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1 Introduction

The many-electron Schrödinger equation gives an accurate description of materials at the quan-
tum mechanical level but is an intractable 3N + 1 dimensional partial differential equation,
where the number of electrons N may be very large. To circumvent the problem of the high
dimensionality, most computational quantum mechanical studies of large systems are based
on simpler one-electron theories such as Kohn-Sham density-functional theory (DFT) and the
Hartree-Fock (HF) approximation. These replace the electron-electron interactions by an effec-
tive potential, thereby reducing the problem to a set of one-electron equations.
Despite the successes of DFT in describing the electronic structure of complex molecules and
solids, the treatment of electronic correlation within DFT is only approximate, sometimes lead-
ing to incorrect results for both strongly and weakly correlated systems. An important area of
research within electronic structure theory is therefore the development of alternatives to den-
sity functional theory. Quantum Monte Carlo (QMC) methods are among the most successful
of the post-DFT approaches and have yielded very accurate calculations of correlated proper-
ties for large molecules or solid systems, where conventional quantum chemistry methods are
extremely difficult to apply. For these reasons, QMC is establishing itself as a unique tool for
exploring electronic correlation in systems of interest to materials science and for obtaining
conclusive answers in cases where density functional theory is shown to be inadequate.
One of the early and best-known examples of the important role played by QMC in the field
of electronic structure theory is the computation of the correlation contribution to the local
density approximation (the basic ingredient of DFT) through a correlated calculation for the
electron gas [1]. Recently, QMC has been of further help in gaining a better understanding of
DFT, either by establishing the performance of approximate exchange-correlation functionals or
through the construction of accurate density functional quantities [2, 3]. Moreover, significant
progress has been made in applying QMC techniques to problems of material science interest,
such as binding properties of clusters [4], defects in semiconductors [6], structural energies and
reactions at semiconductor surfaces [5], and excited states of molecules [7, 8] and solids [9] (for
an exaustive review of recent applications of QMC, see Ref. [10]).
In these notes, we focus on two particular quantum Monte Carlo approaches, the variational
Monte Carlo and the projector Monte Carlo methods. They are both zero temperature methods
and are used to calculate the properties of a single state (usually, the ground state) of a given
Hamiltonian. Variational Monte Carlo is a simple application of the Metropolis Monte Carlo
method with the non trivial complication that we do not have the analytical expression of the dis-
tribution to be sampled: the distribution is equal to the square of the wave function which must
be constructed and optimized to be a good approximation of the state of interest. In projector
Monte Carlo, the transition rule is chosen so that the asymptotic distribution is the exact ground
state wave function. The diffusion Monte Carlo method is a particular way of projecting the
ground state from an initial distribution and corresponds to a random walk given by a diffusion
and a branching process. Fermi statistics and the collapse of the solution to the bosonic ground
state pose a severe problem for projector Monte Carlo and can be addressed in an approximate
but stable manner through the constraints introduced by the fixed-node algorithm.
While the features of QMC we discuss hold in general, we restrict the examples to atomic and
molecular systems and do not cover the specifics of QMC calculations for solids which are
given in Ref. [10]. Other useful sources for QMC are the simple introduction to Monte Carlo
methods by Kalos and Whitlock [11], the book by Hammond, Lester and Reynolds [12] on the
use of QMC in quantum chemistry, the book edited by Nightingale and Umrigar [13] and the
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recent review on QMC methods and their applications [10]. We omit the description of finite
temperature path integral Monte Carlo which can be found in Ref. [14].
Let us define the notation we adopt in these notes. We will assume that we have a non-relativistic
system of N interacting electrons described by the Hamiltonian:

H = −1

2

N∑
i=1

∇2
i +

N∑
i=1

vext(ri) +
N∑

i<j

1

|ri − rj| , (1)

where we used atomic units (~ = m = e = 1). The external potential vext(r) is given either
by the bare electron-ion Coulomb potential −Z/r where Z is the charge of the ion, or by a
pseudopotential describing the ion plus the core electrons which have been eliminated from the
calculation. We denote with R the 3N particle coordinates, and with x = (r, σ) the 3 spacial
and 1 spin coordinates of one electron where σ = ±1.

2 Variational Monte Carlo

Variational Monte Carlo (VMC) is the simplest quantum Monte Carlo method and represents a
generalization of classical Monte Carlo. VMC is used to compute expectation values of quan-
tum mechanical operators on a given trial wave function and allows the use of any “computable”
trial wave function without severe restrictions on its functional form. This must be contrasted
to other traditional quantum chemical methods which express the wave functions in terms of
products of single particle orbitals in order to perform the high-dimensional integrals in the
various expectation values. VMC was first used used by McMillan [15] to calculate the ground
state properties of liquid 4He and then generalized to fermionic systems by Ceperley et al. [16].
VMC derives the name from the variational theorem which states that, given a trial wave func-
tion Ψ(R), the expectation value of the Hamiltonian with respect the trial wave function is an
upper bound to the exact ground state energy E0:

EV =
〈Ψ|H|Ψ〉
〈Ψ|Ψ〉 =

∫
dRΨ∗(R)HΨ(R)∫
dRΨ∗(R)Ψ(R)

≥ E0 . (2)

The variational energy EV can be rewritten as an average value of the local energy EL(R) over
the distribution ρ(R)

EV =

∫
dR

HΨ(R)

Ψ(R)

|Ψ(R)|2∫
dR|Ψ(R)|2 =

∫
dREL(R) ρ(R) = 〈EL(R)〉ρ , (3)

where the local energy is defined as

EL(R) =
HΨ(R)

Ψ(R)
, (4)

and the distribution ρ as

ρ(R) =
|Ψ(R)|2∫

dR |Ψ(R)|2 . (5)
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In VMC, we use the Metropolis method to sample the distribution ρ(R) and compute the aver-
age of the local energy over M configurations sampled with the probability ρ(R) as

EV = 〈EL(R)〉ρ ≈ 1

M

M∑
i=1

EL(Ri) , (6)

where the average is an approximation to the expectation value and becomes an equality in the
limit of M →∞.
Which conditions should Ψ satisfy to be used within VMC? The wave function should be con-
tinuous, normalizable and have the proper symmetry. Very importantly, for the statistical error
on the energy EV to be meaningful, Ψ should yield a finite variance of the energy σ2

V,

σ2
V =

〈Ψ|(H− EV )2|Ψ〉
〈Ψ|Ψ〉 = 〈(EL(R)− EV )2〉ρ , (7)

since the error as a function of the Monte Carlo steps behaves as

err(EV ) ∼ σV√
M

. (8)

Note that, as the trial wave function approaches an exact eigenstate of the Hamiltonian H,
the local energy becomes constant and equal to the eigenvalue of H on that state. Therefore,
in this limit, the expectation value becomes the true energy and the variance goes to zero.
This important property of VMC is known as the zero variance principle: as the trial wave
function improves, the Monte Carlo estimate of the variational energy converges more rapidly
as a function of the number of Monte Carlo configurations (in the limit of Ψ being the exact
eigenstate, only one configuration in Eq. 6 is necessary to compute the energy). Because of the
zero variance property, Monte Carlo computations of energies can be much more efficient than
classical Monte Carlo calculations.
Even though we focused on the energy, VMC can be used to compute the expectation value of
any operator X which is diagonal in the R representation. In the previous expressions, simply
replace the Hamiltonian H with X and the local energy with X(R) = XΨ(R)/Ψ(R).

2.1 Generalized Metropolis algorithm
We will briefly review the Metropolis algorithm in the context of VMC. The Metropolis algo-
rithm is a general method to sample an arbitrary probability distribution ρ(R) and is an applica-
tion of a Markov chain. In a Markov chain, one changes the state of the system randomly from
an initial state Ri to a final state Rf according to the stochastic transition matrix M(Rf |Ri)
which satisfies

M(Rf |Ri) ≥ 0 and
∑

f

M(Rf |Ri) = 1 . (9)

To sample the desired distribution ρ(R), one evolves the the system by repeated application of
a Markov matrix M which satisfies the stationarity condition

∑
i

M(Rf |Ri) ρ(Ri) = ρ(Rf) ,
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for any state Rf . The stationarity condition condition tells us that if we start from the desired
distribution ρ, we will continue to sample ρ. Moreover, if the stochastic matrix M is ergodic,
this condition ensures that any initial distribution will evolve to ρ under repeated applications
of M . Therefore, ρ is the right-eigenvector of M with eigenvalue 1 and it is also the dominant
eigenvector.
Note that both the Metropolis method and the projector Monte Carlo methods discussed later
in section 5 are stochastic implementation of the power method for projecting out the dominant
eigenvector of a matrix. In the Metropolis method, one constructs a matrix M whose dominant
eigenstate is the desired known distribution while, in the projector Monte Carlo methods, one
projects out the unknown eigenstate of a known matrix.
In practice, one imposes the more stringent detailed balance condition

M(Rf |Ri) ρ(Ri) = M(Ri|Rf) ρ(Rf) (10)

which is a sufficient but not necessary condition to satisfy the stationarity condition as can be
easily seen by summing both sides of the equation over Ri and using Eq. 9. The transition M
is then rewritten as the product of a proposal matrix T and the acceptance A:

M(Rf |Ri) = A(Rf |Ri) T (Rf |Ri) , (11)

where M and T are stochastic matrices but A is not. The detailed balance condition finally
becomes

A(Rf |Ri) T (Rf |Ri) ρ(Ri) = A(Ri|Rf) T (Ri|Rf) ρ(Rf) . (12)

or equivalently

A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)
. (13)

Clearly, for a given choice of T , there are infinitely many choices of A which satisfy this equa-
tion since any function

A(Rf |Ri) = F

(
T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)

)
(14)

with F (x)/F (1/x) = x is appropriate. The choice originally made by Metropolis et al. [17] is

A(Rf |Ri) = min

{
1,

T (Ri|Rf) ρ(Rf)

T (Rf |Ri) ρ(Ri)

}
, (15)

and is the one which maximizes the acceptance.
In choosing the proposal matrix T , we observe that the Metropolis algorithm generates points
which are sequentially correlated so that the effective number of independent observations in a
Monte Carlo run of M steps is M/Tcorr, where Tcorr is the autocorrelation time of the observable
of interest. Therefore, to achieve a fast evolution and reduce Tcorr, the optimal T should yield
a high acceptance and at the same time allow large proposed moves. The choice of T will of
course be limited by the fact that we need to be able to sample T directly.
In the original Metropolis method, T is chosen to be a constant inside a cube and zero outside,
and consequently drops out from the expression of the acceptance (Eq. 15). However, T does
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not have to be symmetric and a generalized Metropolis procedure with a non-symmetric choice
can actually be more efficient. If we limit the moves to a neighborhood of Ri of linear dimension
∆, the acceptance will behave as

A(Rf |Ri)

A(Ri|Rf)
=

T (Ri|Rf)

T (Rf |Ri)

ρ(Rf)

ρ(Ri)
≈ 1−O(∆m) . (16)

If T is symmetric as in the original Metropolis algorithm, m = 1 while other choices may give
higher values of m. For example, a better choice (with m = 2) motivated by diffusion Monte
Carlo is

T (Rf |Ri) = N exp

[
−(Rf −Ri −V(Ri)τ)2

2τ

]
with V(Ri) =

∇Ψ(Ri)

Ψ(Ri)
. (17)

A different choice of transition matrix particularly efficient for atomic and molecular systems
is dicussed in Ref. [18].
In short, the generalized Metropolis algorithm will consist of the following steps:

1. Choose the distribution ρ(R) and the transition probability T (Rf |Ri).

2. Initialize the configuration Ri.

3. Advance the configuration from Ri to Rf :

a) Sample R′ from T (R′|Ri).

b) Calculate the ratio

q =
T (Ri|R′)
T (R′|Ri)

ρ(R′)
ρ(Ri)

. (18)

c) Accept or reject: If q > 1 or q > r where r is a uniformly distributed random
number in (0,1), set the new configuration Rf = R′. Otherwise, set Rf = Ri.

4. Throw away the first κ configurations corresponding to the equilibration time.

5. Collect the averages and block them to obtain the error bars.

Two final comments on the Metropolis algorithm. First, the distribution ρ(R) does not have
to be normalized since only ratios enter in the acceptance. Therefore, it is possible to sample
the square of complex wave functions (Eq. 5) whose normalization we do not know (see sec-
tion 3.1). Second, if M1,M2, . . . , Mn are matrices which satisfy the stationarity condition, the
matrix M =

∏n
i=1 Mi also satisfies the stationarity condition. Consequently, particles can be

moved one at the time, a necessary feature as the system size grows since the size of the move
would need to be decreased to have a reasonable acceptance of a move of all particles.

3 Quantum Monte Carlo wave functions
The use of VMC to compute the expectation values of quantum mechanical operators allows
great freedom in the choice of the trial wave function which on the other hand determines the
accuracy as well as the efficiency of the calculation. Therefore, the form of wave function
should yield accurate results while being compact and easy to evaluate.
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The ingredients entering in the wave function most commonly used in quantum Monte Carlo
can be understood by inspecting the advantages and limitations of traditional quantum chem-
istry approaches. Methods such as configuration interaction (CI) expand the many body wave
function in a linear combination of Slater determinants of single-particle spin-orbitals. This
form allows the evaluation of the high-dimentional integrals in all expectation values but the
convergence of the expansion is very slow, in part because of the difficulty in describing the
cusps which occur as two electrons approach each other (see section 3.3). Quantum Monte
Carlo uses a much more compact representation of the wave function which is usually given
by a sum of few determinants (tens and not millions like in a CI calculation) multiplied by a
component which can exactly impose the cusps at the inter-particle coalescence points.

3.1 Jastrow-Slater wave functions
The trial wave functions commonly used in quantum Monte Carlo methods for electronic struc-
ture problems are of the Jastrow-Slater form, that is the product of a sum of determinants of
single-particle orbitals and a Jastrow correlation factor

Ψ(r1, . . . , rN) = J (r1, . . . , rN)
∑

k

dkD
↑
k(r1, . . . , rN↑)D

↓
k(rN↑+1, . . . , rN) , (19)

where D↑
k and D↓

k are Slater determinants of single-particle orbitals for the up- and down-
spin electrons, respectively. The orbitals are a linear combination of Slater functions centered
on the atoms for all-electron calculations while they are expanded on a Gaussian basis when
pseudopotentials are employed. The Jastrow correlation function is a positive function of the
interparticle distances and explicitly depends on the electron-electron separations.
Two questions should immediately arise when inspecting the wave function of Eq. 19. Why is
the wave function only dependent on the space variables r and not on the spin variables σ? Why
is the wave function not antisymmetric with respect to the interchange of any two particles?

3.2 Spin-assigned wave functions
Given a system of N electrons with N = N↑ + N↓ and Sz = (N↑ − N↓)/2, we define a spin
function ζ1

ζ1(σ1, . . . , σN) = χ↑(σ1) . . . χ↑(σN↑)χ↓(σN↑+1) . . . χ↓(σN) . (20)

and construct a set of K = N !/(N↑!N↓!) distinct spin functions ζi by permuting the indices in
ζ1. Since the spin functions ζi form a complete orthonormal set in spin space,

∑
σ1...σN

ζi(σ1, . . . , σN)ζj(σ1, . . . , σN) = δij , (21)

we can decompose the wave function Ψ in terms of its spin components as

Ψ(x1, . . . ,xN) =
K∑

i=1

Fi(r1, . . . , rN)ζi(σ1, . . . , σN) . (22)

It follows from the antisymmetry of Ψ under the interchange of particle indices that each func-
tion Fi is antisymmetric under the interchange of like-spin electrons and that the Fi are all the
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same except for a relabeling of the particle indices and a change in sign for odd permutations.
Therefore, we can rewrite the wave function as

Ψ(x1, . . . ,xN) = A{F1(r1, . . . , rN)ζ1(σ1, . . . , σN)} (23)

It is easy to show using orthonormality of the functions ζi that the expectation value of an oper-
ator O which is spin-independent is the same if we use the fully antisymmetric wave function
Ψ or just one spatial function, say F1:

〈Ψ|O|Ψ〉 = 〈F1|O|F1〉 . (24)

Since it is more convenient to use the function F1 than the full wave function Ψ, in quantum
Monte Carlo, we always work with spin-assigned wave functions. To obtain F1, we simply
assign the spin-variables of the particles as

Particle 1 2 . . . N↑ N↑+1 . . . N

σ 1 1 . . . 1 −1 . . . −1

so that F1(r1, . . . , rN) = Ψ(r1, 1, . . . , rN↑ , 1, rN↑+1,−1, . . . , rN ,−1).

As a simple example, we consider the spin-assignment of a one-determinant wave function of
the 1s2 2s2 state of the Be atom. The system has N↑ = N↓ = 2 and Sz = 0, and we construct
the determinant from the four spin-orbitals φ1s χ↑, φ2s χ↑, φ1s χ↓, and φ2s χ↓ as

D(x1,x2,x3,x4) =
1√
4!

∣∣∣∣∣∣∣∣∣

φ1s(r1)χ↑(σ1) . . . φ1s(r4)χ↑(σ4)

φ2s(r1)χ↑(σ1) . . . φ2s(r4)χ↑(σ4)

φ1s(r1)χ↓(σ1) . . . φ1s(r4)χ↓(σ4)

φ2s(r1)χ↓(σ1) . . . φ2s(r4)χ↓(σ4)

∣∣∣∣∣∣∣∣∣
. (25)

The spin-assigned function F1 is given by

F1(r1, r2, r3, r4) = D(r1, +1, r2, +1, r3,−1, r4,−1) (26)

=
1√
4!

∣∣∣∣∣∣∣∣∣

φ1s(r1) φ1s(r2) 0 0

φ2s(r1) φ2s(r2) 0 0

0 0 φ1s(r3) φ1s(r4)

0 0 φ2s(r3) φ2s(r4)

∣∣∣∣∣∣∣∣∣
, (27)

so that the original determinant factorizes in the determinants of up and down spin-orbitals:

D → F1 =

∣∣∣∣∣∣
φ1s(r1) φ1s(r2)

φ2s(r1) φ2s(r2)

∣∣∣∣∣∣
×

∣∣∣∣∣∣
φ1s(r3) φ1s(r4)

φ2s(r3) φ2s(r4)

∣∣∣∣∣∣
= D↑(r1, r2)×D↓(r3, r4) . (28)

When constructing a spin-assigned wave function from the sum of several determinants Ψ =∑
k dkDk, we proceed for each determinant as above. Note that we must first order the spin

orbitals in all the determinants in the same way, e.g. first all the up-spin orbitals, then all the
down-spin orbitals.
Finally, the Jastrow-Slater spin-assigned wave function obtained by imposing σ = +1 for first
N↑ particles and σ = −1 for the others is given by

Ψ(r1, . . . , rN) = F1(r1, . . . , rN) = J
∑

k

dk D↑
k(r1, . . . , rN↑)D

↓
k(rN↑+1, . . . , rN) (29)
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where J = J (r1, . . . , rN) is the Jastrow factor.
How do we impose that the Jastrow-Slater wave function Ψ has a given space and spin sym-
metry? Usually, the determinantal component

∑
k dk Dk is constructed to have the proper

spacial symmetry while the Jastrow factor is a function of only the interparticle distances,
J = J ({rij}, {riα}) where the indices i, j refer to the electrons and α to the nuclei. Therefore,
J is invariant under rotations and does not affect the spacial symmetry of Ψ. As for the spin
symmetry,

∑
k dk Dk is constructed to be an eigenstate of S2 and Sz. If J is symmetric for

interchange of like-spin particles, the full wave function Ψ is an eigenstate of Sz and, if it is
symmetric under interchange of the spacial variables, Ψ is also an eigenstate of S2 [19].

3.3 Wave function and divergences in the potential
When the inter-particle distance goes to zero, the electron-nucleus and electron-electron poten-
tials diverge as −Z/r and 1/r, respectively. Since the local energy

EL =
HΨ

Ψ
= −1

2

N∑
i=1

∇2
i Ψ

Ψ
+ V (30)

must remain finite, the kinetic energy must have an opposite divergence to the potential V . It
is possible to ensure this cancelation if the trial wave function satisfies a set of cusp conditions
and displays a proper discontinuity of the derivatives at the coalescence points. To derive these
conditions, let us consider two particles of masses mi and mj and charges qi and qj approaching
each other while all other particles remain well separated. If we only keep the relevant diverging
terms in the local energy and rewrite them in relative coordinates, we obtain close to r = rij = 0

− 1

2µij

∇2Ψ

Ψ
+ V(r) ∼ − 1

2µij

Ψ′′

Ψ
− 1

µij

1

r

Ψ′

Ψ
+ V(r) ∼ − 1

µij

1

r

Ψ′

Ψ
+ V(r) , (31)

where µij = mi mj/(mi + mj) is the reduced mass of the two particles and the derivatives are
with respect to the spherical coordinate r. Therefore, as originally derived by Kato [20], the
local energy is finite if

1

Ψ

∂Ψ

∂r

∣∣∣∣
r=0

= µijqi qj , (32)

where we used that V(r) = qiqj/r and we wrote the condition more precisely in terms of the
spherical average of the wave function over an infinitesimally small sphere centered at r = 0.
Note that this condition is obtained assuming that Ψ(r = rij = 0) 6= 0.

At the electron-nucleus and electron-electron coalescence points, we therefore have

for the electron-nucleus cusp: µ = 1, qi = 1, qj = −Z ⇒ Ψ′

Ψ

∣∣∣∣
r=0

= −Z ;

for the electron-electron cusp: µ =
1

2
, qi = 1, qj = 1 ⇒ Ψ′

Ψ

∣∣∣∣
r=0

=
1

2
.

How do we proceed if Ψ(rij = 0) = 0? This will for instance occur for two electrons in a triplet
state or more generally two like-spin electrons, since the determinantal part and therefore the
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wave function goes to zero, or for a highly excited state such as the 2p2 state of the He atom.
Pack and Byers-Brown generalized Kato’s cusp conditions to the case Ψ(rij = 0) = 0 [21]. By
rewriting the wave function near r = rij = 0 as

Ψ =
∞∑

l=l0

l∑

m=−l

flm(r) rl Ylm(θ, φ) , (33)

and expanding flm(r) =
∞∑

k=0

f
(k)
lm rk, they obtained at the coalescence points that

flm(r) = f
(0)
lm

[
1 +

γ

(l + 1)
r + O(r2)

]
, (34)

where γ = qi qj µij . Therefore, while for two electrons in a singlet state, we recover the previ-
ous result, the behavior of the wave function is different for like-spin electrons:

for electrons in a singlet state: l = 0 ⇒ Ψ ∼
(

1 +
1

2
r

)
⇒ Ψ′

Ψ
=

1

2
;

for electrons in a triplet state: l = 1 ⇒ Ψ ∼
(

1 +
1

4
r

)
r .

In a spin-assigned QMC wave function, the electron-electron cusp conditions are imposed
through the Jastrow factor. For anti-parallel spins (i ≤ N↑, j ≥ N↑ + 1), usually the deter-
minantal component is different from zero and the Jastrow factor is constructed so that

J (rij) ∼
(

1 +
1

2
rij

)
⇔ J ′

J

∣∣∣∣
rij=0

=
1

2
. (35)

For parallel-spin electrons (i, j ≤ N↑ or i, j ≥ N↑ + 1), the determinantal part goes to zero and
the Jastrow factor behaves as

J (rij) ∼
(

1 +
1

4
rij

)
⇔ J ′

J

∣∣∣∣
rij=0

=
1

4
. (36)

Note that, if the cusps conditions are imposed for both parallel- and anti-parallel electrons, the
Jastrow factor is not symmetric with respect to the interchange of the spacial coordinates and
the wave function is not an eigenstate of S2. However, for well optimized wave functions, the
spin contamination is found to be very small [19].
The electron-nucleus cusp conditions are imposed through the determinantal part by requiring
that each orbital separately satisfies the cusp conditions. Note that there are no electron-nucleus
cusps when pseudopotentials are employed.

As an example, consider again the Be atom in its 1s2 2s2 state and its spin-assigned wave func-
tion Ψ(r+

1 , r+
2 , r−3 , r−4 ) = J D. In section 3.2, we obtained the factorized determinantal com-

ponent which we can now multiply by a simple Jastrow factor satisfying the electron-electron
cusp conditions:

Ψ(r1, r2, r3, r4) =

∣∣∣∣∣∣
φ1s(r1) φ1s(r2)

φ2s(r1) φ2s(r2)

∣∣∣∣∣∣
×

∣∣∣∣∣∣
φ1s(r3) φ1s(r4)

φ2s(r3) φ2s(r4)

∣∣∣∣∣∣

×
∏

ij=13,14,23,24

exp

{
1

2

rij

1 + b rij

}
×

∏
ij=12,34

exp

{
1

4

rij

1 + b rij

}
. (37)
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3.4 Jastrow factor for atoms and molecules
In the previous section, we already introduced one of the simplest forms of a Jastrow factor
which only includes electron-electron correlations:

J (r1, . . . , rN) =
∏
i<j

J (rij) =
∏
i<j

exp

{
b0

rij

1 + b rij

}
. (38)

where the product is over all pairs of electrons and b0 = 1/2 or 1/4 for anti-parallel and parallel
spin electrons, respectively. A more general form of Jastrow factor proposed by Boys and
Handy [22] depends not only on electron-electron but also on electron-nucleus distances and
describes electron-electron, electron-nucleus and electron-electron-nucleus correlations:

J (r1, . . . , rN) =
∏
i<j

J (ri, rj, rij) =
∏

α,i<j

exp

{∑

mnk

cα
mnk

(
r̄ m
iα r̄ n

jα + r̄ n
iα r̄ m

jα

)
r̄ k
ij

}
, (39)

where the index α runs over the nuclei and the scaled distances r̄iα = riα/(1 + a riα) and
r̄ij = rij/(1 + d rij) are introduced to ensure that the Jastrow factor is well behaved at large
interparticle separations. The electron-electron cusp conditions are imposed by requiring that
m = n = 0 if k = 1, while the electron-nucleus cusps can be satisfied by the determinant with
no contribution from the Jastrow factor if n = 1 or m = 1. A more general form of Jastrow
factor is obtained by lifting the constraints to allow all values of n, m, and k, and impose the
cusp conditions via linear dependencies among the coefficients cα

mnk.
In general, we note that the Jastrow factor is chosen to be a positive function of the interpar-
ticle distances and, therefore, does not affect the sign of the wave function, which is solely
determined by the determinantal component. At large interparticle distances, it plays no role
since it becomes constant, which is achieved by using either a ratio of polynomials or scaled
variables. To discuss the role played by the various terms in the Jastrow factor (as well as for
other practical purposes), it is preferable to separate the electron-nucleus, electron-electron and
electron-electron-nucleus terms as

J (r1, . . . , rN) =
∏
α,i

exp{A(riα)}
∏
i<j

exp {B(rij)}
∏

α,i<j

exp {C(riα, rjα, rij)} . (40)

The electron-electron terms B are introduced to impose the electron-electron cusp conditions
and to keep the electrons apart since the electron-electron interaction is repulsive. As shown in
Fig. 1, a simple Jastrow factor J (rij) displays a cusp at the origin and decreases in magnitude
as the electrons approach each other. Using electron-electron Jastrow factors more general than
the simple form does not lead to significant improvements. To really see the difference, we need
to include a dependence on the electron-nucleus distances.
The electron-nucleus terms A should be included if the determinantal part is obtain from a
density functional theory or a Hartree-Fock calculation and was not reoptimized after the in-
clusion of the electron-electron Jastrow factor. Otherwise, the electron-electron terms alter the
single-particle density by reducing/increasing it in high/low density regions and the resulting
density will in general be worse that the original DFT or HF density which can be restored by
the inclusion of the electron-nucleus terms.
Finally, we have the electron-electron-nucleus terms C. If the order of the polynomial in these
terms is infinite, the wave function can exactly describe a two-electron atom or ion in an S state.
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00

Fig. 1: Simple electron-electron Jastrow factor J (rij) as a function of the inter-electron dis-
tance rij .

For these systems, a 5th-order polynomial recovers more than 99.99% of the correlation energy,
which is defined as the difference between the exact and the HF energy, Ecorr = Eexact − EHF.
A natural question is if this wave function is adequate for multi-electron systems. Clearly, the
electron-electron-nucleus terms are the most important ones: due to the exclusion principle, it
is rare for three or more electrons to be close since at least two electrons must necessarily have
the same spin.
To demonstrate the effect of the different terms in the Jastrow factor, we report in Table 1 the
results from Ref. [23] where the variational energy EV and root mean square fluctuations of
the local energy σV are computed for the Li, Be and Ne atoms with wave functions with Jas-
trow factors including up to electron-electron-electron-nucleus terms. While a large gain is
obtained when adding the electron-electron-nucleus terms in both energy and σV, the improve-
ment achieved with the inclusion of the electron-electron-electron-nucleus terms is significantly
smaller. Note that as the number of electrons increases, one recovers a smaller percentage of
correlation energy at the variational level.

3.5 Dynamic and static correlation

In the QMC wave functions, the Jastrow factor and the determinantal part account for two
different types of correlations, so called dynamic and static, respectively. Dynamic correlation
is described by the Jastrow factor and is due to the inter-electron repulsion and always present.
Static correlation is due to the near-degeneracy of occupied and unoccupied orbitals, is not
always present and is described by a linear combination of determinants.
As an example which ideally demonstrates the role of static correlation, let us consider the
Be atom in its ground state. The HF ground state configuration is 1s22s2 and, due to the 2s-2p
near-degeneracy, an additional important configuration is the 1s22p2 obtained by promoting two
electrons from the 2s to the 2p orbitals. Since the ground state has 1S symmetry, a good quality
wave function of the proper symmetry can be obtained using a determinantal component of four
determinants as

(1s↑, 2s↑, 1s↓, 2s↓) + c
[
(1s↑, 2p↑x, 1s

↓, 2p↓x) + (1s↑, 2p↑y, 1s
↓, 2p↓y) + (1s↑, 2p↑z, 1s

↓, 2p↓z)
]
. (41)
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J EVMC Ecorr
VMC (%) σVMC

Li EHF -7.43273 0
e-e -7.47427(4) 91.6 0.24

+ e-e-n -7.47788(1) 99.6 0.037
+ e-e-e-n -7.47797(1) 99.8 0.028

Eexact -7.47806 100

Be EHF -14.57302 0
e-e -14.66088(5) 93.1 0.35

+ e-e-n -14.66662(1) 99.2 0.089
+ e-e-e-n -14.66681(1) 99.4 0.078

Eexact -14.66736 100

Ne EHF -128.5471 0
e-e -128.713(2) 42.5 1.9

+ e-e-n -128.9008(1) 90.6 0.90
+ e-e-e-n -128.9029(3) 91.1 0.88

Eexact -128.9376 100

Table 1: Variational Monte Carlo energies (EVMC) and root mean square fluctuations of the
local energy (σVMC) in Hartree for the Li, Be and Ne atoms from Ref. [23]. Ecorr

VMC is the
percentage of correlation energy gained, Ecorr

VMC = (EVMC − EHF)/(Eexact − EHF). Different
Jastrow factors are employed, including electron-electron (e-e), electron-electron-nucleus (e-
e-n) and electron-electron-electron-nucleus (e-e-e-n) terms. All parameters are optimized in
variance minimization (see section 4).

If we multiply the determinantal component by a simple Jastrow factor, we gain 61% of the
correlation energy when we use only one determinant corresponding to the configuration 1s22s2

while adding the 1s22p2 configuration we obtain 93% of the correlation energy.
A natural question is whether we should bother with using a sophisticated Jastrow factor since
the Jastrow factor is positive and the determinantal part yields the nodes of wave function and,
therefore, determines the quality of the fixed-node diffusion Monte Carlo (DMC) solution (see
section 5.3). There are however several reasons why we should use a a good Jastrow factor
also in a DMC calculation. The first consideration is efficiency: a better wave function with
a smaller variance will result in a gain in CPU time and will also yield a smaller time-step
error. Furthermore, when using the mixed estimator to compute expectation values other than
the energy, we obtain a better estimate of the real expectation value if the trial wave function
is accurate (see section 5.2). Finally, the Jastrow factor does affect the fixed-node energy when
using pseudopotentials due to the localization error (see section 5.4).
To conclude, we briefly discuss why the Jastrow-Slater form of wave functions Ψ = JD should
actually work. Let us assume that the solution Ψ of the eigenvalue problemHΨ = EΨ is known,
and rewrite the exact wave function as Ψ = JΦ where the Jastrow factor J is given and Φ is
defined as Φ = Ψ/J . Substituting the factorized form of Ψ in the eigenvalue equation, we
obtain

HΨ = EΨ ⇔ HJΦ = EJΦ ⇔ HJ
J Φ = EΦ ⇔ HeffΦ = EΦ . (42)
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Therefore, the function Φ is the right eigenstate of the effective Hamiltonian Heff = HJ /J
with the same eigenvalue. Since the Jastrow factor cures the divergences of the potential in the
Hamiltonian H, we can view Heff as a weaker Hamiltonian than H and therefore expect that
approximating Φ with a non-interacting or weakly correlated wave function given by one or few
determinants is a reasonable ansatz.

4 Wave function optimization
The ability of optimizing the parameters of the trial wave function is crucial for the success
of quantum Monte Carlo methods. Good trial wave functions are needed to obtain accurate
expectation values of the physical quantities of interest and reduced variance of the Monte
Carlo estimators. If the trial wave function approaches an exact eigenstate of the Hamiltonian,
the expectation value of the Hamiltonian and of any operator commuting with the Hamiltonian
satisfies the zero variance principle: the expectation value approaches the exact eigenvalue and
the Monte Carlo variance goes to zero.
Let us consider a wave function Ψ(R, {α}) depending on a set of parameters {α} and try to
optimize the parameters using a fixed set of configurations Nconf sampled from the square of
the wave function, |Ψ(R, {α0})|2, where {α0} are the best values of the parameters available.
The first thought one may have is to minimize the energy on the fixed set of configurations

E[α] =
1

Nconf

Nconf∑
i=1

HΨ(Ri, {α})
Ψ(Ri, {α}) wi , (43)

where the weights wi are given by

wi =

∣∣∣∣
Ψ(Ri, {α})
Ψ(Ri, {α0})

∣∣∣∣
2
/

Nconf∑
i=1

∣∣∣∣
Ψ(R, {α})
Ψ(R, {α0})

∣∣∣∣
2

, (44)

and are introduced to allow the correct weighting as the wave function Ψ is changed since
the configurations are sampled from the initial wave function with parameters {α0}. Unfortu-
nately, the straightforward minimization of E[α] does not work: since Nconf is a relatively small
number of configurations, the minimization often yields worse wave functions which give an
arbitrary low value of E[α] on the given set of configurations but a higher energy than the one
of the initial wave function in a long VMC run.
A second thought is to minimize the variance of the local energy [24]

σ2[α] =

Nconf∑
i=1

(HΨ(Ri, {α})
Ψ(Ri, {α}) − Ē

)2

wi , (45)

where Ē is the average energy. In practice, Ē is replaced by a guess energy Eguess which
is chosen to be a bit less than the current estimate of the energy since this is equivalent to
optimizing a combination of the variance and the energy.
Variance minimization is more stable than the minimization of E[α] since the variance has a
known lower bound given by zero. The approach is found to be very robust even for a re-
markably small number of configurations: 2000-3000 configurations are sufficient to optimize
50-100 parameters for spaces as large as 800 dimensions. Another advantage is that the variance
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is zero for all eigenstates so that we can also use variance minimization to calculate true excited
states, that is, excited states that are not the lowest lying state of that symmetry. Moreover,
additional constraints on the wave functions can be easily included by minimizing the modified
quantity χ2 = σ2+ cost functions. Finally, very efficient algorithms such as the Levemberg-
Marquard method are available to minimize the sum of squares.
Variance minimization is the most commonly used method in QMC to optimize the parame-
ters in the wave function, in particular those in the Jastrow factor. An obvious drawback of
the method is that we are minimizing the variance and not the energy while one is typically
interested in obtaining the lowest energy in either a variational or a diffusion Monte Carlo
calculation, rather than the lowest variance. Moreover, while variance minimization is very
efficient in optimizing the parameters in the Jastrow factor, the optimization of the determinan-
tal parameters is less stable and requires more iterations. So, most authors have used variance
minimization for the Jastrow parameters only, where these problems are absent. Finally, for a
given form of the trial wave function, energy-minimized wave functions on average yield more
accurate values of other expectation values than variance minimized wave functions do.
If we abandon the idea of using a fixed set of configurations, a natural approach to the mini-
mization of the energy with respect to the wave function parameters is to simply compute the
gradient and the Hessian of the energy with respect to the parameters in a VMC run, and use
them to improve the current wave function. However, a straightforward derivation of these
quantities yields estimators with large statistical fluctuations as can be be easily seen when
deriving the gradient of the energy:

∂kĒ =

〈
∂kΨ

Ψ
EL +

H∂kΨ

Ψ
− 2Ē

∂kΨ

Ψ

〉

Ψ2

= 2

〈
∂kΨ

Ψ
(EL − Ē)

〉

Ψ2

, (46)

where, in the last step, we used the Hermiticity of the Hamiltonian. While the two estimators
of the gradient yield the same expectation value, it is preferable to use the second expression
not only for its greater simplicity but also because it has a significantly smaller Monte Carlo
variance: as the wave function approaches the exact eigenstate, this expression has zero fluctu-
ations since the local energy EL becomes constant and equal to the energy. Similarly, one needs
to rewrite the espression of the Hessian so that the estimator yields an unchanged expectation
value with smaller fluctuations. The trick to doing this is to rewrite the expression of the Hes-
sian in terms of covariances, 〈ab〉 − 〈a〉〈b〉, which have usually smaller fluctuations than 〈ab〉,
by adding terms which are zero for infinite sampling but which cancel most of the fluctuations
for finite sampling [25, 26].
The use of an estimate of the Hessian characterized by reduced statistical fluctuations yields a
simple and robust optimization algorithm for the Jastrow parameters. The gain in efficiency is of
at least three orders of magnitude with respect to the use of the original expression of the Hessian
even for few-atom systems. However, the Hessian with respect to the orbital parameters in the
determinant is affected by higher statistical noise so that devising a stable energy-minimization
scheme is more difficult [26]. Other more complex approaches for the optimization of the wave
function, in particular the determinantal component, have been recently proposed [27] but we
will here omit their discussion due to their more advanced nature.
In summary, what is the customary practice for optimizing the wave function? Most authors
optimize the parameters in the Jastrow factor using variance minimization on a fixed set of con-
figurations as described above while they use methods such as Hartree-Fock, density functional
theory or a small scale configuration interaction as a practical way of constructing the determi-
nantal component, which is generally not reoptimized when the Jastrow factor is added. While
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State Wave function EVMC EDMC ∆E (eV)
11Ag HF -38.684(1) -38.7979(7) –

B3LYP -38.691(1) -38.7997(7) –
optimized -38.691(1) -38.7992(7) –

11B1u CAS(2,2) -38.472(1) -38.5910(7) 5.63(3)
B3LYP -38.482(1) -38.6030(7) 5.35(3)
optimized -38.493(1) -38.6069(8) 5.23(3)

expt. 5.22

Table 2: Variational (EVMC) and diffusion (EDMC) Monte Carlo energies in Hartree for the 11Ag

and the 11B1u states of trans-hexatriene (C6H8) from Ref. [28]. The DMC excitation energies
∆E are with respect to the ground state obtained with the same wave function type. The errors
on the last figure are given in parenthesis.

this procedure has proven to be very successful in many cases, it is not guaranteed to always
be foolproof. In particular, the determinantal part of the wave function solely determines the
fixed-node diffusion Monte Carlo energy (see section 5.3) and may need to be reoptimized to
obtain accurate results. This is demonstrated in Table 2 where the use of HF or DFT orbitals
in constructing the determinantal component of the wave function is not sufficient to give a re-
liable estimate of the excitation of trans-hexatriene [28]. Only using optimized orbitals are we
able to obtain an excitation in very good agreement with the experimental results.
Whatever optimization technique is adopted to determine the wave function, it is fair to say that
the construction of the trial wave function requires a good degree of knowledge and intuition
about the physical problem being studied. As for quantum chemical methods, choices must be
made about the functional form of the wave function to adopt. For example, for some systems,
a single determinant wave function may be sufficient while there are situations where static
correlation plays an important role and a multi-determinant wave function is necessary. In
this last case, one needs to further decide how many and which determinants to include etc.
Therefore, despite the significant advances in optimization techniques, quantum Monte Carlo
retains a non-black box character which is instead so appealing for instance in DFT approaches.

5 Diffusion Monte Carlo

VMC is a very powerful method for a series of reasons. We can use any wave function as long
as it is computable in a reasonable amount of computer time. We can learn a lot about the
system while exploring which ingredients work in the wave function. Finally, there is no sign
problem associated with Fermi statistics.
There are however several drawbacks to VMC. First, as already mentioned, there is no automatic
method to construct the wave function and choices must be made about its functional form for
each particular problem. Therefore, VMC tends to favor simple states over more complicated
ones: for example, it is easier to construct a good wave function for a closed-shell than an
open-shell system so that the energy of the former will be closer to the exact result than for the
latter. Furthermore, properties other than the energy are significantly less accurate since they
are first order in the error made on the wave function instead of second order as for the energy.
In summary, one may say that whatever goes into the wave function is directly reflected in the
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Method Projector Reference
Diffusion Monte Carlo exp[−τ(H− ET)] [29]
Green’s Function Monte Carlo 1/(H− ET) [30]
Power Monte Carlo ET −H [31]

Table 3: The projection operators for various projector Monte Carlo methods. τ is the time-step
and ET is the trial energy.

quality of the results.
Projector Monte Carlo is a more powerful method than VMC and removes (at least in part) the
bias of the trial wave function from the reults. It is a stochastic implementation of the power
method for finding the dominant eigenstate of a matrix or integral kernel. In a projector Monte
Carlo method, one uses an operator that inverts the spectrum of H to project out the ground
state of H from a given trial state. Different operators have been used as projectors and are
summarized in Table 3. Here, for simplicity, we only discuss diffusion Monte Carlo (DMC).
Let us consider an initial trial wave function Ψ(0) and repeatedly apply the projection operator
to obtain the sequence of wave functions:

Ψ(n) = e−τ(H−ET)Ψ(n−1) . (47)

If we expand the initial wave function Ψ(0) on the eigenstates Ψi with energies Ei of H, we
obtain for Ψ(n):

Ψ(n) =
∑

i

Ψi 〈Ψ(0)|Ψi〉e−nτ(Ei−ET) , (48)

where 〈Ψ(0)|Ψi〉 is the overlap between Ψ(0) and the eigenstate Ψi. Since the coefficients of the
excited states die off exponentially fast relative to the coefficient of the ground state, we obtain

lim
n→∞

Ψ(n) = Ψ0〈Ψ(0)|Ψ0〉e−nτ(E0−ET) . (49)

Therefore, if we choose the trial energy ET ≈ E0 to keep the overall normalization of Ψ(n)

fixed, the projection yields the ground state Ψ0 of the Hamiltonian. Note that the starting wave
function must have a non-zero overlap with the ground state.
How do we perform this projection? Let us first rewrite Eq. 47 in integral from and obtain

Ψ(n)(R′, t + τ) =

∫
dRG(R′,R, τ)Ψ(n−1)(R, t) , (50)

where the coordinate Green’s function is defined as

G(R′,R, τ) = 〈R′|e−τ(H−ET)|R〉 . (51)

If we can sample the trial wave function and the Green’s function in Eq. 50, we can perform this
high-dimentional integral by Monte Carlo integration. For fermions, since the wave function
must be antisymmetric, it cannot be interpreted as a probability distribution. Therefore, for the
moment, we will assume that we are dealing with bosons which are characterized by a positive
ground state wave function.
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Can we interpret the Green’s function as a transition probability? Let us consider some proper-
ties of the Green’s function. It is easy to show that G(R′,R, 0) = δ(R′−R) and that it satisfies
the imaginary-time Schrödinger equation:

(H− ET)G(R,R0, t) = −∂G(R,R0, t)

∂t
, (52)

If the Hamiltonian is only the kinetic energy operator, the Schrödinger equation in imaginary
time is a diffusion equation in a 3N dimensional space:

−1

2
∇2G(R,R0, t) = −∂G(R,R0, t)

∂t
, (53)

and the Green’s function is given by a Gaussian:

G(R′,R, τ) = (2πτ)3N/2 exp

[
−(R′ −R)2

2τ

]
, (54)

Therefore, it is positive, can be interpreted as a transition probability and easily sampled. On
the other hand, if the Hamiltonian is only the potential operator, the Schrödinger equation is the
rate equation:

(V(R)− ET)G(R,R0, t) = −∂G(R,R0, t)

∂t
, (55)

and the Green’s function is given by

G(R′,R, τ) = exp [−τ (V(R)− ET)] δ(R−R′), (56)

which is again positive but it does not preserve the normalization, and represents a factor by
which, at each step, we multiply the current distribution function Ψ(R, t). We may therefore
expect that the solution for a general Hamiltonian comprising both a kinetic and a potential term
will describe a combination of a diffusion and a branching process. Formally, Trotter’s theorem
tells us that, in the limit of small time steps, we are allowed to consider the potential and kinetic
energy contribution separately since, given two operators A and B, we have

e(A+B)τ = eAτeBτ +O(τ 2) . (57)

Therefore, we can approximate the Green’s function at short time steps as

〈R′|e−Hτ |R0〉 ≈ 〈R′|e−Tτe−Vτ |R0〉 =

∫
dR′′〈R′|e−Tτ |R′′〉〈R′′|e−Vτ |R0〉

= 〈R′|e−Tτ |R0〉e−V(R0)τ , (58)

where we used the result of Eq. 56, which combined with Eq. 54 gives the Green’s function in
the short-time approximation:

G(R′,R, τ) = (2πτ)3N/2 exp

[
−(R′ −R)2

2τ

]
exp [−τ (V(R)− ET)] +O(τ 2) . (59)

Therefore, the iteration in Eq. 50 can be interpreted as a Markov process with the difference that
the Green’s function is not normalized and we obtain a branching random walk: the first factor
in the short-time Green’s function is the Green’s function for diffusion while the second term
multiplies the distribution by a positive scalar. Since the short-time expression of the Green’s
function is only valid in the limit of τ approaching zero, in practice, DMC calculations must be
performed for different values of τ and the result extrapolated for τ which goes to zero.
The basic DMC algorithm is rather simple:
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1. Generate M0 walkers R1, . . . ,RM0 by sampling the trial wave function Ψ(0)(R) with the
Metropolis algorithm. This is the zero-th generation and the number of configurations is
the population of the zero-th generation.

2. Diffuse each walker as R′ = R + ξ where ξ is sampled from the Gaussian distribution
g(ξ) = (2πτ)3N/2 exp (−ξ2/2τ).

3. For each walker, compute the factor

p = exp [−τ((V(R)− ET)] . (60)

Branch the walker by treating p as the probability to survive at the next step: if p < 1, the
walker survives with probablity p while, if p > 1, the walker continues and new walkers
with the same coordinates are created with probability p− 1. This is achieved by creating
a number of copies of the current walker equal to the integer part of p + η where η is a
random number between (0,1).

4. Adjust ET so that the overall population fluctuates around the target value M0.

As we can infer from the expression of p, in regions where the potential is less than the av-
erage energy, walkers will proliferate while, in regions of high potential energy, walkers will
disappear. All walkers will propage independently at future generations.
The role of the energy ET is to keep the population stable and within computationally acceptable
limits. If M(t) is the current population and M0 the desired population, we should adjust ET

by δET so that, at a later time T , we have

M(t + T ) = M(t) exp [−T (−δET)] = M0 ⇒ δET =
1

T
ln [M0/M(t)] . (61)

Consequently, the expression for ET becomes

ET(t + τ) = Eest(t) +
1

gτ
ln [M0/M(t)] , (62)

where Eest(t) is the current best estimate of the ground state energy and the second term at-
tempts to reset the population to the target value M0 some g generations later. Because of the
use of a finite population, we must control the size of the population but this feedback of the
number of walkers onto ET introduces a systematic bias, the so-called population control bias.
To understand the bias on the equilibrium distribution which will only approximatly be equal
to Ψ0, consider the branching with ET = E0. If fluctuations increase the population in regions
where V(R) < ET the second term in Eq. 62 will have the opposite effect, decreasing the
equilibrium distribution relative to Ψ0. A solution is to choose g large enough to stabilize the
population around the target value without biasing too much the distribution. The drawback of
working with a large g as well as a method to estimate the size of the population control error
are discussed in Ref. [32].
Finally, note that a symmetric expression for the branching given by exp[−τ(V(R)+V(R′))/2]
can be obtained starting from the alternative expansion:

e(A+B)τ = eAτ/2eBτeAτ/2 +O(τ 3) . (63)

This choice yields a better short-time approximation since it also preserves the symmetry prop-
erty of the exact Green’s function, G(R,R′, τ) = G(R′,R, τ)
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5.1 Importance sampling
The simple algorithm described in the previous section is highly inefficient and unstable since
the potential can vary significantly from configuration to configuration or also be unbounded
like the Coulomb potential. For example, the electron-nucleus potential diverges to minus in-
finity as the two particles approach each other, and the branching factor will give rise to an
unlimited number of walkers. Even if the potential is bounded, the approach becomes ineffi-
cient with increasing size of the system since the branching factor also grows with the number
of particles.
These difficulties can be overcome by using importance sampling which was originally pro-
posed by Kalos [30] for Green’s function Monte Carlo and extended by Ceperley and Alder [1]
to DMC. We start from Eq. 50, multiply each side by a trial wave function Ψ and define the
probability distribution f (n)(R) = Ψ(R)Ψ(n)(R) which satisfies

f (n)(R′, t + τ) =

∫
dR G̃(R′,R, τ)f (n−1)(R, t) , (64)

where the importance sampled Green’s function is given by

G̃(R′,R, τ) = Ψ(R′)〈R′|e−τ(H−ET)|R〉/Ψ(R) . (65)

It is easy to show by differentiating G̃(R,R0, τ) with respect to τ that it satisfies the equation:

−1

2
∇2G̃ +∇ · [G̃V(R)] + [EL(R)− ET] G̃ = −∂G̃

∂τ
(66)

where the local energy EL(R) was defined in Eq. 4 and the quantum velocity V(R) is given by

V(R) =
∇Ψ(R)

Ψ(R)
. (67)

Now, we have three terms in the evolution equation corresponding to diffusion, drift and branch-
ing which can be considered separately for sufficiently short times as ensured by Trotter’s theo-
rem. We already discussed diffusion and branching, so we simply need to add the drift term to
the Green’s function in the short-time approximation. If we assume that V(R) remains essen-
tially constant over the move (which is true as τ approaches zero), we can solve the evolution
equation for the operator V · ∇+∇ ·V ≈ V · ∇,

V · ∇G(R,R0, t) = −∂G(R,R0, t)

∂t
, (68)

which has as solution δ(R − R0 − Vt). The resulting drift-diffusion-branching short-time
Green’s function is given by

G̃(R′,R, τ) = (2πτ)3N/2 exp

[
−(R′ −R− τV(R))2

2τ

]
×

× exp {−τ [(EL(R) + EL(R′))/2− ET]}+ O(τ 2) . (69)

There are two important new features of G̃(R′,R, τ). First, the quantum velocity V(R) pushes
the walkers to regions where Ψ(R) is large. In addition, the local energy EL(R) instead of the
potential V(R) appears in the branching factor. Since the local energy becomes constant and
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equal to the eigenvalue as the trial wave function approaches the exact eigenstate, we expect
that, for a good trial wave function, the fluctuations in the branching factor will be significantly
smaller. In particular, imposing the cusp conditions on the wave function will remove the insta-
bilities coming from the singular Coulomb potential.
The DMC algorithm will now be:

1. A set of configurations is sampled from |Ψ(R)|2 using the Metropolis algorithm.

2. The walkers are advanced as R′ = R+ ξ + τV(R) where ξ is a normally distributed 3N
dimensional random vector, and the last term is the drift.

3. The walkers are branched as in the simple algorithm but using the factor

p = exp {−τ [(EL(R) + EL(R′))/2− ET]} . (70)

4. The trial energy is adjusted to keep the population stable as in Eq. 62.

If the trial wave function equals the exact ground state wave function (perfect importance sam-
pling), the local energy is constant and the branching step is no longer present. Then, the
desired distribution to sample is |Ψ|2 which is however not the equilibrium distribution of the
drift-diffusion Green’s function due to the short-time approximation: the repeated use of step 2
will produce |Ψ|2 only in the limit of τ that goes to zero. As suggested by Reynolds et al. [29],
it is possible to sample |Ψ|2 with no time-step error by introducing an accept/reject step as in the
generalized Metropolis method of section 2.1. The approximate drift-diffusion Green’s function
is used to propose a move which is then accepted with probability

p = min

{
1,
|Ψ(R′)|2 G̃(R,R′, τ)

|Ψ(R)|2 G̃(R′,R, τ)

}
. (71)

This simple modification of the algorithm leads to a significant improvement on the basic algo-
rithm. Further improvements are discussed in Ref. [32].

5.2 Expectation values and mixed estimators
The result of the DMC projection will now be the distribution given by ρ(R) = Ψ(R)Ψ0(R).
How do we compute the expectation values of the operators of interest? In a DMC run, we can
easily collect the mixed estimator of an operator X as

XM =
〈Ψ0|X |Ψ〉
〈Ψ0|Ψ〉 =

∫
dR

XΨ(R)

Ψ(R)

Ψ(R)Ψ0(R)∫
dRΨ(R)Ψ0(R)

= 〈X(R)〉ρ , (72)

while we are interested in the expectation value of the operator on Ψ0:

X0 =
〈Ψ0|X |Ψ0〉
〈Ψ0|Ψ0〉 . (73)

For the energy or the expectation values of operators commuting with the Hamiltonian, we can
use the mixed estimator since XM = X0. For instance, for the energy, we have

EM =
〈Ψ0|H|Ψ〉
〈Ψ0|Ψ〉 = E0

〈Ψ0|Ψ〉
〈Ψ0|Ψ〉 = E0 , (74)
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since Ψ0 is an eigenstate ofH with eigenvalue E0. However, the expectation values of operators
that do not commute with the Hamiltonian will be biased. It is possible to partially correct this
systematic error by combining the mixed estimator and the variational estimate on the wave
function Ψ of the operator X as

X0 ≈ 2XM −XV +O[(Ψ−Ψ0)
2] . (75)

where the error is now quadratic in the trial wave function instead of linear as for the mixed
estimator.
It is possible to get unbiased expectation values, at the cost of having a somewhat larger sta-
tistical error, using the forward walking technique [33]. Another possible solution is to use the
reptation Monte Carlo approach to DMC [34].

5.3 Fixed-node approximation
In the discussion of DMC, we have not yet addressed the problem posed by the fact that elec-
trons are fermions and that the trial wave function must be antisymmetric. First, let us consider
how we may try to include Fermi statistics in the non-importance-sampled DMC method. Since
we can represent the starting antisymmetric wave function Ψ(0) as the difference of two positive
function Ψ

(0)
+ and Ψ

(0)
− , one could imagine assigning a sign to the walkers (positive walkers

for Ψ
(0)
+ and negative walkers for Ψ

(0)
− ) and separately evolving them using the simple DMC

algorithm described at the beginning of section 5. Both distributions will eventually converge
as

Ψ±(R, t) → cS
0Ψ

S
0 ± c0 e−(E0−ES

0 )tΨ0 , (76)

where the superscript S refers to the symmetric ground state. Since the bosonic ground state is
lower in energy than the fermionic one, the difference E0 − ES

0 is positive. Therefore, the con-
tribution along the fermionic ground state decays and both distributions converge to the bosonic
state. It is still possible to obtain some information on the exact ground state by computing the
mixed estimator with an antisymmetric trial wave function so that the bosonic component drops
out of the averages. However, the signal to noise ratio decays exponentially.
Let us consider the DMC algorithm with importance sampling. The initial distribution is given
by the square of the trial wave function Ψ(R)2 and poses no problems since it can be interpreted
as a probability distribution. However, the importance-sampled Green’s function G̃(R′,R, τ)
(Eq. 65) is negative if a move changes the sign of Ψ so that Ψ(R)/Ψ(R′) < 0. Using the sign
of the Green’s function as a weight to assign to the walkers yields a growing statistical error on
all expectation values.
To avoid this problem, we can simply forbid moves in which the sign of the trial wave function
changes and the walker crosses the nodes which are defined as the set of points where the trial
wave function is zero. This procedure is known as the fixed-node approximation. Forbidding
node crossing is equivalent to finding the solution of the evolution equation with the boundary
condition that it has the same nodes as the trial wave function. The Schrödinger equation is
therefore solved exactly inside the nodal regions but not at the nodes where the solution will
have a discontinuity of the derivatives. The fixed-node solution will be exact only if the nodes
of the trial wave function are exact.
In general, the fixed-node energy will be an upper bound to the exact energy, in particular the
best upper bound consistent with the boundary conditions given by the nodes of the trial wave
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function. To prove this propery, suppose that we have solved the Schrödinger equation in a
subvolume Ω determined by the nodes of the trial wave function:

HΨFN(R) = EFNΨFN(R) R ∈ Ω , (77)

where ΨFN(R) = 0 for R 6∈ Ω. We can extend the solution over all space by considering all
permutations as

Ψ̃FN(R) =
1

N !

∑
P

(−1)PΨFN(PR) , (78)

which is not identically zero since permutations which maps a point in Ω back into Ω must be
even, so that Ψ̃FN is at least non zero inside Ω. The variational energy is given by

∫
dR Ψ̃∗

FN(R)HΨ̃FN(R)∫
dR Ψ̃∗

FN(R)Ψ̃FN(R)
= EFN ≥ E0 . (79)

We note that, if the nodes are not exact, the derivatives of Ψ̃FN are discontinuous and, conse-
quently, the Laplacian in the Hamiltonian gives a delta function contribution. However, this
delta function does not contribute to the integral in Eq. 79 since ΨFN is zero at the nodes.
In practice, how do we enforce the fixed-node condition that the walkers do not cross the nodes?
We note that using a DMC algorithm with an accept/reject step (Eq. 71) ensures that the distribu-
tion of walkers f(R) goes to zero quadratically at the nodes so that the asymptotic distribution
corresponds to the fixed-node solution. Common practice is to reject the moves that cross the
nodes. However, no walker will cross the nodes anyhow in the limit of τ going to zero since the
drift term in the importance sampled Green’s function in the short-time approximation (Eq. 69)
diverges at the nodes, pushing the walkers away from the nodes.

5.4 Non-local pseudopotentials
The computational cost of a VMC or a DMC calculation scales in the number of electrons as N4

since the computation of the determinant in the Jastrow-Slater wave function goes as N3 while
the root mean square fluctuations of the energy σ (and therefore the statistical error in Eq. 8)
grows as

√
N as we homogeneously increase the size of the system. This must be compared to

a scaling of N3 for density functional theory and to a much less favourable N7 behavior of a
highly-correlated quantum chemical method such as coupled cluster theory.
While the QMC methods can be extended to large systems containing many electrons, the com-
putational effort increases dramatically with the atomic number Z as the scaling is approxi-
mately Z6, rendering all-electron calculations quickly intractable. The problem is caused by
the core electrons which yield large energies and large fluctuations of the energy. The most
common way to overcome this difficulty is to replace the core electrons by pseudopotentials, an
approximation which is usually rather good as the core is chemically inert. An electron-nucleus
pseudopotential is usually non-local and the most commonly used form is a potential which is
local in the radial coordinate and non-local in the angular part as

〈r|vNL|r′〉 =
lmax∑

l=0

vl(r) δ(r − r′)
l∑

m=−l

Ylm(Ω)Y∗
lm(Ω′) , (80)
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where lmax is the maximum angular momentum considered, and the function vl is radial and
vanishes outside a core radius rc. The non-local potential acting on the trial wave functions
gives

〈R|VNL|Ψ〉 =
N∑

i=1

lmax∑

l=0

vl(ri)
l∑

m=−l

Ylm(Ωi)

∫
dΩ′

i Y
∗
lm(Ω′

i) Ψ(r1, . . . , r
′
i, . . . , rN) , (81)

where the integral is over a sphere of radius r′i = ri centered on the pseudoatom. This angu-
lar integration poses no particular problem in a VMC calculation and is done by a numerical
quadrature on a regular polyhedron defined by a set of vertices whose number will depend on
the value of lmax [35].
The use of non-local pseudopotentials is however a problem in DMC since the Green’s function
(Eq. 51) is no longer positive. This can be understood by analysing the behavior of the Green’s
function at short time steps:

〈R′|e−τH|R〉 ≈ 〈R′|I − τH|R〉 = δ(R′ −R)− τ〈R′|H|R〉 . (82)

While the diagonal elements can always be made positive by choosing τ small enough, the off-
diagonal elements are positive if and only if the off-diagonal elements of the Hamiltonian are
non-positive. Therefore, if the potential has off-diagonal elements which are positive as for a
non-local pseudopotential, the Green’s function cannot have a probabilistic interpretation. This
creates a new sign problem with difficulties similar to the fermionic sign problem discussed in
the previous section.
A possible way to circumvent this problem is to introduce the so-called locality approximation
and define a new effective core potential by localizing the non-local potential on the trial wave
function [36] as

Veff(R) =
1

Ψ(R)
〈R|VNL|Ψ〉 . (83)

This new effective potential is explicity many-body but is local and can be easily incorporated in
a DMC algorithm. However, the potential depends now on the trial wave function, and the DMC
energy computed with the mixed estimator is no longer necessarily variational and depends on
the quality of the trial wave function. As the trial wave function approaches the fixed-node
solution obtained without the locality approximation, the DMC energy converges to the correct
fixed-node energy quadratically fast in the error on the trial wave function. A different approach
to handle non-local pseudopotential which is variational and improves the accuracy upon the
DMC approach with the locality approximation was recently proposed in Ref. [37].
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