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1 Introduction
Glass formation, i.e. the solidification of a liquid without forming a crystal, is a very common
phenomenon [1]. The range of materials forming glasses includes silicates (window glass),
polymers (e.g. polystyrene), elements (Selenium), metals, biological materials and many more.
From computer simulations it may even be speculated that any material vitrifies if it is cooled
down sufficiently fast. Nevertheless, the glass transition and the related molecular dynamics are
still poorly understood [2].
Although comparatively simple model systems and moderate particle numbers are sufficient to
produce the signatures of the glass transition the use of computer simulation is rather new in
this field. The reason is that the computational power required for such simulations is very high.
As will be outlined in the following, systems approaching the glass transition show extremely
long relaxation times. Therefore, a minimum of about 106 time steps is required to observe the
characteristic dynamical features. In addition, the time for equilibration also increases dramati-
cally.
Meanwhile, many glass forming systems have been studied by computer simulation. These
can be roughly divided into two classes: (i) Simplified model systems for molecular glasses
(e.g. [3]) or polymers (e.g. [4]): These models show the essential (‘universal’) features of glass
forming materials. Due to their simplicity, it is possible to simulate long times up to about
100 ns. (ii) Molecularly or atomistically detailed models: The advantage of these is that they
are fully comparable with real samples. They also show the non-universal particular features
of a given molecular or polymeric system. So the resulting properties can be cross-checked
with real experiments. On the other hand, the longest times in the simulation are much more
restricted so that the general features of the glass transition cannot be studied as well.
In order to reasonably limit the scope, this lecture will only deal with one system of type (i)
which was studied very thoroughly in the last decade. A ‘realistic’ polymer simulation of type
(ii) is presented in another lecture (B.07, Richter).

1.1 Phenomenology of glass forming materials
Glass forming systems usually exhibit a plethora of dynamical phenomena, ranging from char-
acteristic vibrations in the terahertz range to the structural relaxation which can take seconds
or more. To discuss all these ‘universal’ dynamical features of amorphous materials (most of
which are by now also studied by computer simulation) would exceed the scope of this lec-
ture. Therefore, it will be restricted on the central and most important dynamical phenomenon
in glass forming systems, the α relaxation. It is undisputed that any material which solidifies
without crystallisation shows this type of dynamics with the characteristics listed in the follow-
ing:
(1) Non-exponentiality. This feature is the longest-known in the history of glass research.
Already in the 19th century Kohlrausch discovered [5] that the decay of the charge of a Ley-
den flask, a capacitor made from silica glass, is not exponential but can be described by the
expression

Φ(t) = exp
(−(t/τK)β

)
, (1)

with β < 1. It is remarkable that this expression is used successfully till today in the description
of various aspects of the dynamics of glasses. It applies as well to macroscopic quantities as
the dynamic shear compliance [6] or the dynamic light scattering correlation function [7] as to
microscopic correlation functions from neutron scattering [8].
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Fig. 1: Plot of logarithmic α relaxation times of various glass forming materials vs. the re-
ciprocal temperature normalised to their respective glass temperature Tg, defined here as the
temperature at which the viscosity η(Tg) = 1012 Pas (equivalent to τ ≈ 103 s). [17]

The success of the ‘Kohlrausch law’ (1) is even more surprising considering that there is no the-
ory that exactly predicts it. Mode coupling theory (MCT) [9] states it as limiting approximation
to but not the solution of its dynamical equations [10]. The coupling model (CM) of Ngai [11]
uses the expression only stating heuristic arguments for it. Approximately or asymptotically the
Kohlrausch law could be derived for dynamics in fractal structures [12], fractal time [13], hi-
erarchical models [14], or percolation models [15]. The special ubiquitous rôle of the form (1)
may be related to its mathematical importance as the characteristic function of Levy’s stable
distributions [16] but this property has never been exploited in a rigorous derivation but rather
only as a motivation [13] of the widespread occurrence of the Kohlrausch law.
(2) Non-Arrhenius temperature dependence. Another characteristic feature distinguishing
the α relaxation of glass forming materials from relaxations in ‘simple’ systems is the deviation
of its temperature dependence from that expected for thermally activated processes, namely the
Arrhenius law

τ(T ) ∝ exp(EA/kBT ) . (2)

The degree of this deviation is very different for different glass forming materials leading to a
classification by Angell [17, 18] into “strong” glasses following relation (2) closely to “fragile”
ones which show a bent curve in the normalised activation plot log τ vs. Tg/T [19, 17, 18]
(Fig. 1).
The temperature dependence of the α relaxation can be described empirically by the Vogel-
Fulcher [20, 21] expression

τ(T ) ∝ exp

(
A

T − TVF

)
. (3)

At this point, a remark about the ‘glass transition’ in general is in order: Equation (3) suggests
that there is complete vitrification at TVF. This behaviour is experimentally unobservable be-
cause (i) most methods cease to be feasible for τ > 104 s because of prohibitive experiment
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duration1, (ii) samples have to be equilibrated before the experiments and the time required for
this (ageing time) increases in the same way as the α relaxation time τ itself. It is therefore not
clear whether equation (3) holds up to the singularity, most recent experiments seem to negate
this possibility [23]. For that reason the empirical dynamic glass ‘transition’ temperature Tg is
defined as the temperature where τ(Tg) = 10 . . . 104 s.
Also high precision measurements combined with an analysis of the derivatives of τ(T ) show
clear deviations from the VF expression (3) for high as well as low temperatures [24, 25].
Nevertheless, it seems to be an excellent description in an intermediate temperature range.
Empirically, a relation between non-exponentiality and non-Arrhenius temperature dependence
can be found for glass forming [26] materials: ‘Fragile’ glasses seem to show a higher deviation
from exponentiality.
(3) Time-temperature superposition principle. Despite being non-exponential the α relax-
ation usually exhibits the same shape over a large temperature range. This means that the
relaxation of a quantity Φ(t) (e.g. the shear relaxation modulus G(t)) can be described by a
master function Φα which is only rescaled to the individual temperatures:

Φ(t, T ) = Φα(t/τα(T )) . (4)

For the Kohlrausch expression (1) this means that β does not depend on temperature. This
implies that the loss part of the susceptibility corresponding to the α relaxation obeys the inverse
scaling law

χ′′(ω, T ) = χ′′α(ωτα(T )) . (5)

This principle was first found from rheological measurements of the dynamic moduli [28]. It is
still applied as a standard way to overcome the restricted dynamical range of such experiments.
Measurements at different temperatures are spliced together to obtain a master curve which
spans 12–14 decades.
The time-temperature superposition principle also applies to the microscopic dynamics seen in
a neutron scattering experiment [8] (Fig. 2).
Nevertheless, experiments covering a large dynamical range by one technique show that de-
viations from time-temperature superposition occur. They can be detected in dielectric spec-
troscopy [29] as well as rheological measurements [6].
(4) α relaxation universality. Finally, the time scale τ(T ) in general is the same for all re-
laxation processes—macroscopic (rheological, dielectric etc.) and microscopic. This can be
recognised from Fig. 2: The fact that the (microscopic) relaxation curves from neutron scatter-
ing superimpose when the (macroscopic) shift factor from rheology [30] is used is by no means
trivial. The former data reflects the loss of correlation on a length scale of 2π/q ≈ 4 Å while
the latter is obtained from a macroscopic sample. This shows that there is indeed a universality
of the α relaxation time scale covering all levels of motion from that of an individual molecular
segment to the bulk. However, it should not be concealed that high resolution experiments show
a deviation from the strict validity of the α relaxation universality.

1.2 Theories and models
In the last 50 years, a large number of theories and models has been devised to explain the
features of the α relaxation (and related dynamical phenomena). Again, it is only possible to

1 For an exceptional experiment of 2.5 · 109 s duration see [22].
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Fig. 2: Scaling representation of the neutron spin-echo data S(q, t) from 1,4-polybutadiene at
q = 1.48 Å−1. (N, 200 K; ¥, 220 K; •, 230 K; |, 240 K; ×, 260 K; ¨, 280 K). The scale
τ(T ) is taken from a macroscopic viscosity measurement. Inset: Temperature dependence of
the non-ergodicity parameter fq. [8]

mention here two examples which are relevant to the discussion of the presented simulation
results: the mode-coupling theory, which stimulated a lot of the interest in glass physics over
the last 20 years, and the older model of cooperatively rearranging units which experienced a
‘revival’ due to recent simulation results.
(1) Mode-coupling theory. The only theory which is currently able to predict all mentioned fea-
tures of the α relaxation from microscopic equations at least qualitatively is the mode-coupling
theory (MCT) [9]. Time-temperature superposition and α relaxation universality follow directly
from the mathematical properties of the MCT. Stretching is found, except for the simplest mod-
els of the MCT.
Starting point of MCT for structural glass formers is the normalised density-density correlation
function:

F (q, t) =
〈δ%∗(q, 0)δ%(q, t)〉
〈δ%∗(q, 0)δ%(q, 0)〉 . (6)

Here δ%(q, t) are the Fourier components of the microscopic density fluctuations. For these
components (modes) an infinite but closed set of equations of motion is established. This is done
be simplifying the actual equations of motion using certain approximations [9]. It would exceed
the scope of this lectures to discuss these approximations in detail but it has to be mentioned
that they are plausible but uncontrolled. The MCT equations can be solved numerically (Fig. 3)
or general scaling laws can be derived. The general form of the solution is a two-step relaxation.
The general interpretation is that the first step is related to the ‘rattling’ motion of a particle (or
a group of particles) in the cage formed by its neighbours while the second step represents its
escape from the cage.
This second step is what in the experiment is observed as the α relaxation. For sufficiently long
times the time-temperature superposition property

F (q, t, T ) = F̂ (q, t/τα(T )) (7)

can be derived within the approximations of MCT. The master function F̂ (q, t̂) is non-universal
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Fig. 3: Correlation function vs time from numerical solution of the MCT equations. The result
here is shown for a schematic MCT model [31] with only a single mode but shows the same
scaling and asymptotic properties as the full q dependent MCT. The curves A–G correspond to
T > Tc, B′–F′ to T < Tc both approaching Tc with increasing index.

and depends on q. But it can be shown that the Kohlrausch expression (1) is a good approxima-
tion.
A strict ergodic to non-ergodic transition is predicted for a temperature Tc (which, as explained
below, is higher than Tg). At this temperature the caging effect by neighbouring particles be-
comes so strong that a structural arrest occurs. This means that F (q, t) does not decay to zero
for t → ∞ but to a finite value f(q, T ); there is no longer an α relaxation. Close to Tc the α
relaxation time scale diverges with a power law

τα(T ) ∝ ε−γ (8)

where ε = (T − Tc)/Tc with a high exponent γ > 1.76 . . . . Experimentally, such a power
law can usually only be found in a small temperature region [24]. The extrapolated Tc is about
20% higher than the empirical glass temperature Tg. This is an indication of thermally activated
(‘hopping’) processes which are only included in a more extended formulation of MCT [31].
These processes restore ergodicity even at temperatures below Tc where the ‘ideal’ MCT pre-
dicts a non-ergodic behaviour.
Several predictions of MCT focus on the crossover region between the first and the second step2.
In this regime a factorisation of the reduced correlator should be possible:

F (q, t) = fc(q) + h(q)
√
|ε|g(t/tε) . (9)

Here, fc(q) = f(q, Tc) is the non-ergodicity parameter at Tc, h(q) a positive amplitude factor,
and g(t̂) another master function. The ‘β relaxation time scale’ also follows a power law tε ∝
|ε|−1/2a but with a smaller exponent.

2 In MCT literature this is usually called the β relaxation. But it has to be noted that this
terminology differs completely from that of experimental physics [32] where ‘β relaxation’
denotes a process which is orders of magnitude slower.
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g(t̂) depends on the microscopic details only via a single parameter λ. This parameter also
determines the exponent a and another exponent b through the relation

λ =
(Γ(1− a))2

Γ(1− 2a)
=

(Γ(1 + b))2

Γ(1 + 2b)
(10)

and in turn γ = 1/2a + 1/2b. g(t̂) can be written as a series expression in t̂−a and t̂b. Asymp-
totically, it becomes

g(t/tε) = (tε/t)
a (11)

for times t < tε and
g(t/tε) = −B(t/tε)

b (12)

for times t > tε and T > Tc. The last relation implies that the incipient decay of the α relaxation
is given by

F (q, t) = fc(q)− const · tb . (13)

This is the famous ‘von Schweidler’ law [33] which was proposed empirically also very early
in the history of glass physics. It has to be noted that here b is not the exponent resulting from a
series expression of the Kohlrausch function (1). Because the von Schweidler description holds
for shorter times than the latter in general b 6= β.
(2) Cooperatively rearranging regions. As mentioned above one of the unsolved problems of
the physics of glass forming materials is that the temperature dependence of relaxation times
does not follow an Arrhenius law, i.e. plots like Fig. 1 show a curvature. In addition local fits
with τ = τ0 exp(EA/kBT ) yield unphysically high values of the activation energy EA and too
short times for τ0. An early idea by Adam and Gibbs [34] (AG) to resolve this puzzle was that
groups of z molecules (or monomeric segments for polymers) have to move at the same time
to enable relaxation. If there is a minimum number z∗ below which the molecules in a group
block themselves it can be shown that the Arrhenius law changes into

τ(T ) = τ0 exp(z∗(T )EA/kBT ) (14)

where now EA is the activation energy for a single molecule [34]. In order to explain the positive
curvature of Fig. 1 z∗(T ) has to be a decreasing function of temperature. This makes sense
because one would expect a looser packing at high temperature and therefore the possibility for
smaller groups to rearrange.
The groups considered here are usually called cooperatively rearranging regions (CRR) or
-units. The problem with this kind of pictures is that the membership of a particle in a
CRR needs not to have structural consequences. Experiments trying to detect density inho-
mogeneities on the length scale expected for the CRRs were until now futile. It may be that the
CRRs can only be identified by their (faster) microscopic dynamics.
There are strong indications that glass forming liquids indeed show a microscopically hetero-
geneous dynamics [35]. Nevertheless, there are only few experiments allowing an unequivocal
access to the spatial extent of the inhomogeneities, so that it is still unclear whether they corre-
spond to the CRRs hypothesised.

2 Simulation of a glass forming system
As mentioned in the introduction computer simulations nowadays cover a large range of systems
ranging from more abstract models to fully atomistic ones. So it is impossible to cover the field
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in one lecture. For demonstration a single system is picked out here which has the advantage that
many properties of it have been investigated. So it is only necessary to introduce the definition
once in the first subsection. The further subsections will then always refer to the same (or only
slightly modified) system.

2.1 Kob-Andersen system, simulation technique
The system presented here as an example is a binary mixture of particles A (80%) and B (20%)
of the same mass m interacting by a Lennard-Jones potential

Vαβ = 4εαβ

(
(σαβ/r)12 − (σαβ/r)6

)
(15)

where α, β ∈ {A, B} [3].
The reason for choosing a mixture is to avoid crystallisation. But it turns out that this is only suc-
cessful for certain ‘irregular’ combinations of the parameters in expression (15), e.g. εAA = 1.0,
εBB = 0.5, εAB = 1.5, σAA = 1.0, σBB = 0.88, σAB = 0.8 3. In the following all quantities will
be expressed in terms of the parameters of the A particles, i.e. length in σAA, energy/temperature
in εAA, and time in

√
mσ2

AA/48εAA. In analogy to argon these units correspond to a length of
3.4 Å, an energy of kB · 120 K, and a time of 3 · 10−13 s.
The simulation was performed using the velocity form of the Verlet algorithm with a step size
0.01 for T ≥ 1.0 and 0.02 for T ≤ 0.8. The total number of particles was 1000–8000, the
simulated volume a cubic box with periodic boundary conditions. The box size and thus the
density was kept constant. In some but not all simulations it was adjusted before recording the
trajectories to obtain the same pressure at all temperatures. So some of the results shown here
correspond to isochoric lines (with often extremely high pressures) and some to isobaric lines
of the phase diagram.
In order to probe equilibrium properties the systems were first kept at a high temperature (T =
5). Then, they were cooled down with rates decreasing with lowering the aimed-at temperature.
For the lowest temperature (T = 0.466) a rate of 1.5 · 10−7 was achieved, corresponding to
6 · 107 K/s in argon. This is still high compared to the rates used in experiments although it
constitutes an improvement by an order of magnitude with respect to earlier simulations. To
ensure that the systems were equilibrated, runs with different thermal history were compared
and averaged. Further details of the simulations can be found in [3].
Fig. 4 shows the time development of the mean squared displacement

〈r2(t)〉 =
1

NA

〈
NA∑
i=1

|ri(t)− ri(0)|2
〉

(16)

of the A particles for different temperatures. For short times 〈r2(t)〉 is proportional to t2 indi-
cating a free-flight motion. For long times one finds 〈r2(t)〉 = 6Dt characteristic for diffusive
motion. For low temperatures a plateau around 0.04 develops. This means that the fast motion
is blocked by the neighbouring particles as soon as it reaches a length scale of

√
0.04 = 0.2 (in

units of the particle diameter σAA). Only after a long time which for low temperatures can be
orders of magnitude larger the particle can break out of the cage. So already from the simplest
one-particle property, the mean squared displacement, the basic microscopic picture of MCT
can be confirmed.

3 The parameter set is not chosen out of the blue but rather mimics the potential of the
metallic glass Ni80P20.
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Fig. 4: Mean squared displacement for the A particles for all temperatures investigated in [3]:
T = 5, 4, 3, 2, 1, 0.8, 0.6, 0.55, 0.5, 0.475, 0.466.

2.2 Mode-coupling interpretation
From the simulation results it is possible to calculate the normalised density correlation function
(6) aka the coherent intermediate scattering function:

F (q, t) =

〈
1

NA

∑NA

i=1

∑NA

j=1 exp(iq · (rj(t)− ri(0)))
〉

〈
1

NA

∑NA

i=1

∑NA

j=1 exp(iq · (rj(0)− ri(0)))
〉 (17)

From this quantity a direct test of MCT should be possible4. Fig. 5 shows a scaling plot, similar
to Fig. 2, where τ(T ) is the time where F (q, τ) = 1/e [37].
It can be seen that as soon as the two steps in F (q, t) (corresponding to the two regimes observed
in the mean square displacement) become distinct, the rescaled correlation functions fall onto
one master curve. This means that the time-temperature superposition principle is fulfilled.
Also in accordance with MCT the beginning (t . τ ) of the second step can be represented by
the von Schweidler law (13). On the other hand the full MCT expression does not fit the data
much better. Indeed, the time range of ‘critical decay’ g(t) ∝ t−a cannot be found. The longer
times can be fitted better with the Kohlrausch expression (1) but this is not in contradiction with
MCT but rather what is expected for large q [38].

4 Actually, for any correlator of quantities having nonzero overlap with δ%(q, t) the scaling
properties of MCT should hold. Therefore, historically the first tests were done on the self part
of (17) [36, 3], the incoherent intermediate scattering function

Fs(q, t) =

〈
1

NA

NA∑
i=1

exp(iq · (ri(t)− ri(0)))

〉
(18)

In principle, this argument already has to be invoked when using the correlation function (17)
because it only includes one combination of particles (here: AA) and therefore strictly speaking
is different from the density-density correlator.
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Fig. 5: Coherent intermediate scattering function F (q, t) (solid lines) for all temperatures in-
vestigated in [37]. The dashed curve is a fit with a master curve proposed by MCT. The dotted
curve is a fit with the von Schweidler law and the chain curve a fit with the Kohlrausch law.

Fig. 6: Relaxation time τ vs temperature for various correlators. Squares and triangles pointing
downwards: self correlation function Fs(q, t) for A and B particles, respectively. Circles and
diamonds: F (q, t) for AA and BB correlation, respectively. Triangles pointing upwards and
stars: F (q, t) for AB correlation. Solid line: power law with exponent 2.6. From [37].
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Fig. 7: Time dependence of Fs(q, t) (q = 7.2) of the A particles for stochastic dynamics [40].
Temperatures: 0.8, 0.6, 0.55, 0.5, 0.475, 0.466, 0.452, 0.446 . The solid curves are fits with the
MCT expression (9).

According to MCT the scaling time should show a power law dependence on temperature,
∝ (T − Tc)

−γ . As Fig. 6 shows this is fulfilled for a suitable choice of Tc = 0.430: The
scaling times show this power law with γ = 2.6 for all correlators, i.e. also for the BB and AB
counterparts of (17) and the self correlators. But here it has to be mentioned that the power law
for the diffusion coefficient, D ∝ (T − Tc)

γ , is obeyed only with a significantly different value
of γ = 1.7 . . . 2.0 [36].

A characteristic feature of the MCT for structural glass formers is that quantities as fc(q), h(q),
and λ can all be calculated from the structure factor S(q) = 〈δ%∗(q)δ%(q)〉. This structure factor
(here: the three structure factors for AA, BB, and AB correlations) can also be obtained from
the simulation. The values of fc(q) and λ calculated in this way coincide well with the values
from fitting the dynamical quantities except for the highest q [39].

As mentioned in the context of Fig. 5 the MCT expression (9) does not fit the simulation results
well in the region where the asymptotics g(t̂) ∼ t−a should hold, the so-called ‘critical decay’.
Another deviation can be found by analysing the dynamic susceptibility χ(q, ω) which is the
Fourier transform of F (q, t) multiplied by ω. As predicted by MCT this quantity shows a
minimum but this minimum does not show the predicted scaling properties χmin ∝ ε1/2 and
ωmin ∝ ε1/2a [37]. This led to the suspicion that in the system studied here the β relaxation
may be too much influenced by the long-time tail of the microscopic dynamics. In order to
check this, a system with the same composition and potential was simulated with stochastic
dynamics instead of Newtonian [40]. The stronger damping should avoid the distortion of the
β scaling regime. Fig. 7 shows the results of such a simulation as the self correlator of the
A particles together with fits with the MCT expression (9). The values fc and h were fitted
simultaneously, g(t̂) calculated from MCT, and only tε fitted individually. It can be seen that
the MCT expression fits much better here than for the Newtonian system. In addition, Fig. 8
shows that the timescale also follows the expected power law tε ∝ ε−1/2a.
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Fig. 8: Check of the validity of the power law scaling for the β relaxation tε ∝ (T − Tc)
−1/2a

for different correlators [40]. Temperatures: 0.8, 0.6, 0.55, 0.5, 0.475, 0.466, 0.452, 0.446 .

2.3 Dynamical heterogeneity
The question of dynamical heterogeneity is currently strongly discussed in the physics of glass
forming materials [35]. E.g. there are two fundamentally different explanations possible for a
correlation function decaying with a ‘stretched’ law as (1): (i) There may be regions or even
single particles with different relaxation times. Even if these individually relax according to
an exponential law, by averaging one obtains Φ(t) =

∫
g(τ) exp(−(t/τ)β)dτ where g(τ) is

the distribution of relaxation times of the regions/particles5. (ii) The non-exponentiality could
be an intrinsic property of the dynamics. In a real experiment it is difficult to distinguish both
possibilities because it cannot be avoided to integrate over a large number of particles. The big
advantage of computer simulation is here that individual particle trajectories are accessible.
(1) Non-Gaussianity. The most simple quantity giving an indication of dynamical heterogene-
ity can be derived from a cumulant expansion of the self correlator (18) [41]:

Fs(q, t) = exp

(
−〈r

2(t)〉
6

q2 +
α2(t) (〈r2(t)〉)2

72
q4 +O(q6)

)
. (19)

Here the non-Gaussianity parameter (nGP) is related to the momenta of the particle displace-
ments by

α2(t) =
3〈r4(t)〉

5 (〈r2(t)〉)2 − 1 . (20)

If one assumes that an individual particle motion causes displacements which are distributed by
a Gaussian and all such Gaussians have the same width, α2 should vanish. So if the individual

5 Indeed, for the Kohlrausch law (1) such a distribution exists with g(τ) > 0 although it
cannot be expressed in closed form. But this is not a strong argument for the ubiquity of the
Kohlrausch law because any function which decays completely monotone can be expressed by
such a distribution [16].
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Fig. 9: Non-Gaussian parameter α2 vs time for the A particles [3]. Temperatures: 1, 0.8,
0.6, 0.55, 0.5, 0.475, 0.466, 0.452, 0.446 . The inset show the temperature dependence of
the maximum position t∗ (full symbols) compared to the relaxation time of the A particle self
correlation (hollow symbols).

motions are Gaussian the nGP observed on the whole system should be a direct measure of
dynamical heterogeneity, namely

α2 =

(
δ〈r2

1(t)〉
〈r2

1(t)〉

)2

(21)

where δ〈r2
1(t)〉 =

√(
〈r2

1(t)〉 − 〈r2
1(t)〉

)2

, r1 is the individual particle displacement, and . . .

denotes the average over all particles in contrast to 〈. . .〉 being the thermodynamic average [42].
It has to be noted that there is no reason why the individual particle motion has to be Gaussian
and therefore it may be difficult to disentangle an ‘individual’ non-Gaussianity and the effect
of dynamical heterogeneity. Nevertheless, the quantity (20) has the advantage that it can be
calculated from experiments (neutron scattering, dynamic light scattering, field-gradient NMR)
which deliver Fs(q, t).
Already the early simulation results were evaluated in this respect (Fig. 9) and a general picture
emerged which could be confirmed by various later works: (i) For short times the nGP vanishes.
This is trivial because for a ballistic motion the Maxwell distribution of velocities maps to
a Gaussian distribution of displacements. (ii) For long times the nGP vanishes because the
motion becomes diffusive and from Fick’s law follows that the distribution of displacements
becomes Gaussian. This can also be seen as a consequence of the central limiting theorem. (iii)
For intermediate times the nGP can assume considerable values. The maximum grows with
decreasing temperature, but it is unclear whether there is a divergence at non-zero temperature.
The left wing of the peak in nGP obviously follows a master curve without rescaling the time.
The maximum position t∗ lies in the range of late β/early α relaxation. It shifts with decreasing
temperature to longer times but the shift is weaker than for the α relaxation times shown in
Fig. 6. It has to be noted that t∗ is orders of magnitude large than the ‘first-collision’ time
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Fig. 10: Loop of 13 particles exhibiting correlated string-like motion at T = 0.451. Line
segments connect identical particles at successive times. The arrows show the path of some
particles [44].

when a particle firstly encounters the effect of caging (about 0.09). This means that the non-
Gaussianity is not just a consequence of the ballistic motion being truncated by the cage.
(2) ‘String-like’ cooperative motion. In order to use dynamical heterogeneity as an argument
to explain the non-Arrhenius increase of relaxation times in the AG picture another essential
property has to be fulfilled: The faster particles have to arrange themselves into clusters (to
be identified with the CRRs) rather than being randomly distributed. For that purpose, the
(A) particles in the simulation have been classified into ‘mobile’ (about 5%) and ‘less mobile’
according to their instantaneous speed6.
‘Visual inspection’ reveals that there are string-like clusters of mobile particles where the par-
ticles jump into the positions of their respective neighbours in the string, sometimes even in
loops. Such a loop is shown exemplarily in Fig. 10 [44] and its motion can be seen in an anima-
tion at [45]. By using a heuristic definition of the position takeover mechanism7 it is possible to
calculate a length statistics of strings from the simulation results. It turns out that this statistics is
approximately exponential. The average string length 〈n〉 shows an increase when temperature
is lowered in agreement with the AG model (Fig. 11).

6 This is done by the criterion whether the displacement within time t∗ exceeds a certain
value r∗. While the definition of t∗ is as above the maximum position of the nGP, that of
r∗ is rather intricate, see [43]. For the qualitative results the details of this definition are not
important.

7

min (|ri(t
∗)− rj(0)|, |ri(0)− rj(t

∗)|) < 0.6 (22)

meaning that within the time span t∗ defined by the nGP maximum particle i has taken over the
position of particle j or vice versa with an accuracy of 0.6σ. Again the exact definition is not
very important for the validity of the results.
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Fig. 11: Probability distribution P (n) of string lengths n for various temperatures. Inset:
average 〈n〉 vs temperature T . [44]

Certain counterarguments to the identification of the strings found here with the CRRs of the
AG model should not be concealed: Firstly, the definition of these strings is arbitrary. There
is a continuous distribution of jump lengths which does not show a maximum around the next-
neighbour distance [48]. This casts some doubt on whether it is possible to extract a population
of site-to-site jumps as in a crystal. Secondly, the string-like motion would not show up in
collective diffusion but only in self-diffusion. Nevertheless, experiments show that both usually
go in parallel in glass forming liquids. Even for the self-motion a loop-like mechanism would
be spatially restricted. So the observed long-range diffusion could only be accomplished by
successive motions of a particle in several such loops.
Interestingly, similar dynamical structures were found earlier in simulations of a one-component
glass8 [46]. In these simulations the system is quenched after a short equilibration run to tem-
peratures ≤ 0.15 Tg. This of course creates a non-equilibrium situation but at such low temper-
atures the structural relaxation time is virtually infinite and therefore the system is metastable,
obtained quantities are again time-translational invariant. Also, the real experiment is not in a
qualitatively better position: The cooling rate may be slower but inevitably also the real samples
upon cooling fall out of equilibrium close to Tg. The first computer experiments were done in
order to identify a common anomaly in the vibrational spectrum of glasses, the so-called boson
peak [47]. For this purpose diagonalisation of the force constant matrix was done for the glassy
structure [49]. In addition to the spectrum (which indeed shows the same anomaly as found in
experiments on real glasses), the eigenvectors can be calculated from the simulation. In that way
the information was obtained that the anomalous vibrational modes are localised to about ten
particles and that these particles are arranged in string-like clusters apparently similar to those
found in the liquid [50]. Interestingly, at higher temperatures (but still far below the glass tem-
perature, T ≤ 0.15 Tg) the same clusters exhibit local relaxations [51]. The jumps associated
with this relaxation are much smaller than those described above for the liquid, namely only

8 Note that all results hitherto presented correspond to temperatures T > Tc > Tg, i.e. in the
equilibrium liquid.
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a fraction of the next neighbour distance. Also the temperature at which the relaxation is ob-
served is so low that they cannot be identified with the α relaxation. Nevertheless, the similarity
is striking and the question arises whether there is any relation between the string-like clusters
in the glass and those in the liquid. Of course, it is currently difficult to tackle this question in
consideration of the gap (0.15 Tg . . . 1.2 Tg) between the two types of computer experiments.
(3) Four-point correlators. The previously described procedure to identify dynamical hetero-
geneities is usually called ‘subset approach’ [52] because by some criterion of ‘mobility’ the
faster (or slower) particles are sorted out. It suffers somewhat from the arbitrariness of that
criterion. A more general approach is that of the definition of new correlators. To explain this
firstly the density-density correlation function in real space is recalled here:

G(r, t) =

〈∫
d3r′ (%(r + r′, t)− 〈%〉) (%(r′, 0)− 〈%〉)

〉
where (23)

%(r, t) =
∑

i

δ(ri(t)− r) .

The Fourier transform of this quantity to reciprocal (q) space gives the numerator of (17). The
special static (t = 0) case of this correlator is

G(r) =

〈∫
d3r′ (%(r + r′)− 〈%〉) (%(r′)− 〈%〉)

〉
where (24)

%(r) =
∑

i

δ(ri − r) .

Here, Fourier transform gives the denominator of (17), the structure factor S(q). This is also
the quantity which is observed in a diffraction experiment. This correlator is now modified in a
way that the δ functions belonging to more mobile particles are weighted more strongly:

Gu(r, ∆t) =

〈∫
d3r′ (u(r + r′, ∆t)− 〈u〉) (u(r′, ∆t)− 〈u〉)

〉
where (25)

u(r, ∆t) = |ri(∆t)− ri(0)|
∑

i

δ(ri − r) .

Note that the meaning of ∆t in (25) and t in (23) is completely different. While the latter is a
time offset between the structures to be correlated, the former is a ‘development’ time applied
to each of the structures to be correlated. There are several experimental methods to measure
the correlator (23) but currently none for (25). So computer simulation is the only way to access
this ‘displacement-displacement correlator’.
If one compares the concept of (25) with that of (23) one notes that the displacement correlator
involves four positions of the particles considered, namely r1(0), r1(∆t), r2(0), and r2(∆t).
Therefore, it is a special case of a four-point correlator in contrast to (23) which only involves
two points, namely r1(0) and r2(t). Indeed, the simplest density correlation function that con-
tains information on correlated particle motion is fourth-order [53]. Therefore, it is another
natural approach to study the general four-point correlation function

G4(r1, r2, r3, r4, t) = 〈%(r1, 0)%(r2, t)%(r3, 0)%(r1, t)〉
− 〈%(r1, 0)%(r2, t)〉 〈%(r3, 0)%(r1, t)〉 . (26)
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Fig. 12: Su(q, ∆t∗) versus q for different temperatures. (∆t∗ is the time span where Su(0, ∆t∗)
reaches its maximum.) Inset: static structure factor S(q) for some of the temperatures. [56].

Actually, the results from evaluation of this correlator [53, 54] are not much different from those
using the more evident displacement correlator [55, 52, 56]. Therefore only the results from the
latter will be presented here.
Fig. 12 shows the Fourier transform Su(q, ∆t∗) of the displacement correlator (25). The time
span ∆t∗ is chosen so that Su(0, ∆t∗) (which is related to the integral of Gu(q, ∆t∗)) reaches a
maximum. It can be seen that for high q this ‘displacement structure factor’ is not much different
from the ordinary S(q). But for small q a strong peak develops around q = 0 indicating long
range dynamical correlations. These correlations obviously do not have any effect on the static
structure factor S(q) what explains that they could not be observed in the numerous diffraction
experiments on glass forming liquids. Later studies were able to identify a correlation length
ξcorr(T ) which strongly increases upon cooling [54] as expected in the AG framework.

2.4 Confinement effects

An approach often used in experiment to identify the length scale involved in the glass transi-
tion is that of confinement [57, 58]. The idea behind such experiments is that as soon as the
length ξ(T ) exceeds the size of a small volume of a glass former its properties should become
different from those of the bulk material. The results of such experiments often seem contra-
dicting. There is even no agreement about the question whether Tg is decreased or increased by
confinement [57], i.e. whether confinement accelerates or decelerates the α relaxation.
In addition it is often difficult to prepare systems with the appropriate confinement size usually
in the nanometre range. On the first glance this seems no difficulty for computer simulation
because it just means a change of the boundary conditions. Nevertheless, there is a problem
associated with simply replacing the walls of the simulation box with repulsive walls: These
walls create a layering of the liquid which may not be so pronounced in a real experiment where
the walls are rough on an atomic length scale.
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Fig. 13: Time dependence of the position dependent self-correlation function Fs(q, ρ, t)for var-
ious distances ρ [59]. The thick solid curve and the dashed solid curves are the intermediate
scattering function for the whole system and the bulk system, respectively.

A computational trick to construct a rough wall avoiding this effect is the following [59]: After
the equilibration run, the particles beyond a defined pore surface are ‘frozen’, i.e. their coordi-
nates are kept constant. The time evolution is only calculated for the remaining particles. In
that way it can be assured that the structure is only minimally affected because the wall consists
of particles of the same kind and same structure as the liquid9.
Fig. 13 shows the self-correlation function (18) calculated from such a simulation in a cylindri-
cal pore of radius 5σ (corresponding to about 3.5 nm diameter) [61]. (Except for the confine-
ment all parameters are chosen as in the previous section.) One can see that the relaxation in the
pore (solid curve) is clearly slower than that of the bulk (dashed curve). It is also obvious that
the relaxation is more ‘stretched’, i.e. the parameter β of the Kohlrausch law (1) would have to
be very small if such a fit would even be possible.
Computer simulation now allows to analyse this behaviour in more depth. One can define a
position dependent self-correlation function

Fs(q, ρ, t) =

〈∑
i

δ(ρi(0)− ρ) exp(iq · (ri(t)− ri(0)))

〉
(27)

where ρi =
√

x2
i + y2

i is the distance from the central axis of the pore. This function only
considers particles which have the same distance to the wall at time zero. In Fig. 13 Fs(q, ρ, t)
for various values of ρ is added. Obviously, the relaxation time has a strong dependence on the
position of the particles. It is orders of magnitude slower at the walls than at the centre of the
pore. The dynamics is strongly heterogeneous but here the heterogeneity is extrinsic in addition
to the intrinsic heterogeneity discussed in the last section. Although the individual Fs(q, ρ, t)

9 With the same objective a liquid-crystal interface can be used [60]. During the time span
of the simulation this interface does not ‘melt away’.
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Fig. 14: z dependence of the relaxation time for different temperatures [61] (T = 2.0, 1.0, 0.8,
0.7, 0.6, 0.55, 0.5). The open diamonds on the right are the values for the bulk.

have about the same shape as the bulk Fs(q, t) the averaging over all particles results in the
dramatic stretching of Fs(q, t) in the confined situation.
This is an important finding which has to be considered in the evaluation of real experiments
where one usually measures such an average. Often experimental data is not treated as resulting
from heterogeneous dynamics. This may explain that, depending on the average realised in the
experiment, different outcomes of the confinement effect are reported (acceleration, decelera-
tion, or no change).
The dependence of the relaxation time (defined as usual as the 1/e time) is depicted in Fig. 14 for
a similar simulation but in a confined film [61]. Close to the wall the relaxation time increases
strongly with decreasing distance z and can be fitted by a double-exponential,

ln(τ(z)/τbulk) ∝ exp(−z/ξwall(T ) . (28)

The fact that this expression fits shows that in the limit of large distance from the wall the
relaxation becomes bulk-like. This can also be estimated directly from Figs. 14 or 13. This
behaviour is what one would expect intuitively. Nevertheless, real experiments often show that
the distribution of relaxation times has faster components than in the bulk or even has an average
faster than the bulk [62, 63]. The simulation results cannot reproduce this acceleration effect
for rough walls.
Expression (28) also defines a characteristic length ξwall(T ) which is about the same as the
size of the mobile clusters (ξcorr(T )) observed in the studies reported in the last section. This
suggests an explanation based on a blocking of the cooperative motion when the clusters touch
the wall.
Interestingly, mathematically smooth walls have just the opposite effect, namely an acceleration
of relaxation close to the wall [61]10. This can be explained by particles which use the less

10 In this study the structural distortion by the smooth wall was suppressed by introducing an
additional multi-particle force.
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structured potential of the wall to bypass the barrier between the potential minima created by
their neighbouring particles. Although the effect on the average is not so pronounced there, for
smooth walls one would expect a faster average relaxation. But one has to note that, except for
systems like free-standing polymer films, this is not the real experimental situation. And even
the free-standing film would correspond to a somewhat different situation, namely a force-free
surface.

3 Summary

From the exemplary studies presented here, two aspects can be seen where computer simulation
is of importance for the study of glass forming systems:
(1) Construction of ideal systems. Although on the first glance it may seem a drawback of
computer simulation that systems have to be ‘oversimplified’ to perform viable simulations over
long times, with respect to theories such as MCT, this can also be seen as an advantage. Often
such theories focus on the ‘universal’ behaviour of glass formers and do not include dynamic
processes as secondary relaxations (i.e. those of molecular side groups). On the other hand in
real samples a certain molecular complexity is inevitable to avoid crystallisation. With com-
puter simulation one can come much closer e.g. to the ‘MCT fluid’ consisting of structureless
particles.
Another advantage is that boundary conditions can be imposed freely. The ‘mathematically
smooth walls’ described in the last section certainly cannot be realised in experiment. Even the
situation of rough surfaces is difficult to prepare on a nanoscopic length scale and it cannot be
avoided to construct the walls from a different material as the confined liquid.
(2) Observation of microscopic variables. Computer simulation generates the full trajectory
of the system, i.e. the positions and velocities of all particles at all times. No experimental
method is able to do so for an atomistic system11. Of course, it is possible to measure certain
correlators, e.g. the density correlation functions (17) and (18) by inelastic neutron scattering.
But these methods are usually restricted to two-point correlators or as is the case for multidi-
mensional NMR do not measure density correlators.
With respect to confined glass forming systems computer simulation offers the important op-
portunity to extract position dependent correlators. In this way, the dependence of the dynamics
on the distance from the confining wall can be studied. This is usually not possible in real
experiments where an average over all particles is measured.
A current weakness of computer simulation (in comparison to real experiments) is its restriction
in the time range. While macroscopic experiments can be done without problems on the scale
of days, computer simulation currently struggles to reach the microsecond scale. This concerns
the simulation run time as well as the preceding equilibration. The consequence of this is that
most of the simulations today are done in the temperature region T > Tc ≈ 1.2Tg. But just the
region Tg . . . Tc is very interesting because there one expects (and observes in the experiment)
deviations from ideal MCT behaviour.
There is currently not much prospect that this situation can be resolved by improving program-
ming techniques [65]. The equilibration problem may be solved by techniques which involve

11 By confocal microscopy it is possible to obtain this full information for colloidal
glasses [64]. These are model systems where the atoms are replaced by colloidal particles
about a thousand times bigger.
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an unphysical (faster) propagation of the system before the simulation with the actual ‘phys-
ical’ algorithm is started, e.g. ‘parallel tempering’ [66] or the ‘slithering snake algorithm’ for
polymers [67]. Nevertheless, the problem that the correlators itself have to be calculated over
an enormous number of time steps remains.
On the other hand, the computation power of computers increases until now more than expo-
nentially [68]. There are still about six decades to surmount until times up to one second (being
the relaxation time at Tg) can be simulated in a Lennard-Jones system12. Depending on whether
one extrapolates exponentially using the current time constant or uses the more ‘optimistical’
Kurzweil prediction [68] this will be possible in 10–25 years.
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12 To compare, there are about eight decades until the human brain can be simulated in real
time.
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