D3 Numerical Linear Algebra

|. Gutheil
Zentralinstitut fir Angewandte Mathematik
Forschungszentrum Julich GmbH

Contents

1 Systems of Linear Equations 2
1.1 Direct Linear System Solvers 2
1.2 Tterative Linear System Solvers 2

2 Eigensystems 3
2.1 Directeigensolvers 3
2.2 Tterative eigensolvers 5

3 Libraries 6
3.1 LAPACK, Linear AlgebraPACKage 6
3.2 ScalLAPACK, Scalable Linear Algebra PACKage 6
3.3 PETSc, Portable, Extensible Toolkit for Scientific Computation 9
3.4 ARPACK, PARPACK, Parallel ARnoldi PACKage 10

4 Final Remarks 10

D3.2 I. Gutheil

Two of the most important linear algebra problems in scientific applications are the solution of
linear equation systems and the solution of eigenvalue problems. Depending on the problem size
and other properties of the system matrix several methods for the solution are available. We shall
present some methods for the solution of both problems together with their implementations as
numerical libraries for modern supercomputers.

1 Systems of Linear Equations

For the solution of linear equation systems
AT=b, AeR™, b, F€R" (1)

there are two different approaches, direct solvers and iterative solvers.

1.1 Direct Linear System Solvers
In direct solvers the system matrix A is decomposed into two triangular matrices
A=LU, A, L, UeR"™, Llowerand U upper triangular matrix 2)

which gives

AZ=LUZ = L(UZ) = Lj=b. 3)
This method is well known as LU decomposition method or Gaussian elimination. The resulting
triangular equation systems Ly = band UZ = y are then solved by forward and backward
substitution.
If the system matrix A is symmetric positive definite, the upper triangular factor is the transpose
of the lower triangular factor and the decomposition is called Cholesky decomposition.

AT =LLTZ = L(L"%) = Lj=5b. 4)

It takes only half as many operations as LU decomposition.

Direct linear system solvers theoretically deliver the exact solution. The decomposition of a
matrix is an O(n®) computation whereas the forward- and backward-substitution are O(n?)
computations. A major advantage of direct solvers is the fact that the decomposition — the most
time consuming part of the computation — has to be done only once if the equation has to be
solved with several right hand sides and the same system matrix during an algorithm.

The main disadvantage of direct solvers is the occurrence of so-called fill-ins during LU de-
composition which lead to full lower and upper triangular matrices L and U even if A is sparse.
A variant of the Cholesky and LU decomposition algorithm, the so-called multi-frontal method
can preserve some sparsity during the decomposition phase [1][2].

1.2 Iterative Linear System Solvers

For the solution of partial differential equations iterative solvers are sometimes preferred to
direct solvers.

The basic iterative solvers are the (total-step) and the (single-step) iteration [3]. They are both
based on an additive matrix decomposition

A=D-L-U, A D, L U€cR™, (5)

Linear Algebra D3.3

D diagonal matrix, L lower and U upper triangular matrix with O diagonal.
It follows that

Ai=be (D—L-U)F=bs DF=b+ (L+U)Z
& T=D%+D Y (L+U)T. (6)
If D is nonsingular the iteration rule
) = D%+ D YL+)P, k=0,1,... 7)

with some starting vector #(*) is the Jacobi iteration. The name total-step iteration comes from
the fact that in each iteration only values from the last iteration are used. In the Gaul3-Seidel
iteration values from the last and from the current iteration are used where available.

In all iterative methods the solution is found by a fixed point iteration with O(n?) operations
per iteration if the matrix is full. (The operations come from the matrix-vector multiplication
(L+U)2).

The sparsity of a matrix which normally is not preserved using direct solvers can be exploited by
iterative methods because the number of operations for the matrix-vector product is proportional
to the number of non-zero elements of the matrix.

The simple iterative methods are easy to understand but not suited for very large systems.

For symmetric positive definite matrices there are also several variants of the conjugate gradient
algorithm [4].

Another method suited for very large problem sizes, the multi-grid method, will be presented
by B. Steffen in chapter D.5 [5].

2 Eigensystems
For the solution of the real symmetric or complex hermitian eigenvalue problem
AT = X2, AeR"™ ZeR" AR (8)

there are several methods most of which use a three-stage algorithm where the matrix A first
is reduced to tridiagonal form, then the eigenvalue problem for the tridiagonal matrix is solved
and finally eigenvectors of the tridiagonal matrix are back transformed to the eigenvectors of the
original matrix [6]. These methods are called direct solvers whereas solvers which do iterations
with the original matrix to get the eigenvalues and eigenvectors are called iterative solvers.
Like the direct linear system solvers, the reduction based solvers do not preserve general sparsity
of the system matrix. They require the storage for at least a full upper or lower triangular matrix
in the symmetric case. Thus they are best suited for full matrices.

There are also reduction based solvers for the non-symmetric eigenvalue problem. They will
not be presented here.

2.1 Direct eigensolvers

The so-called direct solvers all use the fact that eigenvalues are preserved under similarity trans-
formations and that the eigenvalues of a symmetric tridiagonal matrix are more easily computed

D3.4 I. Gutheil

than those of a full symmetric matrix. Most implementations in libraries use Householder trans-
formations to get

A=QTQ" with QQ" = Id (Identity matrix), T tridiagonal matrix. 9)

The matrix (in that context is the product of Householder matrices which are used to zero out
the elements underneath the first sub-diagonal of the matrix (and above the first super-diagonal).
The tridiagonal eigenvalue problem is then solved by an iterative method. Here we have several
choices depending on the needs.

1. If all eigenvalues and eigenvectors are needed and the eigenvectors have to be orthogonal
to working precision the preferred method is the [7].

2. If only a few eigenvalues and perhaps the corresponding eigenvectors are needed the pre-

ferred method is bisection to compute the eigenvalues and to compute the corresponding
eigenvectors of the tridiagonal matrix. Eigenvectors belonging to clustered eigenvalues
have to be re-orthogonalized by modified Gram-Schmidt orthogonalization. If there are
only a few small clusters of eigenvalues and the rest is well separated this method is even
faster than the QR-algorithm if all eigenvalues and eigenvectors are needed. In that case
the algorithm can easily be parallelized by doing the inverse iteration for the eigenvectors
belonging to different eigenvalues on different processors.
If large clusters of eigenvalues occur the modified Gram-Schmidt orthogonalization can
sum up to O(n?) operations and thus reduce the performance significantly. Especially on
parallel computers this can lead to complete performance break-down if the re-orthogo-
nalization for one cluster has to be done on a single processor.

3. If all eigenvalues and eigenvectors are needed and the orthogonality of the eigenvectors
is sufficient even if it is not quite up to working precision, then a divide-and-conquer
method [8] to compute the eigenvalues and eigenvectors of a tridiagonal is matrix much
faster than using the QR-algorithm. The main disadvantage of this method is that it
requires more memory than the QR-algorithm.

4. To avoid the trouble of re-orthogonalization with bisection and inverse iteration there
is a new method using a relatively robust representation of the tridiagonal matrix [9].
This method is up to now only implemented in the library for the full eigensystem. If
only a part of the eigenspectrum is wanted the library routine switches to the traditional
algorithm with bisection, inverse iteration, and re-orthogonalization.

Somewhere between direct and iterative methods is Jacobi’s method [10] which is based on the
idea of zeroing out off-diagonal elements of the matrix A using rotations. The zeroes introduced
by one rotation do not persist the next rotation, but the sum of squares of all off-diagonal ele-
ments is reduced in each step until the matrix has almost-diagonal form. Then the eigenvalues
can be read from the diagonal entries and the eigenvectors from the columns of the orthogonal
transformation matrix which is the product of all the rotations applied to A. There are several
ideas how to choose the next off-diagonal element to be zeroed out, one is to take all entries of
the strictly lower triangle of the matrix row-by-row.

Usually Jacobi’s method requires a lot more operations than direct solvers, but for strongly di-
agonally dominant matrices (where the off-diagonal entries are already much smaller than the
diagonal entries) it can be faster than reduction-based methods. Additionally it is easy to paral-
lelize and in some cases it was observed that it can deliver more accurate eigensystems than the
other methods.

Linear Algebra D3.5

2.2 Iterative eigensolvers

Iterative methods for eigenvalue problems are applied if only a few eigenvalues and eigenvectors
of often very large and sparse matrices are wanted. They are derived from the power method.
The background of this method is that for each symmetric matrix A € R™" the vector space R"
has a basis of eigenvectors of A, i.e. each vector v € R"™ can be expressed as

U= c1T1 + CaTo + -+ + Ty (10)
with Az; = \;@;. If we multiply equation (10) by A we get
AT = 1 ATy + ATy + -+ - + ¢, AT,
= I\ 1 + CoAaTa + -+ + oA\ T - (11)
If we multiply it with A several times we obtain:
AR =) AFE) + 00 AR Ty + -+ + ¢, AR,

k= k= k=
= A\[T1 + CoAg Ty + - + N\ T,

k - A\ M\
= /\1 1Ty +cCo | — o+ -+ | — Tn . (12)
)\1)\1

It follows that if A has a dominant eigenvalue |A;| > |X\;|, ¢ = 2, ..., n then (i—l) — 0 for
7 > 1 and therefore
Akg

kh_)rgo)_]f = lel . (13)

For any eigenvalue/eigenvector pair \;, #; we have
T AT, T NI

=T = - =T —

=\ . (14)

This is called the Rayleigh quotient. Equation (13) together with equation (14) leads to the
power iteration with a starting vector v
At
Uig] = — o 15
T AT

Ait1 T it (16)
until ||Av; — \;0;|| < tol|)\;| for some tolerance value tol. It can be seen that only matrix-vector
products and scalar products are needed, thus if the matrix A is sparse, the number of operations
needed in each step is proportional to the number of non-zero elements of A.

The more sophisticated iterative methods consider the operation of the n x n-matrix A on a small
k-dimensional subspace of R™ or C" [11]. They find eigenvalues and eigenvectors of the projec-
tion of A onto that space and construct eigenpairs of the whole matrix from those of a smaller
k x k-matrix operating on the subspace. The Lanczos method [12], and the Arnoldi method [13]
take the kth Krylow subspace (span{@,, Ath, A%, ..., A¥~1#;,}). There are other subspace it-
eration methods like the Davidson method [14], and the Jacobi-Davidson method [15]. In all
cases only matrix-vector operations with the matrix A are necessary, eigenvalue computations
and other O(k?) operations are only performed in the lower dimensional subspace.

D3.6 I. Gutheil

3 Libraries

To get good performance on modern computers it is recommended to use well optimized math-
ematical libraries. Many computer vendors supply their computers with basic sequential li-
braries, e.g. the ESSL [16] on IBM. An important basis for good performance on modern
computers where the CPU speed often is almost one magnitude faster than the access to main
memory is the “data re-use factor” r [6]. It is the number of operations performed divided by
the number of data that are moved between the main memory and the small fast caches. The
data re-use factor can best be explained with the example of the different levels of BLAS (Basic
Linear Algebra Subprograms) [17][18][19].

The BLAS 1 routines do vector-vector operations such as dot-product where 2n — 1 operations
are done and 2n data are transferred from memory leading to r» ~ 1.

BLAS 2 routines perform matrix-vector operations such as matrix-vector multiplication with
roughly 2n? operations and n? accesses to memory leading to r ~ 2.

BLAS 3 routines which do matrix-matrix operations like matrix-matrix multiplication are the
only routines where r scales with n: roughly 2n3 operations are performed with 4n? data move-
ments, thus r &~ n/2. With that data re-use factor the CPU can be used to almost peak perfor-
mance. Well-optimized BLAS 3 routines thus are the basis for good performance on modern
computers. For many computers there are vendor-optimized BLAS routines. Alternatively there
are the Automatically Tuned Linear Algebra Software (Atlas [20]) BLAS routines and for some
types of processors there are also BLAS routines optimized by K. Goto [21] available.

3.1 LAPACK, Linear Algebra PACKage

The basic numerical library for linear algebra computations is LAPACK [22]. It is the succes-
sor of LINPACK and EISPACK and uses the highest level BLAS routines by applying blocked
algorithms. Like the BLAS routines many or all of the LAPACK routines are often vendor opti-
mized, but even if there is no vendor optimized version of LAPACK the public domain version
in combination with an optimized version of the BLAS will lead to rather good performance on
most computers. The BLAS and LAPACK routines have a Fortran 77 interface which means
that all variables are called by reference and two-dimensional arrays are assumed to be stored
in column major order.

LAPACK contains routines for the solution of linear equation systems, linear least squares
problems, eigenvalue and singular value problems. The routines are written for full, banded,
and packed matrices, not for general sparse matrices.

Only direct solvers for linear equation systems and eigenvalue problems are part of LAPACK.
For the eigenvalue problem all versions mentioned above can be found in LAPACK.

3.2 ScaLAPACK, Scalable Linear Algebra PACKage

The largest and most flexible public domain library with basic numerical operations for dis-
tributed memory parallel systems up to now is . Within the ScaLAPACK project many LAPACK
routines were ported to distributed memory computers using message passing. ScaLAPACK,
like LAPACK, is a Fortran 77 library.

In parallel libraries for distributed memory multiprocessors one major issue is the distribution

Linear Algebra D3.7

of data to the processors. There are many ways to distribute data, especially matrices, to pro-
cessors. In the ScaLAPACK Users’ Guide [23] several ways to distribute dense matrices are
presented and discussed.

For performance and load balancing reasons ScaLAPACK has chosen a two-dimensional block-
cyclic distribution for full matrices (see ScaLAPACK Users’ Guide). First the matrix is divided
into blocks of size M B x N B. These blocks are then uniformly distributed across the N P x NQ
processor grid in a cyclic manner. As a result, every process owns a collection of blocks, which
are contiguously stored in a two-dimensional “column major” array.

This local storage convention allows ScaLAPACK software to efficiently use local memory by
calling BLAS 3 routines on sub-matrices that may be larger than a single M B x N B block.
Figure 1 shows the distribution of a 9 X 9-matrix subdivided into blocks of size 3 x 2 distributed
across a 2 X 2-processor grid.

0 1 0 1 0

@11 Q12 | 413 Q14 | G15 Q16 | Q17 A18 | Q19

0 |ag a2 | axs au | axs a | Gyr Q2 | Q29
31 Q32 | A3z A34 | G35 Q36 | A37 A38 | Q39

Q41 Q42 | A43 Q44 | Q45 Q46 | a7 A48 | Q49
I | asi asy | ass ass | ass ase | Qs Asg | Gsg
a1 Qg2 | A3 Gea | G5 Aee | o7 A6’ | AE9

Q71 Qr2 | 73 G4 | Q75 QA7 | A77 A78 | A79
O|agr agy | ass ass | Ggs Gge | Ggy Asg | Usg

Qg1 Q92 | Ag3 Qg4 | Qg5 Q9e | Ag7 A9 | Q99

Fig. 1: Block-cyclic 2D distribution of a 9 x 9-matrix subdivided into 3 x 2-blocks to a2 x 2-
processor grid. The numbers outside the matrix indicate processor row and column indices
respectively.

The communication in ScaLAPACK is based on the BLACS (Basic Linear Algebra Commu-
nication Subroutines) [24]. Public domain versions of the BLACS based on MPI and PVM
are available. For IBM p690 clusters there exists also a version of the BLACS in the Parallel
Engineering and Scientific Library PESSL [25] using LAPI which can be faster than the public
domain version based on MPI.

The basic routines of ScaLAPACK are the PBLAS (Parallel Basic Linear Algebra Subroutines).
They contain parallel versions of the BLAS which are parallelized using BLACS for commu-
nication and sequential BLAS for computation. Thus PBLAS deliver very good performance
on most parallel computers. The PBLAS are internally written in C and allocate additional
workspace proportional to the block size. If there is a memory limitation like on BlueGene/L
the block sizes have to be chosen small enough to avoid program crashes due to lack of memory.
Based on BLACS and PBLAS ScalLAPACK contains direct parallel solvers for dense linear
systems (LU and Cholesky decomposition) and linear systems with banded system matrix as
well as parallel routines for the solution of linear least squares problems and for singular value
decomposition. Routines for the computation of all or some of the eigenvalues and eigenvectors
of dense real symmetric matrices and dense complex hermitian matrices and for the generalized
symmetric definite eigenvalue problem are also included in ScaLAPACK. All versions of the

D3.8 I. Gutheil

direct eigensolvers except the one based on the relatively robust representation are parallelized
in ScaLAPACK.

The distribution of data for ScaLAPACK usage has to be done by the user. This is sometimes
troublesome. To help users ScaLAPACK also contains additional libraries to treat distributed
matrices and vectors. One of them is the TOOLS library, which offers useful routines for exam-
ple to find out which part of the global matrix a local process has in its memory or to find out the
global index of a matrix element corresponding to its local index and vice versa. Unfortunately
these routines are documented only in the source code of the routines and not in the Users’
Guide.

Another library is the REDIST library which is documented in the ScalLAPACK Users’ Guide.
It contains routines to copy any block-cyclicly distributed (sub)matrix to any other block-
cyclicly distributed (sub)matrix.

ScalLAPACK as a parallel successor of LAPACK attempts to leave the calling sequence of
the subroutines unchanged as much as possible in comparison to the corresponding sequential
subroutine from LAPACK. The user should have to change only a few parameters in the calling
sequence to use ScaLAPACK routines instead of LAPACK routines.

Therefore ScaLAPACK uses so-called descriptors, which are integer arrays containing all nec-
essary information about the distribution of a matrix. This descriptor appears in the calling
sequence of the parallel routine instead of the leading dimension of the matrix in the sequential
one.

For example the sequential BLAS 3 routine for the computation of

C =aAB+ 3C, AecRM*XE B e REXN ¢ e RMXN

overwriting the original C' with the result, has the following calling sequence:

CALL DGEMM (TRANSA, TRANSB, M, N, K, alpha,A(1,1),LDA, &
B(1,1),LDB,beta,C(1l,1),LDC)

whereas the ScaLAPACK routine PDGEMM is called

! Call of PDGEMM with descriptors and the global

! starting indices of the whole matrix

CALL PDGEMM (TRANSA, TRANSB,M, N, K, alpha,A,1,1,DESCA, &
B,1,1,DESCB,beta,C,1,1,DESCC)

The main problem is that the user has to take care of the data distribution. He has to choose
the processor grid by initializing M P, the number of processor rows, and /N P, the number of
processor columns and to determine the block size by choosing M B and N B, the number of
rows and the number of columns per block, respectively. For many routines, especially for the
eigenvalue solvers and the Cholesky decomposition, M B = N B is necessary.

It is completely left to the user to put the correct local part of the matrix to the right places and
to put the correct data to the descriptor. The Users’ Guide and the comments at the beginning
of all routines are sufficient to use ScaLAPACK correctly but for someone not familiar with
parallel programming it can be rather difficult and time-consuming to learn how to use it.

Linear Algebra D3.9

The main steps the user has to perform for creating and filling a matrix A with functions of the
global indices of its elements are (it is assumed that MB=NB and N=M=K):

! Create the MP x NP processor grid
CALL BLACS_GRIDINIT (ICTXT,’'Row-major’,MP,NP)
! Find my processor coordinates MYROW and MYCOL
! NPROW should return same value as MP,
! NPCOL should return same value as NP
CALL BLACS_GRIDINFO (ICTXT,NPROW,NPCOL, MYROW, MYCOL)
! Compute local dimensions with routine NUMROC from TOOLS
! N is dimension of the matrix
! NB is block size
MYNUMROWS = NUMROC (N, NB, MYROW, O, NPROW)
MYNUMCOLS = NUMROC (N, NB,MYCOL, O, NPCOL)
! Local leading dimension of A,
! Number of local rows of A
MXLLDA = MYNUMROWS
! Allocate only the local part of A
ALLOCATE (A (MXLLDA, MYNUMCOLS))
! Fill the descriptors, PO and Q0 are processor coordinates
! of the processor holding global element A(1,1)
CALL DESCINIT (DESCA,N,N,NB,NB,P0,Q0, ICTXT, MXLLDA, INFO)
! Fi1ll the local part of the matrix with data
do j = 1, MYNUMCOLS, NB ! F1i1l1 the local column blocks
do jj=1,min (NB,MYNUMCOLS-J+1) ! All colums of one block
jloc = j-1 + J7 ! local column index
jglob = (j-1)*NPCOL + MYCOL*NB +jj ! global column index
do i = 1, MYNUMROWS, NB ! local row blocks in this column
do 1i=1,min (NB, MYNUMROWS—-1+1l) ! rows in this row block
iloc = 1i-1 + ii ! local row index
iglob = (i-1)*NPROW + MYROW«NB + ii ! global row index
A(iloc, jloc) = function of global indices iglob, Jjglob
enddo
enddo
enddo
enddo

The four nested loops show how local and global indices can be computed from block sizes, the
number of rows and columns in the processor grid and the processor coordinates.

3.3 PETSc, Portable, Extensible Toolkit for Scientific Computation

PETSc [26] is not a classical subroutine library but a suite of data structures and routines that
provide the building blocks for the solution of large-scale application codes on parallel (or
serial) computers. It uses the MPI standard for all message-passing communication.

PETSc includes a suite of iterative linear and nonlinear equation solvers which can easily be

D3.10 I. Gutheil

used in application codes written in C and C++. Additionally it provides mechanisms needed
in parallel codes like simple parallel matrix and vector assembly routines. Matrices and vectors
are PETSc objects and are created and filled by PETSc commands. Thus the user is shielded
from many details of the message passing.

Before using PETSc it is necessary to read the User Manual to become familiar with it. There
are also examples which can be used as a starting point.

3.4 ARPACK, PARPACK, Parallel ARnoldi PACKage

ARPACK/PARPACK [27][28] are implementations of the implicitly restarted Arnoldi method.
The main feature is the so called reverse-communication interface. This means that there is
no need to express a matrix-vector product in a fixed way. Even if the matrix is not explicitly
available ARPACK can be called. Only the action of the matrix on a vector has to be expressed.
The eigenvector computation is an iterative process where an ARPACK routine is called in turn
with a matrix-vector multiplication routine provided by the user until the process converges.
ARPACK depends on some LAPACK routines and on the BLAS. It is recommended to use
optimized BLAS together with ARPACK. An optimized version of LAPACK can only be used
if it is clear that it has the correct version and the correct calling sequences. In all other cases
it is recommended to use the LAPACK routines delivered with ARPACK in combination with
optimized BLAS routines.

PARPACK is a parallelized version of ARPACK for distributed memory multiprocessors. It can
use either MPI or BLACS for communication. It also uses the reverse communication interface.
This means that there is no need for a fixed matrix distribution like with ScaLAPACK. The
user only has to provide the program with a matrix-vector-product routine which delivers a
distributed vector.

4 Final Remarks

On today’s computers it is crucial to use tuned library routines for basic computations wherever
possible to get a satisfactory part of the theoretical peak performance. On sequential computers
the slow memory access is the bottleneck.

On parallel computers for load balancing, minimization of communication and memory usage
the distribution of data to the processors is a critical task. Communication costs are high com-
pared to computation costs thus one should have a detailed plan about the program and the
libraries to be used before starting with programming. The data layout should ideally be the
same for all parts of the computation, but redistribution of data can still be better than not using
well-optimized library routines.

For dense linear equation systems or eigenvalue problems with dimensions of 7 < 50000 direct
solvers like those from ScaLAPACK can be applied on parallel computers, if the dimension
comes to an order of 1000000 or more the matrices should be sparse and thus iterative solvers
have to be applied to preserve sparsity.

Linear Algebra D3.11

References

[1] LS. Duff, J.K. Reid, The multifrontal solution of indefinite sparse symmetric linear equa-
tions
ACM Trans. Math. Software 9, pp. 302-325 (1997)

[2] W.H. Liu, The multifrontal method for sparse matrix solution: theory and practice
SIAM Review, 34, 1, (1992)

[3] L. Hagemann and D. Young, Applied Iterative Methods
(New York, Academic Press 1981)

[4] O. Axelsson, Iterative Solution Methods
(Cambridge University Press New York 1994)

[5] B. Steffen, Multiscale and Multigrid Procedures
This volume

[6] B. Lang, Direct Solvers for Symmetric Eigenvalue Problems
Modern Methods and Algorithms of Quantum Chemistry, Proceedings, Jiilich, Germany,
pp- 231-259 (2000)

[7] J.G.FE. Francis, The QR transformation: A unitary analogue to the LR transformation, part
Land Il
Computer J. 4, pp. 265-272 and 332-345 (1961/62)

[8] J.J.M. Cuppen, A divide and conquer method for the symmetric tridiagonal eigenproblem
Numerische Mathematik 36, pp. 177-195 (1981)

[9] B.N. Parlett and I.S. Dhillon, Relatively robust representations of symmetric tridiagonals
Linear Algebra and its Applications 309, pp. 121-151 (2000)

[10] B.N. Parlett, The Symmetric Eigenvalue Problem
(SIAM, Philadelphia, PA 1998) (Updated reprint of the 1980 Prentice-Hall edition)

[11] B. Steffen, Subspace Methods for Sparse Eigenvalue Problems
Modern Methods and Algorithms of Quantum Chemistry, Proceedings, Jiilich, Germany,
pp. 307-314 (2000)

[12] J.K. Cullum and R.A. Willoughby, Lanczos Algorithms for Large Symmetric Eigenvalue
Computations
Volume I: Theory, (Birkhduser, Boston, Basel, Stuttgart 1985)

[13] R.B. Morgan, On Restarting the Arnoldi Method for Large Nonsymmetric Eigenvalue
Problems
Mathematics of Computation 65, 215, pp. 1213-1230 (1996)

[14] E.R. Davidson, The iterative calculation of a few of the lowest eigenvalues and corre-
sponding eigenvectors of large real-symmetric matrices
Journal of Computational Physics 17, pp. 87-94 (1975)

D3.12 I. Gutheil

[15] G.L.G. Sleijpen and H.A. Van der Vorst, A Jacobi-Davidson Iterative Method for Linear
Eigenvalue Problems
SIAM Journal on Matrix Analysis and Applications, 17, 2, pp. 401-425 (1996)
electronically: http://www.siam.org/journals/sirev/42-2/36308.html (2000)

[16] Engineering and Scientific Subroutine Library for AIX Version 4.2
http://publib.boulder.ibm.com/infocenter/clresctr/topic/com.ibm.cluster.essl.doc\
/esslbooks.html#ess]_42

[17] C.L. Lawson, R.J. Hanson, D.R. Kinkaid, and ET. Krogh, Basic linear algebra subpro-
grams for FORTRAN usage
ACM Transactions on Mathematical Software 5, 3, pp. 308-323, 1979

[18] J.J. Dongarra, J. Du Croz, and R.J. Hanson, An extended set of FORTRAN basic linear
algebra subprograms
ACM Transactions on Mathematical Software 14, 1, pp. 1-17, 1988

[19] J.J. Dongarra, J. Du Croz, and 1. Duff, A set of level 3 basic linear algebra subprograms
ACM Transactions on Mathematical Software 16, 1, pp. 1-17, 1990

[20] ATLAS - Automatically Tuned Linear Algebra Software
http://www.netlib.org/atlas

[21] Texas Advanced Computing Center
http://www.tacc.utexas.edu/resources/software/

[22] E. Anderson, Z. Bai, C. Bischof et al., LAPACK Users’ Guide, Second Edition
(STAM, Philadelphia 1995)

[23] L.S. Blackford, J. Choi, A. Cleary et al., ScaLAPACK Users’ Guide
(SIAM, Philadelphia 1997)

[24] J.J. Dongarra and R.C. Whaley, A User’s Guide to the BLACS vi.1
(LAPACK Working Note 94, 1997),
http://www.netlib.org/lapack/lawns/lawn94.ps

[25] Parallel Engineering and Scientific Subroutine Library for AIX Version 3.2
http://publib.boulder.ibm.com/infocenter/clresctr/topic/com.ibm.cluster.essl.doc\
/esslbooks.html#pessl_aix32

[26] S. Balay, W. Gropp, L.C. Mclnnes, and B. Smith, PETSc — Portable, Extensible Toolkit
for Scientific Computation
http://www-unix.mcs.anl.gov/petsc/petsc-2/

[27] R.B. Lehouc, D.C. Sorensen, C. Yang, ARPACK Users’ Guide: Solution of Large Scale
Eigenvalue Problems with Implicitly Restarted Arnoldi Methods
http://www.caam.rice.edu/software/ ARPACK/

[28] K.J. Maschhoftf and D.C. Sorensen, A Portable Implementation of ARPACK for Distributed
Memory Parallel Architectures
http://www.caam.rice.edu/~Kkristyn/parpack_home.html

