standard initial condition is
the assumption of constant pressure. Periodic boundary conditions are particularly useful for
modeling bulk systems because they tend to minimize finite size effects.

2.3 Further considerations
The previous implementation give the basics of the hydrodynamic behavior where mass and
momentum are conserved quantities, but in order to reproduce the Navier-Stokes equation an
extra conservation condition has to be added to Eqs. (10) and (12). This is that the second
moment of f eq

k will correspond to the stress tensor Π

Π =
∑

k

f eq
k (xi, t)ckck, (17)

where ckck is the diadic product. The stress tensor should have the hydrodynamic form,

Π = pI+ ρuu, (18)

where p is the pressure of the fluid, given by an ideal gas equation of state p = ρc2
s in the LB

approach, although other equations of state can be implemented. Furthermore, one can show
that the described LB procedure yields hydrodynamic behavior in the macroscopic limit, via a
Chapman-Enskog expansion [22].
With all these considerations LB constitutes a much more efficient method than its precursor
LGA. It has proved to be especially useful in studying flows in complex geometries, like porous
media, or the dynamics of colloidal suspensions, as well as in studies of multicomponent sys-
tems, and it is extensively employed by a large community.
The model suffers, however, of some intrinsic problems. One is that energy conservation is not
fulfilled by the present LB method, such that it is generally restricted to isothermal applications,
although there are recent energy conserving generalizations of the model. Another problem
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is that ’thermal fluctuations’ are not present in the model, while they are in LGA due to the
discreteness in the number of particles. This lack of fluctuations can be in some cases an
advantage since these are always a source of statistical inaccuracy. But thermal fluctuations
are a required element in the correct description of a large number of physical problems, like
the Brownian motion of suspensions or in the decay of spontaneous stress fluctuations. For
these cases, a possible solution has been proposed based on linear fluctuating hydrodynamics
according to which the stress tensor of Eq. (17) should include a noise term. This can therefore
be directly added in the simulation code [23].

3 Dissipative particle dynamics (DPD)

Originally, the DPD model was introduced [24] as an attempt to free the Lattice Gas Automata
from the lattice. The state of the fluid is described by N particles with continuous positions and
velocities. Similar to Molecular Dynamics (MD), the particles time evolution is given by the
integration of the Newton’s equation of motion.
The first idea of DPD is to consider soft and finite interactions into a standard simulation with
MD. The scales of time and space that can be reached are quite large, and phenomena related
to processes on mesoscopic scales can be reproduced. The second idea of DPD is that these
soft and finite interactions have dissipative and stochastic contributions, as well as a weak con-
servative term. The introduction of these dissipative and random interactions between DPD
particles can be understood if each particle is representing not only one molecule, but rather a
group of them. Therefore, a DPD particle models the center of mass of a mesoscopic portion of
the fluid, large enough to be a thermodynamic subsystem, but still subjected to thermal fluctu-
ations [25, 26]. The technique has been constructed such that both the number of particles and
the total momentum are conserved quantities, as will be outlined in Sec. 3.1. Therefore, there
is a transport equation for the momentum density field, coupled to the continuity equation. The
macroscopic behavior of this particle model is then hydrodynamic, and not just diffusive as it
occurs with Brownian Dynamics.
One of the drawbacks of DPD, as it was originally formulated, is that the total energy of the
system is not conserved. It has been shown [25] that such a model cannot sustain temperature
gradients, i.e. on the same microscopic time scale on which velocities locally relax to equilib-
rium, the local temperature reaches a spatially uniform equilibrium temperature. The system is
thermostatted and can not describe any thermal transport process on macroscopic time scales.
The model describes only the essential features of hydrodynamic flows in isothermal situations.
The DPD model has been generalized [27,28] by assigning to every DPD particle an internal en-
ergy variable such that total energy is globally and locally conserved. Therefore, processes with
transport of energy can be considered in addition to momentum transport. This generalization
is here referred to as DPD+e and will be introduced in Sec. 3.3.

3.1 Isothermal DPD fluid

In this model the simple fluid is represented by a set of particles, that can be thought of as a
lump of fluid, interacting through conservative, dissipative and random forces. The equations
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of motion for the positions ri and velocities vi of the particles are of Langevin type

dri = vidt,

dvi =
1

m

∑

j 6=i

(
FC

ij + FD
ij + FR

ij

)
dt, (19)

where i (i = 1, · · · , N ) labels the particles and m is the mass of a particle. The pair force
that particle j exerts on particle i has three contributions: a conservative force FC

ij , a dissipative
force FD

ij , and a random force FR
ij . These forces are interpreted as coarse grained averages over

microscopic degrees of freedom.
The dissipative and random forces combined act as a thermostat. The dissipative force is pro-
portional to a friction constant and cools the system, whereas the random force heats it up. To
qualify as a fluid, DPD should be Galilean invariant and isotropic. The Galilean invariance
requires that the forces depend only on relative variables rij = ri − rj and vij = vi − vj .
Isotropy requires that the forces transform under rotations as vectors. Moreover, the drift term
of the Fokker-Planck equation must be linear in the velocity variable, and the diffusion term
independent of it [29]. These requirements are satisfied if the dissipative force FD is linear in
the velocities and the random force FR is independent of the velocity. A simple form of the
forces satisfying these criteria is

1

m
FD

ijdt = −γwD(rij)(r̂ij · vij)r̂ijdt,

1

m
FR

ijdt = σwR(rij)r̂ijdWij, (20)

where rij and r̂ij are respectively the modulus and the unit vector parallel to rij . The coeffi-
cients γ and σ are positive constants that control the friction and noise amplitudes. The range
interaction functions w are bounded positive functions of the relative distance rij , and vanish
for r > rc.
The physical interpretation of the dissipative force FD

ij is as follows. When particles i and j
are approaching/receding, the quantity (r̂ij · vij) is negative/positive which implies that both
particles feel a viscous force slowing down their relative motion in the r̂ij direction. Physically,
the friction is related to the viscous interaction of different parts of the fluid.
The random force is a physical consequence of the mesoscopic description, and it is postulated
through independent increments of the Wiener process. These processes describe Gaussian
white noise such that 〈dWij(t)〉 = 0. The symmetry property Fij = −Fji ensures that the total
momentum is conserved, and enforces that dWij = dWji. The Wiener processes are interpreted
through the Ito calculus rule, and normalized as

dWijdWi′j′ = (δii′δjj′ + δij′δji′)dt, (21)

i.e. dWij(t) is an infinitesimal ofO (
dt1/2

)
[30]. This form respects the symmetry under particle

interchange. From a practical point of view, this term is calculated as dWij = ζij

√
dt, where

ζij = ζji is a random number which can be uniformly generated in the interval (−1, 1). It can
also be a Gaussian distributed number in the same interval, but it has been checked that it is not
necessary.
Furthermore, the relation between the dissipative and the random forces has a precise form in
order that the system in equilibrium displays the Maxwell-Boltzmann distribution . This implies
the fluctuation dissipation relations [25, 31]

mσ2 = 2γkBT , wD(r) = w2
R(r) ≡ w(r), (22)
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where a single range function has been defined.
The possible conservative forces on these mesoscopic length scales are supposed to be non-
singular. Theoretical studies [25, 31] impose no further restrictions on the functional form of
the conservative forces. It should be noted that many advantages of the model come from the
soft interactions since they allow large time steps. In this spirit the conservative force is taken
in the majority of the cases as

1

m
FC

ijdt = − 1

m

∂φ(rij)

∂rij

dt = awC(rij)r̂ijdt (23)

where φ(rij) is the pair potential, the coefficient a controls the strength of the conservative
repulsion, and wC(rij) is a bounded function similar to wD(r). The force is then weak, repulsive
and of finite range. Note that the conservative forces have been re-cast in the form of real
pressure forces [32–34].

Detailed balance and Fokker-Planck equation - The Langevin equations (19)-(21) consti-
tute a mathematically well-defined set of stochastic differential equations [30]. Using standard
procedures (see Chapter B4) the corresponding Fokker-Planck equation, governing the time
evolution of the N particle distribution function, can be derived [31],

∂tρ(X, t) = Lρ(X, t) =

[
−

∑
i

vi · ∇i +
∑
i<j

T (ij)

]
ρ(X, t), (24)

where X = {xi = (ri,vi)|i = 1, . . . , N} is the phase-space vector, and ∇i = ∂/∂ri. The
Fokker-Planck operator T (ij) is the sum of a conservative and a dissipative contribution

T (ij) = TC(ij) + TD(ij), (25)

TC(ij) = −FC
ij

m
· ∂ij =

1

m

∂φ(rij)

∂rij

· ∂ij,

TD(ij) = γw(rij)r̂ij r̂ij :

[
∂ijvij +

kBT

m
∂ij∂ij

]
. (26)

where velocity derivatives are denoted as ∂i = ∂/∂vi, and ∂ij = ∂i − ∂j . Here, the de-
tailed balance condition of Eq.(22) has been imposed, i.e., the stationary equilibrium solution
∂tρ0(X) = 0 of Eq.(24) should be the Gibbs state (thermal equilibrium)

ρ0(X) =
1

ZN

exp

[
− 1

kBT

(∑
i

m

2
v2

i +
∑
i<j

φ(rij)

)]
. (27)

where ZN is the normalizing partition function.

Interaction range function - In principle, conservative and dissipative processes are not
related such that the interaction range functions can be independently chosen. However, for
practical reasons, they are usually considered to be the same, wC(r) = wD(r) ≡ w(r), or
wC(r) = wR(r). On the other hand, several choices have been performed for the function
w(r), most of which are illustrated in Fig. 4. Furthermore, two different normalizations of the
range function have been used in the literature. Some authors choose the value at the origin
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of the range function w(r) to be a number of O(1) while others normalize it with the number
density ρ by choosing ρ

∫
drw̄(r) ≡ ρ[w̄] = 1. Here, these choices are respectively denoted by

{γ, w(r)} and {γ̄, w̄(r)}. It is known that the friction functions, γw(r) and γ̄w̄(r), must be the
same. Therefore, the same physical friction is described by different numerical values of the
friction coefficient in different normalizations, or choices of the interaction range function, and
all of them can be compared by, ρ[w]γ = ρ[w̄]γ̄ = γ̄.

 0

 1

 0  1

ω
(x

)

x = rij/rc

(1-x)0.5

(1-x)

(1-x)2

(1+3x)(1-x)3

Fig. 4: Common choices for the interaction range function in DPD

Integration algorithms - The DPD model has been defined as continuous in positions and
momenta, but discrete in time, since discrete time steps are required to update the variables
in Eq.(19). In principle, all update methods known from MD could be used, but in practice
the pairwise coupling of particles through dissipative and random forces makes the integration
of the equations a non-trivial task. The first method employed was the Euler scheme, but the
equilibrium temperature, defined through Eq.(22), was recovered only in the limit of zero time
step [35]. The main difficulties come from the dissipative forces that explicitly depends on
the relative particle velocities which depend themselves on the dissipative and random forces.
Quite an improvement came from modifications of the velocity Verlet-type algorithm [36,37], or
from a self consistent algorithm [38], based on the leap-frog scheme where time reversibility is
preserved. As an alternative, other works [39,40] suggest time step dependent model parameters
in order to control the equilibrium behavior.
The most recent and accurate developments in DPD integrators [41–43] come from applying
schemes commonly used in solving stochastic differential equations. The main idea [41] is
to factorize the integration process such that terms coming from the conservative forces are
calculated separately from the dissipative and random terms. The conservative part is solved
then by standard MD methods, while the fluctuation-dissipation terms are solved with methods
coming from Trotter or Strang expansions which allow one for deriving symplectic algorithms
like those in Chapter B3. For details of the implementation for DPD see the original papers
[41–43].

DPD units and parameters - In the previous description of the DPD model no preferential
units reference frame has been chosen. The most common set of units is
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Mass unit: m ≡ particle mass
Length unit: rc ≡ interaction range
Energy units: kBT ≡ system temperature

such that time would be rc

√
kBT/m in this units.

Other parameters that the method requires to be specified are the particle density ρ, the friction
coefficient γ, the repulsion parameter a, and the simulation box size L. The particle density ρ is
the number of particles in a volume unit, r3

c , such that the number of interacting pairs for each
particle will be (4π/3)ρr3

c , and the CPU time required per time step will increase quadratically
with ρ. It is therefore convenient to choose not very large values and ρ = 3, 4 are most common
ones. The value of the friction coefficient γ and therefore the noise amplitude σ =

√
2γkBT/m

determine the mechanical properties of the fluid, but they are also inversely proportional to
the time that the system takes to relax to equilibrium. It would be then convenient to take
high values of γ although too high values have shown to give stability problem. Standard
values are γ = 4.5, 7. The previous parameter choices of ρ and γ are mainly due to a quite
detailed study [36] where the stability and efficiency of the velocity Verlet-type DPD algorithm
was explored, such that these conclusions could slightly vary with the more recent symplectic
algorithms mention previously.

Transport properties - Explicit expressions for the transport properties of the DPD fluid
exits only in the case where the conservative forces are not present, FC

ij = 0 which corresponds
to an ideal gas [25,44]. They can be expressed in terms of the thermal velocity v0 =

√
kBT/m

and the characteristic collision frequency ω0 = ρ[w]γ/d, as

Diffusion coefficient: D =
v2

0

ω0

Kinematic viscosity: ν =
v2

0

2ω0

+ a2ω0r
2
c

(28)

where a2 is a geometrical prefactor a2 = [r2w]/(2(d + 2)r2
c [w]), with [r2w] ≡ ∫

drr2w(r).
Although these expressions are limited in their applicability, they come to indicate that the mo-
mentum transport is of the same order of magnitude as the mass transport. This is quantified by
the dimensionless Schmidt number Sc = ν/D, which from the above expression and the com-
mon parameter values in DPD is of the order of unity while in real liquids as water this number
is of the order of 103. Higher values of Sc could be obtained by increasing the coefficient γ
although the system stability would have to be revised then.

The repulsion parameter - The last model parameter to be discussed is the strength of the
conservative force a. Apart from the trivial value for the ideal gas, the most extended choice
is the one that matches the value of the dimensionless isothermal compressibility χ, with the
value of the same quantity which is known for water. Measurements of the pressure obtained
with a DPD fluid allow to determine χ through the density dependence of the pressure as a
function of the parameter a. In this way [36], a = 75kBT/ρ is determined as the parameter to
reproduce water. In a further step, different species can be introduced into a DPD model. In
these cases, the repulsion parameter is supposed to depend on the interacting parts aij , such that
extra repulsive or atractive interactions between unlike componets can easily be considered.



B5.16 M. Ripoll

3.2 Applications
In order to model complex fluids with DPD, the general strategy has been to introduce additional
interactions between dissipative particles in order to define mesostructures. For example, sets
of particles are joined together with harmonic forces to obtain a coarse grained model for linear
polymer molecules. Further, a solvent can be represented by other (not connected) dissipative
particles in order to model a dilute polymer solution. Colloidal particles of arbitrary shape
can be modeled by “freezing” dissipative particles within a region that moves then as a rigid
body. These solid objects coexist with solvent particles and strongly modify the rheology of the
system. Introducing two types of particles that interact differently allows to model mixtures and
study, for example, spinodal decomposition. Given the simplicity of modeling mesostructures,
DPD appears as a competitive technique in the field of complex fluids. In this section, a brief
review is given of some applications of DPD which can be found in the literature.

Rheology of colloidal suspensions - This was the first application of the method, already
presented in the same paper where DPD was introduced [24, 45]. The solvent is simulated
by bare DPD particles and additional constraints are imposed to obtain large solid objects like
suspended spheres. They can be viewed as a locally ”frozen” portion of the fluid, where the
particles forming the solid object remain at fixed relative positions, while the object as a whole
moves, as a consequence of the forces exerted by the fluid particles surrounding the object. It
is interesting to note that the proper no-slip boundary condition for the fluid motion emerges at
the solid boundaries, without additional modeling, thanks to the dissipative force.
Measurements of the viscosity are performed for different volume fractions and compared with
experimental results. The agreement was quite good for volume fractions below 30%, which
is already a regime where other simulation methods fail. However, later studies [46] explore
regimes of higher volume fractions where different problems appear: Stick boundary conditions
between the colloid and the solvent are not fully satisfied anymore. Colloid particles are defined
as soft balls which can interpenetrate and, therefore, the radius of the colloidal particle is not
well defined. At high volume fractions solvent particles are expelled from the region in between
two colloidal particles. Therefore, the interaction is no longer hydrodynamically mediated and
depletion forces appear. Routes for characterizing and solving these problems have been worked
out by different groups [47, 48].

Rheology of dilute polymers - Polymer molecules are constructed in DPD by linking sev-
eral dissipative particles through springs [49]. Dilute polymer solutions are modeled by a set of
polymer molecules interacting with a sea of fluid particles. The solvent quality can be varied
by fine tuning the solvent-solvent and solvent-monomer interactions. In this way, a collapse
transition has been observed in passing from a good solvent to a poor solvent [50]. DPD poly-
mers can freely pass through each other as ’phantom chains’. For melts and dense solutions
of polymers, scaling laws for the radius of gyration and relaxation time have been studied in
Ref. [51]. The effects of screening of hydrodynamic and excluded volume interactions in the
melt can be observed, in satisfactory agreement with the Kirkwood theory. The model is un-
able to simulate entanglements due to the soft interactions between beads that allow polymer
crossing, although this effect can be partially controlled by suitable adjusting the length and
intensity of the springs [37]. Hydrodynamic interactions and excluded volume interactions are
then displayed depending on the quality of the solvent. Rheological properties have also been
studied showing a good agreement with known kinetic theory results [50, 52].
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Phase separation - Fluid mixtures are modeled in DPD by assuming two types of particles.
In order to reproduce an inmiscible mixture unequal particles repel each other more strongly
than equal particles thus favoring phase separation. Starting from random initial conditions
representing a high temperature miscible phase suddenly quenched, the domain growth has
been investigated. In 2D symmetric mixtures (equal fraction of each fluid), a crossover from a
domain growth scaling as t1/2 to t2/3 is observed. This signals a crossover from a diffuse to an
inertial hydrodynamic regime. For asymmetric quenches the growth law scales as t1/2 [53].
It should be noted that in Ref. [54] a 3D symmetric mixture showed a lack of scaling which cor-
responds to a viscous dominated growth. This was later on elucidated through lattice Boltzmann
simulations to be due, most probably, to finite size effects [55]. Although lattice Boltzmann
simulations allow to explore larger time scales than DPD for this system [55], the simplicity of
DPD modeling allows to generalize easily to more complex systems in a way that can not be
done through the lattice Boltzmann method. For example, mixtures of homopolymer melts have
been modeled with DPD [36]. Surface tension measurements allow for a mapping of the model
to the Flory-Huggins theory [36]. In this way, thermodynamic information has been used to fix
the model parameters of DPD. A more detailed analysis of this procedure has been presented
in Refs. [56, 57] where a calculation of the phase diagram of monomer and polymer mixtures
of DPD particles allows one to study the connection between the difference in the repulsion pa-
rameters between monomers and polymers on the one hand, and the Flory-Huggings parameter
χ on the other hand.
Another successful application of DPD has been the simulation of microphase separation of
diblock copolymers [58], which allows one to investigate the pathway to equilibrium. The
hydrodynamic interactions [59] were shown to be a critical part in the kinetics of the mesophase
formation. Qualitative agreement with experiments and with existing mean-field theory for
symmetric and asymmetric polymers is obtained, and clues about the quantitative differences
can be found.

Other complex fluid systems - DPD has been applied to more complex situations, like the
dynamics of a drop at a liquid-solid interface [60], flow and rheology in the presence of poly-
mers grafted to walls [61], colloidal adsorption onto polymer coated surfaces [37], amphiphilic
mesophases [62], model membranes [63] or geometrical packing of filler in composites [64].

3.3 Energy conserving DPD model (DPD+e)

The energy conserving DPD model [27,28] is a generalization of the preceding DPD where the
state of each particle is described by three variables, position r, velocity v and a new variable
ε that accounts for the internal energy. In the picture where dissipative particles are understood
as droplets or mesoscopic clusters of microscopic particles, one can consider the kinetic energy
lost in dissipative interactions as being transformed into energy of internal degrees of freedom
of a particle. The number of internal states with energy ε, exp[s(ε)/kB], is modeled by an
entropy function s(ε), implying a temperature T (ε) defined through ∂s(ε)/∂ε = 1/T (ε). One
then constructs an equation of motion for the internal energy state variable εi, such that the total
energy E of the N particle system is conserved,

E =
∑

i

(
εi +

1

2
mv2

i

)
+

∑
i<j

φ(rij). (29)
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The idea is then to impose that all dissipated mechanic energy is stored in internal degrees of
freedom of the particles, in such a way that the total energy Etot = Emec +

∑
εi is exactly con-

served. Let Emec =
∑

i 6=j
1
2
φ(rij)+

∑
i

1
2
mv2

i be the mechanical energy. Then an ’infinitesimal’
increment of the total energy can be evaluated as

dEmec = Emec(r + dr,v + dv)− Emec(r,v)

= −
∑

i6=j

FC
ijdrij +

∑
i

mvidvi + m
∑

i

dvidvi ≡ (dεi)
V H . (30)

Note that the ’second’ order term is a consequence of stochastic calculus, where dvi contains
terms ofO((dt)1/2) (see Eq.(21)). Substitution of the equation of motion (19) and use of the Ito
rule (21), yield for Eq.(30) to the loss of energy due to viscous heating (VH) is

(dεi)
V H =

m

2

∑
j

[−γijwD(rij)(r̂ij · vij)
2 + σ2

ijw
2
R(rij)

]
dt +

m

2

∑
j

σijwR(rij)(r̂ij · vij)dWij

(31)
Note that from here on the sums over j satisfy the constraint j 6= i. This expression de-
scribes how the friction forces contribute to the change of mechanical energy. In addition the
phenomenon of heat conduction (HC) has to be considered, where temperature differences be-
tween particles (subsystems) produce a flux of internal energy. To formulate stochastic differ-
ential equations for the phenomenon of heat conduction, a discrete fluctuating Fourier equation
of heat conduction (HC) is considered [65, 66],

(dεi)
HC =

∑
j

κijw
ε
D(rij) (Tj − Ti) dt +

∑
j

αijw
ε
R(rij)dW ε

ij. (32)

The first term on the r.h.s. is deterministic and specifies that a temperature difference causes
flow of energy. The second term is stochastic and takes into account thermally induced fluctua-
tions in each particle due to random interchange of energy between particles [10]. The factor κij

modulates the intensity of thermal conduction and αij is the amplitude of the noise. These func-
tions are assumed to be symmetric under particle interchange. Both terms in Eq.(32) must be
antisymmetric under particle interchange for the total energy of the system to remain conserved.
Consequently, the increments of the Wiener process associated with the heat conduction have
then to be antisymmetric under particle interchange dW ε

ij = −dW ε
ji. The Ito rule is expressed

as
dW ε

ijdW ε
i′j′ = (δii′δjj′ − δij′δji′)dt. (33)

The two Wiener processes dWij in VH, and dW ε
ij in HC are uncorrelated.

The equation of motion for the internal energy follows by summing the terms in Eqs.(31) and
(32), i.e. dεi = (dεi)

V H+(dεi)
HC . To summarize, the full set of stochastic differential equations

for xi = {ri,vi, εi} is the same as in Eq.(19) supplemented with the equation of motion for εi.
The equilibrium distribution function is a generalization of the Gibbs state of Eq.(27) given by,

ρ0(X) =
1

ZN

exp

[
− 1

kBT

∑
i

(
m

2
v2

i + εi +
1

2
φ(rij)

)
+

1

kB

∑
i

s(εi)

]
. (34)

where the X is a point in the phase space, X = {xi = (ri,vi, εi)|i = 1, . . . , N}, Z is the
normalization factor. In order to ensure that the system relaxes to the previous equilibrium
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distribution, fluctuation dissipation relations, similar to Eqs.(22), are now necessary

2kBγij =
1

2
mσ2

ij

(
1

Ti

+
1

Tj

)
, wD(r) = w2

R(r) ≡ w(r)

2kBκijTiTj = α2
ij , wε

D(r) = (wε
R)2 (r) ≡ w(r). (35)

Furthermore, the strength coefficients can respectively have the form κij = ακ0kB, and σij =
σ0, where σ0 and κ0 are positive constants having the dimension of a frequency. The range
functions w(r) for C, VH, and HC could in principle be different, but for simplicity they are
generally chosen to be the same. Further details of this model can be found in Refs. [67, 68]

Equation of state - To define the DPD+e model completely, one has to specify the entropy
function s(ε) as a function of the internal energy of a DPD particle, i.e. its density of internal
states. The simplest choice is the entropy for an ideal solid

s(ε) = Cv ln(ε/εu), (36)

where Cv = αkB is the heat capacity of a DPD particle, which is assumed to be a constant
independent of ε. The parameter εu is a constant with dimension of energy. This constant is
necessary in order to have a dimensionless argument for the logarithm, but it is irrelevant as it
represents an additive constant in the entropy. By differentiating Eq.(36), the relation between
the internal temperature of a particle Ti and its internal energy εi are obtained,

εi = CvT (εi) = αkBTi. (37)

The dimensionless number α = Cv/kB is a measure of the “size” of the DPD particle because
it scales like the number of internal degrees of freedom of the particle. Hence, α is a large
number.

Later extensions of the original DPD model have been proposed in order to include various
aspects. One has been the so called Fluid Particle Model [69]. This model has a more general
dissipative force which is not central. For this reason it is necessary to include a spin variable.
This new variable ensures that the total angular momentum of the system is conserved. Another
generalization has been introduced for modeling viscoelastic flows [70] by including an elastic
variable for each fluid.

4 Multiparticle collision dynamics (MPC)
This mesoscale simulation technique is a variant of the DSMC method, in which binary col-
lisions are replaced by multi-particle collisions in a prescribed collision volume. This method
has been called multi-particle-collision dynamics (MPC) or stochastic rotation dynamics (SRD).
It employs a discrete-time dynamics with continuous velocities and local multi-particle colli-
sions. Mass, momentum, and energy are locally conserved quantities by construction and it has
been demonstrated that the hydrodynamic equations are satisfied. MPC is also the most recent
technique of the ones treated in this chapter, since it was first introduced by Malevanets and
Kapral [71, 72] in 1999.
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4.1 MPC fluid model

The fluid is modeled by N point particles. Each of these particles is characterized by its position
ri and velocity vi, and labeled with i = 1, . . . , N . Positions and velocities are continuous vari-
ables, which evolve in discrete increments of time. The mass mi associated with the particles is
usually taken to be the same, but more generally, different masses can be assigned.

a) b) c)
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Fig. 5: Diagram of the MPC dynamics in 2 dimensions. (a) Streaming step, (b) particles sorted
into collision boxes and (c) rotation of the particle velocity relative to the center of mass.

The MPC algorithm consists of two steps, streaming and collision, which are illustrated in
Fig. 5. In the streaming step the particles do not interact with each other (see Fig. 5a), they
move ballistically according to their velocities during a time increment h, to which I will refer
as collision time. Thereby, the evolution rule is

ri(t + h) = ri(t) + hvi(t). (38)

In the collision step, the particles are sorted into collision boxes (see Fig. 5b), and interact with
all other particles in the same collision box. This multibody interaction takes place through the
collision box center of mass velocity. This is

vcm,i(t) =

∑(i,t)
j (mjvj)∑

j mj

, (39)

such that vcm,i(t) is the velocity of the center of mass of all particles j, which are located in
the collision box of particle i at the considered time t. The collision boxes are typically the unit
cells of a d-dimensional cubic lattice with lattice constant a, although other geometries would
be possible. The collision is then defined as a rotation of the velocities of all particles in a box
in a co-moving frame with its center of mass. Thus, the velocity of the i-th particle after the
collision is

vi(t + h) = vcm,i(t) +R(α) [vi(t)− vcm,i(t)] , (40)

where R(α) is a stochastic rotation matrix. This implies that each particle changes during the
collision the magnitude and the direction of its velocity (see Fig. 5c), in such a way that the
total momentum and kinetic energy are still conserved within every collision box. This is easy
to visualize since the collision box center of mass velocity vcm,i does not change during the
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collision,

(i,t)∑
j

mvj(t + h) =

(i,t)∑
j

m
(
vcm,i(t) +R(α) [vj(t)− vcm,i(t)]

)
=

(i,t)∑
j

mvj(t) (41)

(i,t)∑
j

m

2
v2

j (t + h) =

(i,t)∑
j

m

2

(
vcm,i(t) +R(α) [vj(t)− vcm,i(t)]

)2
=

(i,t)∑
j

m

2
v2

j (t).

Therefore, with the collision rule in Eq. (40), the conservation of mass, local momentum and
kinetic energy are guaranteed by construction.

MPC units - In the simulations, N particles are initially placed at random in a cubic system
of linear extension L. The average number of particles in a collision box is ρ = N(a/L)d, the
scaled number density. Starting from an arbitrary distribution of velocities, only a few steps are
required to reach the Maxwell-Boltzmann velocity distribution . The equilibrium temperature
T is then given by the average kinetic energy m 〈v2

i 〉 = 3kBT , where kB is the Boltzmann
constant. It is necessary to choose reference units, and these can for instance be,

Mass unit: m ≡ particle mass
Length unit: a ≡ collision box size
Energy units: kBT ≡ system temperature

which corresponds to measure length and time according to x̂ = x/a and t̂ = t
√

kBT/ma2.
The scaled mean free path is then given by λ = ĥ.

Random rotation - Together with the collision step the stochastic rotation matrix R(α) has
been introduced, such that α is a parameter of the model. In two dimensions, the rotation of the
relative velocity is simply given by an angle±α, where the sign independent and randomly cho-
sen for each cell. In three dimensions, I describe two main schemes for the random collisions.
The first one [73] chooses the rotation direction among the three main axis and the rotation is
performed by an angle ±α. The second scheme [74] consists in choosing a random direction in
space for each box around which the relative velocities are rotated by the angle α. The second
scheme is slightly more difficult to implement but in return it introduces less anisotropy in the
system due to the underling lattice.

Rotation of a 3D vector around a random direction A random direction is independently gen-
erated in each collision box by selecting two uncorrelated random numbers r1, r2 from a distri-
bution in the interval [0, 1]. The random unity vector R has components,

Rx =
√

1− ϕ2
1 cos ϕ2, Ry =

√
1− ϕ2

1 sin ϕ2, Rz = ϕ1 (42)

where ϕ1 = 2r1 − 1 and ϕ2 = 2πr2. The rotation of v around R by an angle α is denoted as
ξ ≡ R(α)v and sketched in Fig. 6a. The illustrated rotation transforms the vector v = v‖ + v⊥
onto ξ = v‖+ξ⊥, where v‖ = (R ·v)R, and v⊥ = v−v‖. The rotated vector can be calculated
as,

ξ = v‖ + v⊥ cos α + (v⊥ ×R) sin α. (43)
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Fig. 6: (a) Rotation of a vector v around a direction given by a unit vector R. (b) Diagram of
the random shit of the collision grid.

Random shift - In order to perform the multiparticle collision, as I have already discussed,
particles are sorted into cells where the collision take place. The choice of these collision boxes
defines a preferential grid, and the first naive choice would be a fixed grid whose outside borders
coincide with the system boundaries, similar as sketched in Fig. 5b. Nevertheless, such a fixed
grid does not fulfill Galilean invariance if the mean free path is not large enough. This can
be visualized in the case of two systems, one at rest and the second moving with a constant
velocity. If the displacement of particle i is smaller than the size of the collision box a, the
particles in the collision box will not be the same in the moving system and in the system at
rest, which will lead to different dynamics in the two cases and therefore a to breakdown of the
Galilean invariance. Therefore, a random shift of the collision grid has to be performed in the
execution of the collision step [75, 76], in order to ensure Galilean invariance in the full range
of possible parameters.
Random shift is performed by displacing the collision grid a random number uniformly dis-
tributed in the interval (0, 1) which is chosen independently in each collision. In Fig.6b, the
solid grid represents the fixed grid, while the discontinuous grid would be one of the possible
displaced grids. Note that periodic boundary conditions (see Chapter B3) are applied, such
that for example, the last-right column of the shifted grid would include some particles of the
first-left column of the fixed grid. As a consequence of such a shift no special frame exits and
Galilean invariance is restored. Similarly, two particles placed at a quite small distance would
not interact if a fix grid would separate them. The random shift implementation produces also
that the probability of two particles to interact will be inversely proportional to their relative
distance, in a way similar to a soft range potential. Random shift also facilitates the transfer
of momentum between neighboring particles, since the different positions of the grid in two
consecutive collision steps make possible transfer of momentum over larger distances per time
unit.

Implementation of walls Many interesting require the implementation of walls as boundary
conditions. A simple case would be the implementation of a fixed solid wall. This is performed
by applying the so called stick boundary conditions, as have already been introduced for the
LB method. For simulating fixed walls with MPC, standard bounce-back is applied during the
streaming step, such that when a particle hits the walls it returns in the incoming direction with
inverted velocity (see Fig. 7a), and this will be enough when the walls exactly coincide with the
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boundaries of the collision cells. However, the walls will generally not coincide with the cell
boundaries, due to special geometries or to random shift. In these cases (see Fig. 7b), the cells in
the boundary will be generally partially filled, which will not lead to the desired stick boundary
conditions. An efficient solution to overcome this problem has been proposed [77]. The idea is
that for all the cells of the channel which are cut by walls and have as a consequence a number
of particles n smaller than the average number of particles in the bulk ρ, extra virtual particles
will be added. The function of these virtual particles is to obtain the behavior of a fluid with
constant density and temperature in the cells at the boundaries. The velocities of the virtual-
wall particles are drawn from a Maxwell-Boltzmann distribution of zero average velocity and
the same temperature T as the fluid. The collision step (40) is then carried out with the average
velocity of all particles in the cell. Since the sum of random vectors drawn from a Gaussian
distribution is again Gaussian-distributed, it is not necessary to calculate the velocities of the
individual particles. Instead, the center of mass velocity in Eq.(40) can be written as

vcm,i =

∑i
j mvj + a

ρ
(44)

where a is a vector whose components are numbers from a Maxwell-Boltzmann distribution
with zero average and variance (ρ− n)kBT .
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Fig. 7: a) Diagram of the bounce-back rule. b) Random-shift in the presence of walls. c)
Parabolic velocity profile in the presence of a gravitational field reproduced by MPC.

Poiseuille flow Giving a fluid resting between to planar walls, a gravitational field g is applied
in one direction parallel to the walls. After a relaxation time, the system reaches a stationary
state with a parabolic velocity profile between the walls and in the direction of the force. See
an example in Fig. 7c, where planar fixes walls are implemented at y = 0 and y = Ly = 25.
It is known [78] that the measured maximum velocity of the parabola is inversely proportional
to the kinematic viscosity ν of the fluid like vmax = gL2

y/(8ν). This behavior is reproduced by
MPC simulations, and it can be used as a measurement for the viscosity displayed by the MPC
fluid [77, 79, 80]. Alternative methods to determine the viscosity from simulations have been
employed in Refs. [81] and [82], where a system under shear flow and vorticity correlations
have been respectively used.
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4.2 Transport properties
Transport coefficients of the MPC solvent have been studied intensively. Analytical expressions
have been derived from kinetic theory by generalizing point-like collisions to finite collision
volumes [73, 76, 81, 82]. The theoretical expressions describe numerical results very well. This
is quite convenient since different properties of the fluid can be tuned by choosing the adequate
set of model parameters.

Viscosity - The total kinematic viscosity, ν = νkin + νcoll, is the sum of two contributions,
the kinetic viscosity νkin and the collisional viscosity νcoll, which have been calculated in two
and three dimensions. In three dimensions [73, 81], these expressions are

νcoll =
1

λ

(1− cos α)

18

(
1− 1

ρ

)
(45)

νkin = λ

[
1

(4− 2 cos α− 2 cos 2α)

5ρ

ρ− 1
− 1

2

]
.

The viscosity data obtained from Poiuselle flow simulations are presented in Fig. 8 together with
the theoretical predictions of Eq. (45). The obtained agreement is quite remarkable, in contrast
to the case of other mesoscopic simulation techniques such as dissipative particle dynamics [38].
Density fluctuations can also be included in the theory [81], which noticeably improves the
agreement with the simulations results for small number densities; for ρ = 5 and ρ = 10, these
contributions are negligible.
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Fig. 8: Dimensionless kinematic viscosity for the simple fluid in MPC. Symbols are the simula-
tion results, solid line is the total theoretical prediction, dotted line is the collisional contribu-
tion and dashed line the kinetic contribution. In both cases the system size is L/a = 20. In (a)
α dependence is displayed with λ = 0.2 and ρ = 10. (b) shows the λ dependence with α = 130
and ρ = 5.

The ratio between the kinetic and the collisional contributions to the kinematic viscosity varies
considerably with the model parameters, as can be seen easily from the theoretical expressions
(45). In Fig. 8 the total kinematic viscosity and its two contributions are plotted as a function of
the rotation angle and the collision time step. The collisional contribution is dominant for large
collision angles and small collision times, while the kinetic viscosity dominates in the opposite
case of small collision angles and large collision times.
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Kinetic transport is due to the movement of the particles themselves, i.e. when a particle moves
it carries a certain amount of the relevant quantities as momentum and energy, while collisional
transport is due to transfer of energy and momentum from one particle to another during colli-
sions. In MPC, kinetic transport is therefore dominant when the mean free path is larger than
the size of the collision box and for small values of the rotation angle. If the rotation angle is
small, there is little exchange of momentum between particles due to collisions. The situation
where the kinetic transport dominates is characteristic for gases. In fluids the usual situation is
the opposite, the transport of momentum is mainly due to collisions.

Diffusion coefficient - The self-diffusion coefficient can be a calculated by the Green-Kubo
formalism from the velocity autocorrelation function (VACF) as D = 1

3

∫∞
0

dt 〈v(t)v(0)〉 [82].
In order to obtain an analytical prediction, the Brownian approximation is employed for the
VACF, what yields to,

D = λ

(
1

γ
− 1

2

)
, γ =

2

3
(1− cos α)

(
1− 1

ρ

)
, (46)

where the decorrelation factor γ has been specified for the 3-dimensional case. A simulation
measurement can be obtained through the VACF or by calculating the averaged mean square
displacement. The agreement with simulation results is quite reasonable for large values of
the mean free path λ, but not so for small ones. This is due to the fact that the Brownian
approximation neglects the effect of correlations between particles. This deviation is therefore
an indication of the importance of the enhancement of the collective behavior in the regime
where the mean free path is smaller than the box size [79, 80].

Schmidt number - A convenient measure of the importance of hydrodynamics is the Schmidt
number Sc = ν/D, where ν is the kinematic viscosity and D the diffusion coefficient. Thus,
Sc is the ratio between momentum transport and mass transport. It is known that this number
for gases is on the order of unity, while in fluids like water it is on the order of 102 to 103.
A prediction for the Schmidt number of a MPC fluid can be obtained from the theoretical
expressions (45) for the kinematic viscosity, and the diffusion coefficient in Eq. (46). In Fig. 9,
the theoretical prediction is plotted for Sc as a function of the mean free path (or collision time)
for different values of the rotation angle. This shows that Sc becomes considerably larger than
unity for the same range of parameters where the collisional viscosity is considerably larger
than the kinetic viscosity.
In order to perform simulations where the hydrodynamic effect are more easily taken into ac-
count, it is advisable to employ large values of the rotation angle α (like α = 130o) and small
values of the collision time (like h = 0.1 or smaller). These restrictions, together with the elec-
tion of the number density ρ, still give a large margin to chose particular values for the transport
coefficients like the viscosity η = νρ. However, it should be recall that the simulations will
become computationally more expensive as for smaller collision times and for larger number
densities.

4.3 Implementation of complex structures
After regarding the implementation and characteristic behavior of a simple fluid with simulated
with MPC, the next important question is how complex fluids can be modeled. Two simple ex-
amples of complex structures are colloidal suspensions and polymer solutions. To this end, the
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Fig. 9: Theoretical Schmidt number versus collision time. The α and ρ parameters are specified
in the plot.

strategy is to define an hybrid algorithm where the solvent is simulated with the MPC technique
and the solute particles are described with standard Molecular dynamics simulations(MD).
In this hybrid model the MPC streaming step in Eq. (38) is used to update the positions just
of the solvent particles, while in the collision step in Eq. (40) both solvent and solute particles
are taken into account. The collision is performed through the collision box center of mass
velocity Eq. (39) where the solute particles are generally considered to have larger mass than the
surrounding solvent particles. The position update of the solute particles is performed in several
MD steps between MPC collisions, and it is in the MD where the particular characteristics of
the interaction potential are taken into account.

Fig. 10: Diagram of the inclusion of a polymer in a MPC solvent.

For example, in case a polymer is considered [83,84], Nm point particles of mass M are taken to
be the polymer monomers. These monomers are connected by harmonic springs and eventually
also interact via an excluded-volume potential (for details of these potentials see Chapter B3).
Typical potential parameters are then related to the MPC units. The typical distance between
consecutive monomers (bond length) could be equal to the box size, so that there is no more than
one monomer in each collision box. The potential strength would similarly be taken in units of
the thermal energy kBT . The MD time steps are integrated, for instance, with the velocity-Verlet
algorithm with a time step ∆t generally 20 to 100 times smaller than the collision time.
In other words, we consider a system of monomers or colloidal particles interacting through
particular potentials whose positions and velocities evolve in discrete time intervals ∆t. This
procedure is interrupted every h/∆t steps for the interaction with the fluid particles. This
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interaction is a MPC event where solvent and solute particles interchange momentum. This
implies that the solvent particles can enter the cores of the colloidal particles, but the colloids
cannot inter penetrate each other.
The hybrid model described here is a variant of the model introduced previously by Male-
vanets and Kapral [72, 85] for colloidal particles. In their model, both the solute-solute and
solute-solvent interactions were taken into account through excluded-volume potentials with
MD, and only the solvent-solvent interactions were mesoscopically described through MPC.
The advantage of the model described here comes from the fact that in the MD steps just the
solute particles are considered. This leads to a considerable speed up of the simulations.
An optimal choice for the mass of the solute particle in order to enhance the hydrodynamic
coupling between solute and fluid particles is M/m ' ρ. This can be understood as follows.
The relative mass of the solute and solvent particles appears in the collision step via the calcu-
lation of the center-of-mass velocity. If solute particles have the same mass as solvent particles
and there is a large number of solvent particles per cell, the solvent particles transfer a large
random momentum to the solute particle. Simultaneously, the effect of the solute particle mo-
mentum on the solvent is small. A very large mass of the solute particle is not very convenient
either, because it implies a large ballistic regime and a long diffusion time (see more details in
Ref. [80]).
These hybrid method has been used to study the dynamics of short polymer chains in solution
[79, 84]. The predictions of the Zimm theory, in which the effect of hydrodynamic interactions
is taken into account, are in excellent agreement with the simulation results for instance, for
the center of mass diffusion coefficient and for the relaxation times of the Rouse modes. This
agreement is found in the parameter regime where the collective behavior has been described to
dominate the dynamics, which also is when the Schmidt number displayed larger values. Other
studies [86, 87] have shown, by means of MPC simulations, the relevance of hydrodynamics
interactions in two particular problems, polymer collapse and sedimenting colloidal suspensions
respectively.

MPC arises therefore as a promising method in the broad field of mesoscale simulations.
It is nevertheless a quite recent simulation method, such that there is still space for further
improvements, and it has to be tested in several systems in comparison with previous techniques.
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