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1 Coarse-grained polymer models
Polymeric materials are ubiquitous [1] – applications range from common things like windows
frames, plastic cups, or insulation materials to nanoscopically structured materials for filtration,
catalysis or microelectronic devices. Polymers are long string-like macromolecules that adopt
random walk-like conformations in a dense melt. Much of the qualitative behavior of dense
multi-component polymer systems can be understood from a coarse-grained description. The
large spatial extension of the macromolecules imparts a great deal of universality on their behav-
ior: (i) the characteristic length scale is set by the extension of the molecule, as measured by the
mean-square end-to-end distance, R2

e , and (ii) one molecule interacts with many neighbors. The
former property implies that details of the atomistic scale influence the behavior on the scale
of the entire molecule (and larger) only via a small number of coarse-grained parameters that
encode the microscopic structure. The latter property implies that long-wavelength fluctuations
are strongly suppressed and that the behavior on large length scales is rather well describable
by mean field theories. Let N be the number of segments along the backbone of a polymer
molecule and ρ denote the segment number density of the dense solution or melt, then there are
on the order of

√
N̄ ≡ ρR3

e/N other molecules inside of the volume of a reference chain. N̄
characterizes the degree of interdigitation of the molecules and in the limit N̄ → ∞ long wave
length fluctuations are suppressed. In a melt the chain conformations are random walk-like –
R2

e = b2N (b being the statistical segment length) – such that N̄ = (ρb3)2N is proportional to
the number of segments. Since N̄ is independent from the way how we define a segment, it is
called the invariant degree of polymerization. Re and N̄ are the two coarse-grained parameters
that encode the microscopic chemical structure of a one-component polymer melt.
In the following we consider binary polymer systems that consist of two different types of
segments – A and B. Different segments repel each other and the strength of the repulsive
interaction of segments measured in units of kBT is set by the Flory-Huggins parameter, χ. In
the case of a binary polymer blend, where both species are comprised of the same number of
segments, N the excess free energy of mixing (per segment) has the form of a regular solution
[2]:

∆F (ϕA) = kBT
ρϕA

N
ln ρϕA + kBT

ρϕB

B
ln ρϕB + kBTρχϕAϕB (1)

where 0 ≤ ϕA = 1− ϕB ≤ 1 denotes the composition of the incompressible mixture. The first
term is the entropy of mixing (or translational entropy) which is reduced by a factor N due to
the chain connectivity. The last term denotes the excess energy of mixing. Since the entropy
of mixing is very small for long chain molecules different polymers tend to phase separate. Of
course, the free energy per segment explicitly depends on the definition of a segment and it is
convenient to rewrite it in terms of the invariant, coarse-grained parameters, N̄ and χN :

∆F (ϕA)

kBT
=

√
N̄ (ϕA ln ϕA + ϕB ln ϕB + χNϕAϕB) (2)

In this contribution I will discuss computer simulation and mean field techniques to describe
dense multicomponent polymer systems. In the next section coarse-grained models are intro-
duced and numerical techniques to study their structure and thermodynamic behavior are dis-
cussed. In the subsequent section these techniques are illustrated by a few selected applications
for binary homopolymer blends and the self-assembly of lamellar forming diblock copolymers.
The contribution concludes with a brief outlook.
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2 Model and techniques

2.1 Computer simulations

Fig. 1: (a) Illustration of the bond fluctuation model [3]. (b) Sketch of a bead-spring off-lattice
model. See text for explanations.

Computer simulations of coarse-grained, particle-based models numerically investigate the struc-
ture and thermodynamics of a model polymer system without any approximation. Coarse-
grained, particle-based models represent linear macromolecules as a string of bonded segments
interacting via potentials of finite range. They must include three relevant properties to capture
the universal behavior of dense multi-component systems of large length scales: connectivity of
segments along the backbone of the molecule – excluded volume between segments – repulsion
between unlike species. How these properties are implemented in the computer model largely
is a matter of numerical convenience and depends on which specific, non-universal properties
(e.g., details of the local chain architecture) additionally shall be described.
A popular lattice model – the bond fluctuation model [3, 4] – is described in the left panel
of Fig. 1. In this coarse-grained lattice model monomeric units are represented by unit cubes
on a three-dimensional cubic lattice. Each monomer block the 8 sites of a cube from double
occupancy. This mimics excluded volume interactions. Monomers along a polymer chain are
connected via one of 108 bonding vectors that can adopt lengths, l = 2,

√
5,
√

6, 3, and
√

10
in units of the lattice spacing. This represents the connectivity along the polymer backbone.
Monomers of the same type attract each other via a square well potential of depth −ε which is
extended over the nearest 54 lattice sites. Unlike monomers repel each other via a potential of
opposite sign. On the one hand, like other lattice representations the bond fluctuation models
benefits from computational advantages (e.g., early rejection of forbidden moves) that allow for
the simulation of rather large systems. On the other hand, the large number of bond vectors
results in a rather good approximation of continuum properties.
However, if the density exhibits a sharp gradient – for instance, at a surface to vacuum or at
a hard substrate – or liquid-cristaline order becomes important the structure of the underlying
lattice might give rise to artefacts and off-lattice models are more adequate. A proto-typical
off-lattice model is illustrated in the right panel of Fig. 1 [5, 6, 7]. Monomeric units along the
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chain are bonded via a FENE-potential [5]:

VFENE(r) = −kR2
0 ln(1− r2

R2
0

) (3)

where R0 = 1.5σ and k = 15ε/σ2 are typical parameters. Monomeric units interact via a
truncated and shifted Lennard-Jones potential of the form

VLJ(r) = 4ε

{(σ

r

)12

−
(σ

r

)6

+
127

1024

}
(4)

for r < 2 6
√

2. The repulsive 1/r12 mimics the excluded volume of the monomeric units while the
attractive 1/r6-tail describes the attractive van-der-Waals interactions which make the polymers
condense into a dense liquid. Thus, the interface between a dense polymer melt and its vapor
(basically vacuum) can be investigated. σ and ε set the monomeric length and energy scale.
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Fig. 2: (a) Probability distribution of the composition, ϕA, of a symmetric binary polymer blend
within the framework of the bond fluctuation model [3]. The simulation data are obtained at the
different stages of the Wang-Landau sampling [8] for chain length N = 32 and ε/kBT = 0.02
in a simulation cell of geometry 64 × 64 × 128 in units of the lattice spacing (Re = 17).
The convergence factors, f , are indicated in the key. A flatness of 50% was required for the
histogram of visited to particle numbers to reduce the convergence factor from f → f ′ =

√
f .

(b) Ratio between the interface tension γAB and the simple expression for the strong segregation
limit γSSL in Eq. (31) as a function of inverse incompatibility. Symbols correspond to MC results
for the bond fluctuation model, the solid line shows the result of the SCF theory, and the dashed
line presents first corrections to the strong segregation limit. Adapted from [9].

Off-lattice models can be studied both by Monte Carlo simulations (see contribution by Vliegen-
thart) and Molecular dynamics (cf. article by Winkler). In this section I will focus on one
particular technique to investigate phase and interfacial properties: multicanonical simulations
[10]. To illustrate the method we consider a binary polymer blend that comprises two species A
and B which are structurally symmetric (i.e., identical chain architecture) but repel each other
with strength χN . At low temperatures, the two species will phase separate into domains that
are rich in A-polymers and others where B-polymers are enriched. These domains are sep-
arated by interfaces. The two coexisting phases are distinguished by their composition, ϕA.
To investigate the properties of the symmetric mixtures one utilizes the semi-grandcanonical
ensemble [11] where the temperature, T , volume, V , and total number of chains, nA + nB,
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are fixed. The composition, ϕA ≡ nA

nA+nB
, however, fluctuates and one controls the thermo-

dynamically conjugated exchange potential, ∆µ. A Monte Carlo simulation that realizes this
ensemble comprises moves that update the polymer conformations and, additionally, moves that
“mutate” an A-polymer into a B-polymer and vice versa. For a structurally symmetric blend
this amounts merely to exchanging the label of the monomeric units at fixed conformation and
the move is accepts with the Metropolis acceptance probability min[1, exp(−∆EA®B/kBT )]
where ∆EA®B denotes the energy change associated with the exchange of labels. The key
quantity to monitor is the probability distribution P (ϕA) of the composition which is presented
in Fig. 2(a). At coexistence, it exhibits two peaks at values that correspond to the compositions
of the two coexisting phases. The two phases coexist at a chemical potential ∆µ if they have
equal (semi-grandcanonical) free energy (equivalent to pressure). Since the free energy of a
phase is proportional to the logarithm of the weight of the corresponding peak of P (ϕA) the
phase coexistence can be accurately located by the equal weight criterion [12, 13]:

∫ ϕ∗A

0

dϕA PT,∆µcoex(ϕA)
!
=

∫ 1

ϕ∗A

dϕA PT,∆µcoex(ϕA) (5)

Where one cuts the distribution, ϕ∗A, to distinguish the two phases is not important because the
probability between the two peaks exponentially decreases with system size. Configurations
with ϕA ≈ ϕ∗A consists of two slab-like domains that are separated by two AB interfaces
from each other. Let L2 denote the cross-sectional area of the simulation cell and γAB the
interface tension then the probability of those slab-like configurations is suppressed by a factor
exp(−2L2γAB/kBT ) compared to homogenous bulk configurations. This can be exploited to
calculate the interface tension via [14]:

γAB =
kBT

2L2
ln

P (ϕcoex
A )

P (ϕ∗A)
(6)

The plateau in the distribution P around ϕ∗A implies that one can change ϕA and thereby change
the distance between the two interfaces at no free energy cost, i.e., the two interfaces do not
interact [15] and the excess free energy can be described by two non-interacting interfaces of
area L2.
If this excess free energy is large, the probability around ϕ∗A is very small and the system will
not make transitions from one phase to the other in the course of a simulation in the semi-
grandcanonical ensemble. In order to sample states inside the miscibility gap one has to modify
the statistical weights of these configurations in a multicanonical way. To this end one samples
in the simulations not according to the Boltzmann weight but utilizes the partition function
[10, 15]

Zmuca =
1

nA!nB!

n∑
nA=n−nB=0

∫
DA[r]DB[r] e−w(nA)e−E/kBT (7)

where the weights, w(nA), depend on the number of A-polymers but not on the polymer con-
formations. If one could choose w(nA) = ln P (nA) the simulation would uniformly sample
the entire composition interval. Unfortunately, ln P (nA) is unknown – it is the result of the
simulation – and thus one need a good estimate. There are several schemes which provide
practical estimates: multicanonical recursion [10], successive umbrella sampling [16, 17] or the
Wang-Landau algorithm [8]. The latter method is illustrated in Fig. 2(a).
The results of such a simulation is the accurate location of the phase coexistence (i.e., coexis-
tence densities and chemical potentials or pressure), the fluctuations in the homogeneous phase
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(i.e., compressibility) and the interface tension. The results for the latter quantity are shown in
panel (b) of Fig. 2 and will be discussed in Sec. 2.5.

2.2 Self-consistent field (SCF) theory
In the self-consistent field theory [18, 19, 20, 21, 22, 23, 24] one replaces the problem of many
mutually interacting chains by much simpler problem of a single chain in an external field. The
external field mimics the interactions with the surrounding molecules. Since one molecule in-
teracts with many neighbors (O(N̄ )) the fluctuations of the interactions that an entire molecule
is exposed to are small and, thus, can be faithfully approximated by a mean field. It is thought
that the SCF theory can quantitatively describe properties on the scale of the polymer coil in the
limit N̄ → ∞.
The starting point of the field-theoretic description of a binary polymer blend is the partition
function:

Z ∼ 1

nA!nB!

∫
DA[r]PA[r]DB[r]PB[r] exp

(
−F [φ̂A, φ̂B]

kBT

)
(8)

where PA[r] denotes the probability distribution of the non-interacting single chain conforma-
tions and the microscopic density of A-monomeric units is given by [18]

φ̂A(r) =

nA∑
α=1

N∑
i=1

δ(r− rα,i) (9)

where rα,i denotes the position of the ith segment of A-molecules α. A similar definition holds
for the microscopic density of B-segments.
A Hubbard-Stratonovich transformation allows to rewrite the partition function in terms of in-
dependent molecules in fluctuating, external fields, WA and WB:

Z ∼
∫
DWADΦADWBDΦB e

−G[ΦA,ΦB,WA,WB ]
kBT

(QA[WA])nA

nA!

(QB[WB])nB

nB!
(10)

∼
∫
DWADΦADWBDΦB exp

(
−F [ΦA, ΦB,WA,WB]

kBT

)
(11)

with

G[ΦA, ΦB,WA,WB]

kBT
=

F [ΦA, ΦB]

kBT
−

∫
dr [WAΦA + WBΦB] (12)

QA[WA] =
1

V
∫
DA,1PA,1 exp

[
−

∫
dr WA(r)

N∑
i=1

δ(r− r1,i)

]
(13)

=
1

V
∫
DA,1PA,1 exp

[
−

N∑
i=1

WA(r1,i)

]
(14)

F [ΦA, ΦB,WA,WB]

kBT
= nA ln

nA/V
eQA[WA]

+ nB ln
nB/V

eQB[WB]
+
G[ΦA, ΦB,WA,WB]

kBT

QA[WA] is the single molecule partition function in the external field, WA, and the functional
integral DA,1 only sums over the conformation of a single A-molecule. A similar expression
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holds for the partition function of a single B-molecule,QB[WB], in the external field, WB. This
reformulation of the partition function, Eq. (8), of the interacting multi-chain system in terms
of independent molecules in external, but fluctuating fields, WA and WB, is formally exact but
it merely shifts the problem to the evaluation the functional integral over the fluctuating fields.
In the SCF theory one replaces those integrals by their saddle-point values which are denoted
by lower-case letters:

1

kBT

δF [φA, φB, wA, wB]

δwA(r)
= −nA

Q A

δQA
δwA(r)

− φA ≡ φ∗A[WA](r)− φA = 0 (15)

The saddle point value of the collective density, φA, is given by the density, φ∗A[wA](r), a single
A-molecule creates if all conformations are weighted by the Boltzmann factor that corresponds
to its energy in the external field, wA.

φ∗A[wA](r) = −nA/V
QA

δ

δwA(r)

∫
DA,1PA,1 exp

[
−

∫
dr wA(r)

N∑
i=1

δ(r− r1,i)

]

=
nA/V
QA

∫
DA,1PA,1

N∑
i=1

δ(r− r1,i) exp

[
−

∫
dr wA(r)

N∑
i=1

δ(r− r1,i)

]
(16)

= nA

〈
N∑

i=1

δ(r− r1,i)

〉

single A-molecule in external field, wA

(17)

The saddle point condition for the collective density, ΦA, reads:

− 1

kBT

δF [φA, φB, wA, wB]

δφB(r)
= wA − 1

kBT

δF [φA, φB]

δφA(r)
= 0 (18)

This expression provides an explicit relation between the external field, wA, which acts on
an A-segment and which mimics the effect of all surrounding molecules of the corresponding
interacting multi-chain system, and the local densities, φA and φB. The average density of
B-molecules and the external field, which mimics the interactions of the other molecules on
them, is given by expressions similar to Eqs. (17) and (18). Inserting the saddle point values,
φA, φB, wA and wB into the free energy functional F one estimates the free energy.
To complete the description one has to specify the chain model which is encoded in the proba-
bility distributions, PA[r] and PB[r], of the non-interacting polymer species and the interaction
free energy functional, F [φ̂A, φ̂B]. The latter incorporates all the microscopic information and
therefore one often utilizes a simple form that employs a zero-ranged repulsion of strength χ
and replaces the excluded volume interaction via a compressibility constraint [18].

F [ϕA, ϕB]

kBT
= −χρ

4

∫
dr [ϕA(r)− ϕB(r)]2 +

κρ

2

∫
dr [ϕA(r) + ϕB(r)− 1]2 (19)

where we have used the composition, ϕA ≡ φA/ρ instead of the density, φA. The parameter κN
has to chosen large enough to suppress fluctuations of the total density. By the same token, one
utilizes a computational convenient chain model – the Gaussian chain model – which suffice to
capture the conformational statistics on the scale Re.

PA,1[r(τ)] ∼ exp

[
− 3

2R2
e

∫ 1

0

dτ

(
dr

dτ

)2
]

. (20)
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The parameter 0 ≤ τ ≤ 1 parameterizes the continous polymer conformations. This form
emphasizes that the discretization, N , along the chain does not have a physical meaning and it
allows to make analytical progress. To this end, one defines the probability q(r, s) that a chain
fraction of length 0 ≤ s ≤ 1 ends at position r(s) = r.

qA(r, t) =

∫ t

0

DA,1[r]PA,1[r] δ(r(t)− r) e−
R t
0 dτ NwA(r(τ)) (21)

This end segment distribution obeys the following diffusion equation [18]

∂qA(r, t)

∂t
=

R2
e

6
∇2qA(r, t)−NwA(r)qA(r, t) (22)

with the boundary condition qA(r, 0) = 1, i.e., the beginning of the chain fragment is uniformly
distributed. Once this partial differential equation is solved the composition can be obtained
from

ϕA(r) =
nAN

ρQA

∫ 1

0

dt qA(r, t)qA(r, 1− t) (23)

and the single chain partition function takes the form

QA =
1

V
∫

dr qA(r, 1) =
1

V
∫

dr qA(r, t)qA(r, 1− t) ∀t. (24)

In the limit that the incompatibility between the two species is very weak χN ¿ 2 or very
strong χN À 10 the SCF theory allows to derive simple analytical expressions for structural
and thermodynamic properties.

2.2.1 “Single-chain-in-mean-field”-simulations

Fig. 3: Sketch of “Single-Chain-in-Mean-Field” (SCMF) simulations. See text for explana-
tions.

The SCF theory in junction with the Gaussian chain model has found ample successful ap-
plication to describe the structure and thermodynamics of polymer materials. However, it is
rather difficult to incorporate additional details of the chain architecture, to describe fluctua-
tions [25, 26, 24]or to investigate the collective dynamics of composition fluctuations in the
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field-theoretical framework. For these issues particle-based SCF methods, like “single-chain-
in-mean-field” simulations [27, 28], might offer advantages.
In this particle-based SCF method one considers an ensemble of independent chains in an ex-
ternal field. The explicit chain configurations are updated in the external fields via a standard
Monte Carlo scheme utilizing local random displacements of the beads. After a small, predeter-
mined number of Monte Carlo steps, the spatial density distribution created by the large ensem-
ble of independent molecules is measured and the relation of the SCF theory between density
and field (cf. Eq. (18)) is employed to calculate the new, external fields. Then, the process is
iterated as illustrated in Fig. 3. In the limit of a very large ensemble of chains, fluctuations of
the density and fields are vanishingly small and, in the stationary state, the chain configurations
are in equilibrium with the external field. Thus both SCF equations, (17) and (18), are fulfilled
and the stationary state of a large ensemble yields a solution of the SCF theory.
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Fig. 4: (a) Equilibrium composition fluctuations of a symmetric binary polymer blend at χN =
0.314 as obtained from Random Phase Approximation, MC simulations of the bond fluctuation
model, and SCMF simulations. The horizontal dashed lines also depicts the structure factor
of the total density in the SCMF simulations which utilize a small but finite compressibility.
From Ref. [27]. (b) Equilibrium composition fluctuations of a symmetric diblock copolymer at
χN = 2 as obtained from SCMF simulations and Random Phase Approximation for a system
of linear dimension, L = 3Re. To achieve an invariant degree of polymerization of N̄ = 15000
(which corresponds to an intermediate molecular weight) in a typical bead spring model (ρ =
0.83) requires a large system of very long chains, i.e., 3400 chains each comprising N = 3000
beads. In the SCMF simulations we can reproduce these experimental values of N̄ simply by
increasing the density rather than the chain discretization, N .

The particle-based method additionally offers advantages:

• The computational scheme utilizes coarse-grained polymer models (e.g., bead-spring
model with bond angle potential [27]) and is not limited to the Gaussian chain model
of the SCF theory. The use of explicit molecular conformations allows details of the
chain architecture to be incorporated (e.g., stiffness along the backbone or branching).

• The density (and external fields) accurately mimic the instantaneous chain conforma-
tions. Numerical calculations for binary blends and diblock copolymers demonstrate that
this simulation scheme can describe composition fluctuations (cf. Fig. 4) if the fields are
updated frequently. This finding has been corroborated by approximate but analytical
techniques [27].
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• The explicit propagation of the chain conformations avoids the need of an Onsager co-
efficient [26] (cf. Fig. 6) and intramolecular correlations (that give rise to a non-local
Onsager coefficient in field-theoretic schemes) are take into due account.

• Propagating the explicit chain conformations in time we are able to investigate blends
with strong dynamic asymmetries (e.g., where one component vitrifies during the phase
separation process).

• Compared to computer models routinely utilized in Monte Carlo or Molecular Dynamics
simulations (cf. Sec. 2) the methods allows to consider values of the invariant degree of
polymerization, N̄ ∼ O(105), that are typical for experimental systems.

• Furthermore, the scheme is computationally efficient, permits us to study large system
sizes and it is suitable for parallel computers. To this end, we distribute the indepen-
dent chain conformations evenly across the processors independent from their location in
space. Each processors performs the Monte Carlo simulations for “its” molecules which
are mutually independent but only interact with the external field. Each processors cal-
culates the density of its molecules after the Monte Carlo simulation and the results are
summed across the processors to construct the new external field for the next simulation.

In principle, one can use an arbitrary chain model in conjunction with the SCMF simulation.
In the applications discussed in the next section we utilize the discretized Edwards model[29]
which closely mimics the Gaussian chain model. The probability distribution of A-molecule α
with segment positions, rα,1, · · · , rα,N are described by:

PA,α[rα] ∼ ΠN−1
i=1 exp

[
−3(rα,i − rα,i+1)

2

2b2

]
(25)

with b2 = R2
e/(N − 1) being the statistical segment length. B-molecules obeyed the same

segment distribution. The segment interaction in a binary blend is given by Eq. (19) and the
explicit form of the effective field, wA, acting on an A-segment at position r simply is

wA(r) = −χ

2
[ϕA(r)− ϕB(r)] + κ [ϕA(r) + ϕB(r)− 1] . (26)

2.3 Applications
We can address two types of questions by quantitatively comparing computer simulations of
coarse-grained, particle-based polymer models with SCF theory: (i) How to identify the coarse-
grained parameter, χN , for a specific, particle-based model? For which properties and param-
eters is the coarse-grained description of the polymer conformations by the Gaussian chain
model valid? For which aspects are microscopic properties of the underlying model important?
(ii) What is the validity of the mean field approximation (or additional approximations invoked
in less accurate analytical treatments of the field theoretical model)? Once the validity of the
SCF approach is established it can be utilized to explore the behavior of larger or more complex
systems.

2.4 Phase behavior of homopolymer blends
In simulations as well as in experiments it is common practice to measure the Flory-Huggins
parameter by comparing the results of the simulations to the predictions of the mean field theory.
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Fig. 5: Inverse maximum of the collective structure factor of composition fluctuations,
N/S(k → 0), as a function of the incompatibility, χN . Symbols correspond to MC simula-
tions of the bond fluctuation model, the dashed curve presents the results of a finite size scaling
analysis of the simulation data in the vicinity of the critical point, and the straight, solid line
indicates the prediction of the Flory-Huggins theory. The critical incompatibility, χcN = 2
predicted by the Flory-Huggins theory and obtained from Monte Carlo simulations of the bond
fluctuation model (N̄ ≈ 240, N = 64, ρ = 1/16 and Re = 25.12) are indicated by arrows.
The left inset compares the phase diagram obtained from simulations with the prediction of the
Flory-Huggins theory (cf. Eq. (2)). The right inset replots the compositions at coexistence such
that the mean field theory predicts them to fall onto a straight line. From Müller [30].
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Since the predictions are affected by fluctuation effects to different extents, not all quantities
yield mutually compatible estimates of the Flory-Huggins parameter, χ.
From the Flory-Huggins free energy of mixing (cf. Eq. (2)) one readily calculate the binodals
(composition of the two coexisting phases)

ln
φ

1− φ
+ χN(1− 2φ) =

∆µcoex

kBT
= 0, (27)

the location of the critical point, χcN = 2 and φc = 1/2, which marks the onset of phase
separation, and the strength of composition fluctuations in the one phase region

N

S(k → 0)
=

1

φ
+

1

1− φ
− 2χN for χN < 2 (28)

as measured by the structure factor S(k) of composition fluctuations in the limit that the wavevec-
tor k vanishes. The last quantity is very popular to determine the Flory-Huggins parameter for
miscible blends.
A comparison between the mean field prediction and the Monte Carlo results is presented in
Fig. 5. The main panel plots the inverse scattering intensity vs. χN . At small incompatibility
the simulation data are compatible with a linear prediction (cf. Eq. (28)) and from the slope one
can estimate the relation between the Flory-Huggins parameter χ and the depth of the square
well potential, ε in the simulations of the bond fluctuation model [13, 4]. As one approaches
the critical point of the mixture deviations between the predictions of the mean field theory
and the simulations become apparent because the theory cannot capture the strong universal
(3D Ising-like) composition fluctuations at the critical point [11, 31, 32] and it underestimates
the incompatibility necessary to bring about phase separation. If we fitted the behavior of
composition fluctuations at criticality to the mean field prediction we would obtain a quite
different estimate for the Flory-Huggins parameter. This estimate, however, would not well
characterize the incompatibility between the polymer species but rather quantify the inability of
the mean field theory to cope with Ising-like order parameter fluctuations.
The insets of Fig. 5 show the binodals of the symmetric blend. Again we find deviations in the
ultimate vicinity of the critical point but for larger incompatibilities χN À 2 the mean field
predictions provides an adequate description of the phase boundary utilizing the Flory-Huggins
parameter extracted from the composition fluctuations in the one phase region, χN < 2.
If we quench the system from the one-phase region deep into the miscibility, composition fluc-
tuations spontaneously grow (early stages of spinodal decomposition) according to

S(k, t) = Sχ0N(k) exp(R(k)t) (29)

where S denotes the collective structure factor of composition fluctuations

S(k, t)

N
=

1√N (V/R3
e)

〈∣∣∣∣
∫

dr ϕ̂A(r) exp(irk)

∣∣∣∣
2
〉

(30)

In Fig. 6 the growth rate, R(k), in response to a temperature quench from the one-phase region,
χN = 0.314 into the miscibility gap, χN = 5 is presented as observed in Monte Carlo simula-
tions of the bond fluctuation model, dynamic SCF calculations [26] and SCMF simulations [27].
The growth rate, R(k), comprises a thermodynamic factor that is determined by the equilibrium
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Fig. 6: Growth rate, R(k)τ , of the collective structure factor, S(k) ∼ exp[R(k)t], as a func-
tion of the wavevector, k. Data from MC simulations of the bond fluctuation model at an early
and intermediate time regime and the results from the dynamic SCF theory using a local and
a Rouse-like Onsager coefficient are adapted from Ref. [26]. The results of the SCMF simula-
tions slightly overestimate the initial growth rate at large wavevectors, but capture the fastest
growing mode, the decrease of the rate with time and do not predict negative rates (damping) at
high wavevectors in agreement with the MC simulations. The prediction of the Random Phase
Approximations is also included as thin solid line. Adapted from Müller and Smith [27]

thermodynamics of the mixture and an Onsager coefficient that relates the kinetics of collec-
tive concentration fluctuations to the dynamics of the polymers. Due to the extended shape of
the macromolecules the Onsager coefficient is non-local and explicit expressions exists for the
homogeneous system [33]. Fig. 6 clearly demonstrates that a local Onsager coefficient fails to
describe the simulation results, but dynamic SCF calculations using a non-local Onsager coeffi-
cient [26] and SCMF simulations that do not utilize an Onsager coefficient but rather propagate
the explicit chain conformations in time yield an improved description.

It is also instructive to compare the computational effort between the different schemes: For the
MC simulations of 64 independent systems over the time interval 0.33τ a computational effort
of 40 days on 64 processors of a CRAY T3E was needed. Using 7× 7× 7 = 343 grid points in
Fourier space the corresponding dynamic SCF calculations required about 25 days on a CRAY
J90. The single chain mean field calculations of 64 independent systems, each with twice as
many polymers than in the MC simulations and a spatial resolution of 4096 grid points, took 19
hours on a 32× 2 node Beowulf cluster of Opteron (1.8GHz) processors.

While explicit analytical expression for the non-local Onsager coefficient exist for spatially ho-
mogeneous systems (appropriate, e.g., for the early stages of spinodal decomposition), no such
expression exist at spatial inhomogeneities (e.g., interfaces or surfaces). Under those circum-
stances the chain conformations are distorted and the calculation of the Onsager coefficient
amount to calculate intramolecular correlations which is computationally infeasible.
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loop

composition
fluctuation

Fig. 7: (a) Snapshot of an interface between two coexisting phases in a binary polymer blend in
the bond fluctuation model (invariant polymerization index N̄ = 91, incompatibility χN ≈ 17,
linear box dimension L ≈ 7.5Re, or number of effective segments N = 32, interaction ε/kBT =
0.1, monomer number density ρ = 1/16.0). (b) Cartoon of the configuration illustrating loops
of a chain into the domain of opposite type, fluctuations of the local interface position (capillary
waves) and composition fluctuations in the bulk and the shrinking of the chains in the minority
phase.
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2.5 Interfacial properties

Properties of interfaces can broadly be divided into (i) excess properties (e.g., interface tension)
and (ii) profiles of quantities across the interface. The former can straightforwardly be predicted
by the SCF theory, the latter quantities are strongly affected by long-range fluctuations of the
local interface position, i.e., capillary waves [34, 35, 36, 37].
The mean field theory suggests a simple picture of the structure of the interface between two
immiscible polymers which is illustrated in Fig. 7. At the interface the long molecules loop into
the opposite phase. The cost of each loop into the “hostile” phase is comparable to the thermal
energy scale, kBT . Each monomer along the loop contributes to this cost an amount χkBT .
Thus the typical number of monomers of a loop is 1/χ. If one assumes that loops contain many
monomers and that the spatial statistics of loops corresponds to the Gaussian behavior of the
entire coil the spatial extent of a loop is given by w/Re ∼ (1/χ)/N . This characterizes the
(intrinsic) width of the interface. This reasoning also explains why sharp interfaces between
a polymer melt and its vapor or between very incompatible polymer species (i.e., χ ∼ O(1))
cannot be described by the Gaussian chain model. In this case the width of the interface is
comparable to the statistical segment length and one has to account for non-universal, specific
molecular architecture.
Each monomer within this interfacial zone contributes to the free energy cost of the interface
an amount χ. The free energy per unit area can be calculated to γ ∼ ρwχ. The mean field
theory corroborates this simple picture of the interface at strong segregation (1 ¿ χN ¿ N )
and yields [18]

γSSL = ρRe

√
χ/6N =

√
N̄

R2
e

√
χN/6 (31)

This estimate has been used to normalize the interface tension in Fig. 2. The collapse of the data
for different chain lengths onto a common curve shows that the interface tension indeed only
depends on the combination χN and the data are well described by numerical self-consistent
field calculations [9] and analytic prediction by Semenov [38] using the identification of the
Flory-Huggins parameter from the bulk properties.
If we wish to compare profiles across the AB interface, we encounter a fundamental difficulty.
In the SCF theory the interface is perfectly flat; this is, indeed, the most probable configuration.
In simulations (cf. Fig. 7(a)) or experiments, however, the local interface position fluctuates.
Those thermal fluctuations cost vanishingly little energy in the long-wavelength limit. A snap-
shot of a coarse-grained local interface position u(x, y) (where x and y denote the two coordi-
nate parallel to the interface) is presented in Fig. 8(a) for a symmetric blend with chain length
N = 32 in the bond fluctuation model [39]. Such fluctuations of the local interface position
will broaden the profiles measured in experiments or simulations.
In the simulations [42, 41, 39] one can measure the local interface position z = u(x) as a
function of the two coordinates, x = (x, y), parallel to the (average) interface plane (Monge
representation). At this stage, we assume that the configuration does not contain bubbles or
overhangs. This can be achieved by smoothing the composition profile over a microscopic
length scale. Rather than describing the configuration by a detailed, particle-based model which
describes the location and conformations of the molecules in space, we just characterize the
configuration by the location, u(x), of the interface.
On large lateral length scales, the effect of the fluctuations of the local interface position is to
increase the area of the interface, and the free energy cost can be described by the capillary
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Fig. 8: (a) Snapshot of the local interface position obtained from MC simulations in the frame-
work of the bond fluctuation model (N̄ = 91, χN = 5.09, L = 3.77Re). The local interface
position is determined by analyzing the profiles on a lateral length scale B = 0.47Re. Adapted
from [39]. (b) Spectrum of interface fluctuations for different incompatibilities as indicated in
the key. The inset shows the wavevector dependence of the interface tension. (c) Probability
distribution of the local interface position for different incompatibilities. Adapted from [40].
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wave Hamiltonian H[u(x)] [34, 35, 36, 37]:

H[u(x)] = γAB

∫
d2x

(√
1 + (∇u)2 − 1

)
≈ γAB

2

∫
d2x (∇u)2 (32)

where γAB denotes the interface tension, and the integration is extended over the projected area,
L × L. From this capillary wave Hamiltonian, we can estimate the fluctuations of the local
interface position. Utilizing the Fourier spectrum of interface fluctuations, u(k),

u(x) =
1

L2

∑

k

u(k) exp(ik · x) =
1

(2π)2

∫
d2k u(k) exp(ik · x) (33)

u(k) =

∫
d2x u(x) exp(−ik · x) (34)

one diagonalizes the capillary wave Hamiltonian.

H[u(k)] =
γAB

2

1

(2π)2

∫
d2k k2|u(k)|2 (35)

The statistical mechanics of the interface position can be described by the partition function

Zint =

∫
D[u] exp

(
−H[u]

kBT

)
(36)

where the functional integral
∫ D[u] sums over all local positions of the interface. Since the

Hamiltonian is the sum of independent, quadratic degrees of freedom, u(k), the Fourier modes
are uncorrelated and Gaussian distributed around zero and their variance is given by the equipar-
tition theorem:

γAB

L2
k2〈|u(k)|2〉 = kBT (37)

The spectrum of interface fluctuations is shown in Fig. 8(b) as a function of the wavevector,
k. When plotted as R4

eL
2/〈|u(k)|2 vs (kRe)

2 the data for small wavevectors form a straight
line, and one can extract the interface tension from the slope, γABR2

e/kBT . Indeed, this yields
reliable results [42] that agree well with values determined independently from grandcanonical
MC simulations and the predictions of the SCF theory (cf. Fig. 2).
Utilizing this result we obtain for the fluctuations of the local interface position in a lateral patch
of size L× L:

〈u2(x)〉L =
1

(2π)4

∫
d2kd2k′ 〈u(k)u(k′)〉 exp(ikx + ik′x)

=
1

(2π)2

∫
d2k

kBT

γABk2
=

kBT

2πγAB

∫ kmax

kmin

dk
1

k

=
kBT

2πγAB

ln
kmax

kmin

(38)

Since the integral over the magnitude of the wavevector diverges logarithmically, we have in-
troduced an upper and a lower cut-off, kmin and kmax. The lower cut-off is set by the lateral
system size, kmin = 2π/L or the lateral coherence length in a scattering experiment. The upper
cut-off is more subtle, it marks the lateral length scale, where the description of fluctuations via
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the capillary Hamiltonian (32) breaks down and the intrinsic structure of the interface becomes
important [43], and we shall investigate this issue further below.
The distribution of the local interface position is presented in Fig. 8(c). Indeed, the fluctuations
are Gaussian distributed and the variance increases as we decrease the incompatibility,

PL(u) =
1

2π〈u2〉L exp

(
− u2

2〈u2〉L

)
(39)

To describe the profile, pQ,L(z), of a quantity, Q, measured in simulations and experiments
on a lateral length scale L and to compare it with the prediction of the SCF theory, one has
to account for the fluctuation of the interface position. If the interface position, u(x, y), were
fixed, the quantity Q would approximately be describable by

pQ(x, y, z) = pQ,intr(z − u(x, y)) (40)

where pQ,intr(z) is the profile of quantity Q across a hypothetically flat interface and z denotes
the coordinate normal to that interface. It is this quantity that can be calculated by the SCF
theory and we refer to it as the “intrinsic” profile. Averaging this expression over the distribu-
tion of the local interface positions, PL(u), we arrive at the convolution approximation for the
apparent profile [43]:

pQ,L(z) =

∫
du PL(u)pQ,intr(z − u) (41)

To estimate the qualitative effect, we assume that the “intrinsic” profile, pQ,intr varies smoothly
on the scale 〈u2〉L. Then, one can expand pQ,intr(z − u) around u = 0, and obtains to lowest
order [44]:

pQ,L(z) = pQ,intr(z) +
1

2
〈u2〉L d2pQ,intr(z)

dz2
+O(〈u4〉L) (42)

The intrinsic composition profile across the interface is describable by a tanh-form or an error
function:

pϕ,intr(z) ≈ 1

2
+

2ϕ̄Acoex − 1

2
tanh

(
z

wintr

)
(43)

≈ 1

2
+

2ϕ̄Acoex − 1

2
erf

( √
πz

2wintr

)
(44)

Both profiles provide a good description of the interface profile, and we have chosen the numer-
ical coefficients such that the slope of both profiles at the center of the interface (i.e., at z = 0)
coincide. The inverse of this slope at the center of the interface defines the width:

w ≡ 2ϕ̄Acoex − 1

2dpϕ(z = 0)/dz
(45)

The SCF theory predicts a tanh-profile for the “intrinsic” profile in the weak and the strong
segregation limit.1 The erf-profile will provide a good description of the apparent profile, if the
“intrinsic” width is smaller than 〈u2〉L.

1At intermediate segregation, however, the interface profile is characterized by two length scales [45]. The
intrinsic width, wintr, which depends on χN and determines the slope of the profile at the center of the interface,
and the bulk correlation length, ξ ∼ Re, which controls the approach of the profile to the composition of the
coexisting phases in the wings of the profile.
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Using the erf-profile we obtain for the broadening of the interface width [39]

w2
L = w2

intr +
π

2
〈u2〉L = w2

intr +
kBT

4γAB

ln
L

B0

(46)

where B0 = 2π/kmax defines the shortest length scale on which the description via the capillary
wave Hamiltonian still holds. Note that the prefactor in front of the logarithmic term depends
on the details of the interface profile (namely the third derivative at the center of the interface).
Thus, the dependence of the apparent width of the interface is less accurate than the spectrum
of interface fluctuations (cf. Fig. 8) for extracting the interface tension, γAB, from simulations
or experiments.
Two remarks are in order: (i) If we measured the interface width in the natural length scale, Re,
we could rewrite Eq. (46) in the form:

w2
L

R2
e

= f 2
w(χN) +

1

4
√
N̄ fγ(χN)

ln
kmax

kmin

(47)

where fw and fγ are functions of the incompatibility, χN , that approach for large χN the
limits, 1/

√
6χN and

√
χN/6, respectively. In this formal sense, the broadening by capillary

waves is a long-wavelength fluctuation: The saddle-point approximation invoked in the SCF
theory neglects this fluctuation but, like other long-wavelength fluctuations (i.e., composition
fluctuations in the vicinity of the critical point), the contribution of capillary waves to the width
of the interface is only of the order 1/

√
N̄ . Nevertheless, in simulations [15, 39, 40] as well

as in experiments [46, 47, 48], the broadening due to interface fluctuations often constitutes a
significant fraction of the apparent width.
(ii) The equation (46) also points to a rather fundamental problem [40]: What is the significance
of the “intrinsic” width that characterizes a hypothetical, perfectly flat interface? In simulations
or experiments one can only measure the apparent width, wL, of the interface as a function of the
lateral length scale, L. Thus, in principle, it is impossible to disentangle the intrinsic width from
the short length scale cut-off kmax. The binary polymer blend, however, offers an opportunity to
go one step further: Assuming that the SCF theory quantitatively describes the intrinsic width
and that we have accurately identified the Flory-Huggins parameter we can measure on which
length scale, 1/kmax, the simulation results coincide with the predictions of the SCF theory.
This strategy yields a length scale, 1/kmax ≈ wSCF/2, that is proportional to the intrinsic width
of the interface [43, 40].

2.6 Self-assembly of diblock copolymers
Joining chemically distinct polymers – A and B – at their ends to form an AB diblock copoly-
mer prevents macrophase separation of the two species. In order to reduce the number of ener-
getically unfavorable interactions between distinct blocks in a melt, the molecules self-assemble
into complex morphologies. The morphology is selected via a delicate balance between the
free energy cost of the internal interfaces and the conformational entropy loss as the molecules
stretch to fill space at constant density. The phase diagram in the bulk has been investigated
in much detail as a function of the relative length of the blocks f and the incompatibility
χN [49, 50, 22]. The morphologies found in copolymer melts and copolymer/homopolymer
mixtures resemble the spatially structured phases of other amphiphilic systems (e.g., lipid/water
mixtures).
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Fig. 9: Interaction energy (dark curve, left scale) and largest eigenvalue, λmax of the gyration
tensor of the diblock copolymer as a function of time (in arbitrary units) for a quench from
the disordered phase slightly below the ordering temperature obtained from simulations of the
bond fluctuation model with N = 32, ε = 0.14, and L = 128. The left snapshot presents the
spatially structured but disordered morphology before the “jump” into the ordered phase which
is depicted on the right hand side.

In this section we consider the structure and phase behavior of (nearly) symmetric diblock
copolymers that form a lamellar phase in the bulk upon cooling. Within the SCF theory the
transition for the disordered to the lamellar phase of a symmetric diblock copolymer is a second
order phase transition [49] but fluctuations render it a first order transition [51]. This is illus-
trated the Fig. 9 which presents the energy and the largest eigenvalue of the molecules’ gyration
tensor as the system is quenched form the disordered phase slightly below the order-disorder
transition. The sudden change in the energy and elongation indicates the ordering. This is con-
firmed by the snapshots - on the left the system is spatially structured but disordered and the
right the system exhibits lamellar order spanning the entire simulation cell. The simulations of
the bond fluctuation model correspond to an invariant degree of polymerization of N̄ ≈ 91 and
the first order transition occurs around χODTN ≈ 22 which is larger than the prediction of the
SCF theory χODTN ≈ 10.5.
If one confines a lamellar forming diblock into a thin film the interplay between the natural
periodicity of the lamellar bulk morphology and the finite film thickness, ∆, give rise to phase
transition between different orientations of the lamellar morphology [52, 53, 54, 55, 56, 57].
The SCF prediction for the phase diagram as a function of the incompatibility, χN , and the film
thickness ∆ measured in units of the end-to-end distance is shown in Fig. 10. Away from the
order-disorder transition (at χN = 30) the predicted morphologies agree with the simulation
results (cf. snapshots on the left hand side of Fig. 10) and, taking due account of capillary waves,
the SCF theory is able to additionally predict many features of the molecular arrangements (e.g.,
chain end distributions, orientations, etc) [56, 57].
We have used SCMF simulations to explore the self-assembly of copolymers and their mixtures
with the corresponding homopolymers in nanopatterned substrates [58, 59, 28]. On patterned
substrates the self-assembly is dictated by an intricate interplay between interfacial interactions,
breaking of translational symmetry, and structural frustration due to the incompatibility between
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Fig. 10: Phase diagram of a thin film as a function of the incompatibility χN and the film thick-
ness ∆/Re. L2 (upper left snapshot), L4i (lower left snapshot), and L6 denote parallel lamellar
phases with 2,4, and 6 AB interfaces, whereas L⊥ (middle snapshot) denotes the perpendicu-
lar lamellar phase. The dashed lines marks multiples of the bulk lamellar period. The square
denotes the approximate location of the triple point where the L4, L6 and L⊥ morphologies co-
exist. The circles mark the location of the (mean field) critical point from the disordered phase
to the L⊥ phase. The snapshots on the right are obtained from MC simulations of the bond
fluctuation model at χN = 32 and N̄ ≈ 91. From Geisinger, Müller and Binder [56, 57].

Fig. 11: Snapshot images of the three dimensional behavior of diblock copolymers on chemi-
cally nanopatterned substrates. The lateral system size is 17Re ≈ 0.5µm. The time increases
from left to right and from top to bottom. One component has been removed from the image and
blue surfaces represent the interface between the different components. In the lower left corner
75% of the film has been removed to reveal the near-substrate morphology. From Ref. [58].
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the natural periodicity of the bulk structure and film thickness and the substrate pattern. Con-
finement and surface effects can result in morphologies that are absent in the bulk, e.g., surface
reconstructions [60].
Fig. 11 shows the ordering of a lamellar-forming diblock on top of a stripe pattern. There is a
slight mismatch between the bulk lamellar period, L0 = 1.786Re at χN = 36.7 and the pattern
period, LS = 1.7Re. In the initial stage perfectly registered lamellae are formed at the substrate
(substrate-directed ordering). The top (bulk) of the film, however, orders into microdomains
later and those microdomains are not registered with the substrate pattern. Defects in the struc-
ture anneal not by lateral diffusion but the order of the registered lamellae propagates from the
substrate to the top surface [58].

Fig. 12: Three-dimensional contour plots of the composition (left) and the total homopolymer
concentration (right) obtained from SCMF simulations. In the left panel the red and blue areas
represent A- and B-rich domains, respectively. In the right panel, the periodic red areas are
enriched alternatively in A and B homopolymers, whereas the blue stripes represent the domain
interfaces that are depleted of homopolymers. From Ref. [59].

It is of interest to explore what geometrical patterns can be reproduced by diblock copolymer
materials. Generally, only a small mismatch between the natural morphology of the diblock and
the substrate pattern is permissible if defect-free registration and order is required. Using blends
of AB-diblock copolymers with the corresponding A- and B-homopolymers is an experimen-
tally convenient way to adjust (enlarge) the domain spacing and it also is crucial for replicating
more complex patterns. This is illustrated in Fig. 12 where the ordering of a ternary blend
on a nested array of bends is shown. The periodicity of the stripes matches the bulk lamellar
spacing but the distance between the AB interfaces at the corners is larger. The homopolymers
redistribute as to selectively swell the morphology at the corners resulting in defect free order-
ing. Note also the Ω-shape of the AB-interface at the corners which resembles domain shapes
observed at grain boundaries in the bulk.[59]
If one increases the mismatch between the length scale or the symmetry of the substrate pattern
and the bulk morphology of the diblock the copolymers do no longer register with the substrate
pattern. This is illustrated in Fig. 13 which shows the disordered bicontinuous morphology of a
lamellar-forming ternary blend on top of a surface pattern that consist of a square array of spots
with center-to-center distance, λ = 1.21L0, and radii, R = 0.30L0.
Near the substrate the morphology replicates the substrate pattern and forms a quadratically
perforated lamellar (QPL) sheet [28]. Necks of polystyrene (PS) connect to this QPL. The near-
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Fig. 13: Morphology of a copolymer/homopolymer blend film of thickness D0 = 0.63L0 and
lateral dimensions of 9.77L0 on a square array of spots. (top left) SCMF simulation showing
only the top view of the PS-rich domains (white/yellow) and the interface between PS and
PMMA (dark grey/blue). Regions on top of the spots are PMMA-rich (transparent) and one
looks through to the substrate (black). The position between two PMMA-attracting spots of
the substrate is denoted as “bridge”, while the position at the center of a plaquette of four
spots is denoted “interstitial”. The Voronoi tessellation of the necks is indicated by thin white
lines. (bottom left) SEM image of the composition at the film surface. The PS-domains are
shown in light grey while PMMA-rich surface areas correspond to dark grey regions. Note that
the PS-domains appear artificially larger in the SEM images so a more accurate view of the
domain sizes is provided by an AFM phase image shown as an inset at the lower right corner.
(middle) Probability distribution of the coordination (number of edges) of Voronoi cells (c.f. top
left panel). The “errorbars” of experimental data (shown in grey) characterize the variance of
results obtained by analyzing different SEM images of size 9.77L0. SCMF simulation results are
shown as open bars. (right) Pair correlation of the necks and orientational correlation functions
for hexagonal and square orientations extracted from large SEM images. From Ref. [28]
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substrate morphology favors a square geometry of the necks while the packing of dense necks
rather results in a hexagonal structure. This competition prevents the formation of long-range
order and one observed in the SCMF simulations as well as in the experiments a disordered
bicontinuous structure. The local geometry can be characterized by a Voronoi tessellation which
reveals a substantial amount of 6-fold coordinated necks. The local hexagonal structure is also
revealed by the orientational correlation function, g6 [61].

gn(r) =

〈∣∣∣∣∣∣
1

n

∑

α∈〈nn〉i
einφαi

1

n

∑

β∈〈nn〉j
e−inφβj

∣∣∣∣∣∣

〉
(48)

where α and β run over all nearest neighbors (nn) (as identified via the neck-neck-pair corre-
lation function) of the two necks i and j a distance r apart and φαi is the angle of the vector
between the center of the neck i and its neighbor α. Hexagonal correlations are strong but
short-ranged while orientational correlations with n = 4 are weaker but longer-ranged and are
mediated over long distances by the substrate pattern.

3 Outlook
The computational techniques – simulations, SCF theory, and SCMF simulations – provide a
wealth of information about the structure and thermodynamics of polymer systems. The exam-
ples illustrate applications on length scales comparable or larger then the molecular size in the
framework of coarse-grained models. Only minimal coarse-grained models have been utilized
that focus on the relevant long wave length properties in order to access large length- and time
scales. The computational techniques can readily be applied to models that retain details of
the chemical architecture and thus mimic the behavior of a specific systems. Much effort has
been devoted to systematically construct coarse-grained models that strike a balance between
computational efficiency and description of chemical details. The combination of efficient com-
putational techniques and coarse-grained model will remain crucial for studying this important
and fascinating class of materials.
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