
D 2 Parallel Computing

B. Mohr

Zentralinstitut für Angewandte Mathematik

Forschungszentrum Jülich GmbH

Contents
1 Introduction 2

1.1 Parallel Architectures . 2
1.2 Data Parallel Programming . 3

2 Programming Models 5

3 MPI 6
3.1 MPI Basic Routines . 6
3.2 MPI Communicator . 7
3.3 MPI Collective Operations . 7
3.4 MPI IO . 7
3.5 MPI Remote Memory Access . 8

4 OpenMP 9

5 Parallel Debugging 10

6 Parallel Performance Analysis 10

7 Summary 12

D2.2 B. Mohr

1 Introduction
Although the performance of sequential computers increases incredibly fast, it is insufficient for
a large number of challenging applications. Applications requiring much more performance are
numerical simulations in industry and research as well as commercial applications such as query
processing, data mining, and multi-media applications. Current hardware architectures offering
high performance do not only exploit parallelism on a very fine grain level within a single
processor but apply a medium to large number of processors concurrently to a single application.
High-end parallel computers currently (2005) deliver up to 280 Teraflop/s (1012 floating point
operations per second) and are developed and exploited within the ASCI (Accelerated Strategic
Computing Initiative) program of the Department of Energy in the USA.
This article concentrates on programming numerical applications on parallel computer archi-
tectures introduced in Section 1.1. Parallelization of those applications centers around selecting
a decomposition of the data domain onto the processors such that the workload is well balanced
and the communication between processors is reduced (Section 1.2)[5].
The parallel implementation is then based on either the message passing or the shared mem-
ory model (Section 2). The standard programming interface for the message passing model is
MPI (Message Passing Interface)[9, 10, 11], offering a complete set of communication routines
(Section 3). OpenMP [3, 12] is the standard for directive-based shared memory programming
and will be introduced in Section 4.
Since parallel programs exploit multiple threads of control, debugging is even more complicated
than for sequential programs. Section 5 outlines the main concepts of parallel debuggers and
presents TotalView [13], the most widely available debugger for parallel programs.
Although the domain decomposition is key to good performance on parallel architectures, pro-
gram efficiency also heavily depends on the implementation of the communication and syn-
chronization required by the parallel algorithms and the implementation techniques chosen for
sequential kernels. Optimizing those aspects is very system dependent and thus, an interactive
tuning process consisting of measuring performance data and applying optimizations follows
the initial coding of the application. The tuning process is supported by programming model
specific performance analysis tools. Section 6 presents basic performance analysis techniques.

1.1 Parallel Architectures
A parallel computer or multi-processor system is a computer utilizing more than one processor.
A common way to classify parallel computers is to distinguish them by the way how processors
can access the system’s main memory because this influences heavily the usage and program-
ming of the system.
In a distributed memory architecture the system is composed out of single-processor nodes with
local memory. The most important characteristic of this architecture is that access to the local
memory is faster than to remote memory. It is the challenge for the programmer to assign data
to the processors such that most of the data accessed during the computation are already in the
node’s local memory. Two major classes of distributed memory computers can be distinguished:

No Remote Memory Access (NORMA) computers do not have any special hardware support
to access another node’s local memory directly. The nodes are only connected through
a computer network. Processors obtain data from remote memory only by exchanging
messages over this network between processes on the requesting and the supplying node.

Parallel Computing D2.3

Computers in this class are sometimes also called Network Of Workstations (NOW) or
Clusters Of Workstations (COW).

Remote Memory Access (RMA) computers allow to access remote memory via specialized
operations implemented by hardware, however the hardware does not provide a global
address space, i.e., a memory location is not determined via an address in a shared linear
address space but via a tuple consisting of the processor number and the local address in
the target processor’s address space.

The major advantage of distributed memory systems is their ability to scale to a very large
number of nodes. Today (2005), systems with more than 130,000 nodes have been built. The
disadvantage is that such systems are very hard to program.
In contrast, a shared memory architecture provides (in hardware) a global address space, i.e.,
all memory locations can be accessed via usual load and store operations. Access to a remote
location results in a copy of the appropriate cache line in the processor’s cache. Therefore,
such a system is much easier to program. However, shared memory systems can only be scaled
to moderate numbers of processors, typically 64 or 128. Shared memory systems are further
classified according to the quality of the memory accesses:

Uniform Memory Access (UMA) computer systems feature one global shared memory sub-
system which is connected to the processors through a central bus or memory switch. All
of the memory is accessible to all processors in the same way. These systems are also
often called Symmetrical Multi Processor (SMP) nodes.

Non Uniform Memory Access (NUMA) computers are more scalable by physically distribut-
ing the memory but still providing a hardware implemented global address space. There-
fore access to memory local or close to a processor is faster than to remote memory. If
such a system has additional hardware which also ensures that multiple copies of data
stored in different cache lines of the processors is kept coherent, i.e., the copies always do
have the same value, then it is called a Cache-Coherent Non Uniform Memory Access
(ccNUMA) system. ccNUMA systems offer the abstraction of a shared linear address
space resembling physically shared memory systems. This abstraction simplifies the task
of program development but does not necessarily facilitate program tuning.

While most of the early parallel computers were simple single processor NORMA systems,
today’s large parallel systems are typically hybrid systems, i.e., shared memory NUMA nodes
with a moderate number of processors are connected together to form a distributed memory
cluster system.

1.2 Data Parallel Programming
Applications that scale to a large number of processors usually perform computations on large
data domains. For example, crash simulations are based on partial differential equations that are
solved on a large finite element grid and molecular dynamics applications simulate the behavior
of a large number of particles. Other parallel applications apply linear algebra operations to
large vectors and matrices. The elemental operations on each object in the data domain can be
executed in parallel by the available processors.
The scheduling of operations to processors is determined by a domain decomposition[6] spec-
ified by the programmer. Processors execute those operations that determine new values for

D2.4 B. Mohr

elements stored in local memory (owner-computes rule). While processors execute an opera-
tion, they may need values from other processors. The domain decomposition has thus to be
chosen so that the distribution of operations is balanced and the communication is minimized.
The third goal is to optimize single node computation, i.e., to be able to exploit the processor’s
pipelines and the processor’s caches efficiently.
A good example for the design decisions taken when selecting a domain decomposition is Gaus-
sian elimination[2]. The main structure of the matrix during the iterations of the algorithm is
outlined in Figure 1.
The goal of this algorithm is to eliminate all entries in the matrix below the main diagonal. It
starts at the top diagonal element and subtracts multiples of the first row from the second and
subsequent rows to end up with zeros in the first column. This operation is repeated for all the
rows. In later stages of the algorithm the actual computations have to be done on rectangular
sections of decreasing size. If the main diagonal element of the current row is zero, a pivot
operation has to be performed. The subsequent row with the maximum value in this column is
selected and exchanged with the current row.

**00

**0

0

**

Fig. 1: Structure of the matrix during Gaussian elimination.

A possible distribution of the matrix is to decompose its columns into blocks, one block for each
processor. The elimination of the entries in the lower triangle can then be performed in parallel
where each processor computes new values for its columns only. The main disadvantage of this
distribution is that in later computations of the algorithms only a subgroup of the processors is
actually doing any useful work since the computed rectangle is getting smaller.
To improve load balancing, a cyclic column distribution can be applied. The computations in
each step of the algorithm executed by the processors differ only in one column.
In addition to load balancing also communication needs to be minimized. Communication
occurs in this algorithm for broadcasting the current column to all the processors since it is
needed to compute the multiplication factor for the row. If the domain decomposition is a row
distribution, which eliminates the need to communicate the current column, the current row
needs to be broadcast to the other processors.
If we consider also the pivot operation, communication is necessary to select the best row when
a row-wise distribution is applied since the computation of the global maximum in that column
requires a comparison of all values.
Selecting the best domain decomposition is further complicated due to optimizing single node
performance. In this example, it is advantageous to apply BLAS3 operations for the local com-
putations. These operations make use of blocks of rows to improve cache utilization. Blocks

Parallel Computing D2.5

of rows can only be obtained if a block-cyclic distribution is applied, i.e., columns are not
distributed individually but blocks of columns are cyclically distributed.
This discussion makes clear, that choosing a domain decomposition is a very complicated step
in program development. It requires deep knowledge of the algorithm’s data access patterns as
well as the ability to predict the resulting communication.

2 Programming Models

Programming parallel computers is almost always done via the so-called Single Program Mul-
tiple Data (SPMD) model. SPMD means that the same program (executable code) is executed
on all processors taking part in the computation, but it computes on different parts of the data
which were distributed over the processors based on a specific domain decomposition. If com-
putations are only allowed on specific processors, this has to be explictly programmed by using
conditional programming constructs (e.g., with if or where statements). There are two main
programming models, message passing and shared memory, offering different features for im-
plementing applications parallelized by domain decomposition.
The message passing model is based on a set of processes with private data structures. Processes
communicate by exchanging messages with special send and receive operations. It is a natural
fit for programming distributed memory machines but also can be used on shared memory
computers. The domain decomposition is implemented by developing a code describing the
local computations and local data structures of a single process. Thus, global arrays have to
be split up and only the local part has to be allocated in a process. This handling of global
data structures is called data distribution. Computations on the global arrays also have to be
transformed, e.g., by adapting the loop bounds, to ensure that only local array elements are
computed. Access to remote elements have to be implemented via explicit communication,
temporary variables have to be allocated, messages have to be constructed and transmitted to
the target process.
The shared memory model is based on a set of threads that are created when parallel operations
are executed. This type of computation is also called fork-join parallelism. Threads share a
global address space and thus access array elements via a global index. The main parallel op-
erations are parallel loops and parallel sections. Parallel loops are executed by a set of threads
also called a team. The iterations are distributed among the threads according to a predefined
strategy. This scheduling strategy implements the chosen domain decomposition. Parallel sec-
tions are also executed by a team of threads but the tasks assigned to the threads implement
different operations. This feature can for example be applied if domain decomposition itself
does not generate enough parallelism and whole operations can be executed in parallel since
they access different data structures.
In the shared memory model, the distribution of data structures onto the node memories is
not enforced by decomposing global arrays into local arrays, but the global address space is
distributed onto the memories by the operating system. For example, the pages of the virtual
address space can be distributed cyclically or can be assigned at first touch. The chosen domain
decomposition thus has to take into account the granularity of the distribution, i.e., the size of
pages, as well as the system-dependent allocation strategy.
While the domain decomposition has to be hard-coded into the message passing program, it can
easily be changed in a shared memory program by selecting a different scheduling strategy for
parallel loops.

D2.6 B. Mohr

Another advantage of the shared memory model is that automatic and incremental paralleliza-
tion is supported. While automatic parallelization leads to a first working parallel program, its
efficiency typically needs to be improved. The reason for this is that parallelization techniques
work on a loop-by-loop basis and do not globally optimize the parallel code via a domain de-
composition. In addition, dependence analysis, the prerequisite for automatic parallelization,
is limited to access patterns known at compile time. The biggest disadvantage of this model is
that it can only be used on shared memory computers.
In the shared memory model, a first parallel version is relatively easy to implement and can be
incrementally tuned. In the message passing model instead, the program can be tested only after
finishing the full implementation. Subsequent tuning by adapting the domain decomposition is
usually time consuming.

3 MPI

The Message Passing Interface (MPI)[9, 10, 11] was developed between 1993 and 1997. It is a
community standard which standardizes the calling interface for a communication and synchro-
nization function library. It provides Fortran 77, Fortran 90, C and C++ language bindings. It
includes routines for point-to-point communication, collective communication, one-sided com-
munication, and parallel IO. While the basic point-to-point and collective communication prim-
itives have already been defined since 1994 and implemented on all parallel computers, parallel
IO and especially one-sided communication routines are part of MPI 2.0 and are not available
on all machines. For a simple example see the appendix.

3.1 MPI Basic Routines

MPI consists of more than 320 functions. But realistic programs can already be developed based
on no more than six functions:

MPI Init initializes the library. It has to be called at the beginning of a parallel operation
before any other MPI routines are executed.

MPI Finalize frees any resources used by the library and has to be called at the end of the
program.

MPI Comm size determines the number of processors executing the parallel program.

MPI Comm rank returns the unique process identifier.

MPI Send transfers a message to a target process. This operation is a blocking send operation,
i.e., it terminates when the message buffer can be reused either because the message was
copied to a system buffer by the library or because the message was delivered to the target
process.

MPI Recv receives a message. This routine terminates if a message was copied into the receive
buffer.

Parallel Computing D2.7

3.2 MPI Communicator

All communication routines depend on the concept of a communicator. A communicator con-
sists of a process group and a communication context. The processes in the process group are
numbered from zero to process count - 1. The process number returned by MPI Comm rank is
the identification in the process group of the communicator which is passed as a parameter to
this routine.
The communication context of the communicator is important in identifying messages. Each
message has an integer number called a tag which has to match a given selector in the corre-
sponding receive operation. The selector depends on the communicator and thus on the com-
munication context. It selects only messages with a fitting tag and having been sent relative to
the same communicator. This feature is very useful in building parallel libraries since messages
sent inside the library will not interfere with messages outside if a special communicator is
used in the library. The default communicator that includes all processes of the application is
MPI COMM WORLD.

3.3 MPI Collective Operations

Another important class of operations are collective operations. Collective operations are exe-
cuted by a process group identified via a communicator. All the processes in the group have to
perform the same operation. Typical examples for such operations are:

MPI Barrier synchronizes all processes. None of the processes can proceed beyond the barrier
until all the processes started execution of that routine.

MPI Bcast allows to distribute the same data from one process, the so-called root process, to
all other processes in the process group.

MPI Scatter also distributes data from a root process to a whole process group, but each re-
ceiving process gets different data.

MPI Gather collects data from a group of processes at a root process.

MPI Reduce performs a global operation on the data of each process in the process group. For
example, the sum of all values of a distributed array can be computed by first summing
up all local values in each process and then summing up the local sums to get a global
sum. The latter step can be performed by the reduction operation with the parameter
MPI SUM. The result is delivered to a single target processor.

3.4 MPI IO

Data parallel applications make use of the IO subsystem to read and write big data sets. These
data sets result from replicated or distributed arrays. The reasons for IO are to read input
data, to pass information to other programs, e.g., for visualization, or to store the state of the
computation to be able to restart the computation in case of a system failure or if the computation
has to be split into multiple runs due to its resource requirements.
IO can be implemented in three ways:

D2.8 B. Mohr

1. Sequential IO

A single node is responsible to perform the IO. It gathers information from the other
nodes and writes it to disk or reads information from disk and scatters it to the appropriate
nodes. While the IO is sequential and thus need not be parallelized, the full performance
of the IO subsystem might not be utilized. Modern systems provide high performance IO
subsystems that are fast enough to support multiple IO requests from different nodes in
parallel.

2. Private IO

Each node accesses its own files. The big advantage of this implementation is that no
synchronization among the nodes is required and very high performance can be obtained.
The major disadvantage is that the user has to handle a large number of files. For input the
original data set has to be splitted according to the distribution of the data structure and for
output the process-specific files have to be merged into a global file for post-processing.

3. Parallel IO

In this implementation all the processes access the same file. They read and write only
those parts of the file with relevant data. The main advantages are that no individual files
need to be handled and that reasonable performance can be reached. The disadvantage
is that it is difficult to reach the same performance as with private IO. The parallel IO
interface of MPI provides flexible and high-level means to implement applications with
parallel IO.

Files accessed via MPI IO routines have to be opened and closed by collective operations. The
open routine allows to specify hints to optimize the performance such as whether the application
might profit from combining small IO requests from different nodes, what size is recommended
for the combined request, and how many nodes should be engaged in merging the requests.
The central concept in accessing the files is the view. A view is defined for each process and
specifies a sequence of data elements to be ignored and data elements to be read or written by
the process. When reading or writing a distributed array the local information can be described
easily as such a repeating pattern. The IO operations read and write a number of data elements
on the basis of the defined view, i.e., they access the local information only. Since the views are
defined via runtime routines prior to the access, the information can be exploited in the library
to optimize IO.
MPI IO provides blocking as well as nonblocking operations. In contrast to blocking operations,
the nonblocking ones only start IO and terminate immediately. If the program depends on the
successful completion of the IO it has to check it via a test function. Besides the collective IO
routines which allow to combine individual requests, also non-collective routines are available
to access shared files.

3.5 MPI Remote Memory Access

Remote memory access (RMA) operations (also called 1-sided communication) allow to access
the address space of other processes without participation of the other process. The implemen-
tation of this concept can either be in hardware, such as in the CRAY T3E, or in software via

Parallel Computing D2.9

additional threads waiting for requests. The advantages of these operations are that the proto-
col overhead is much lower than for normal send and receive operations and that no polling or
global communication is required for setting up communication.
In contrast to explicit message passing where synchronization happens implicitly, accesses via
RMA operations need to be protected by explicit synchronization operations.
RMA communication in MPI is based on the window concept. Each process has to execute a
collective routine that defines a window, i.e., the part of its address space that can be accessed
by other processes.
The actual access is performed via put and get operations. The address is defined by the target
process number and the displacement relative to the starting address of the window for that
process.
MPI also provides special synchronization operations relative to a window. The MPI Win fence
operation synchronizes all processes that make some address ranges accessible to other pro-
cesses. It is a collective operation that ensures that all RMA operations started before the fence
operation terminate before the target process executes the fence operation and that all RMA
operations of a process executed after the fence operation are executed after the target pro-
cess executed the fence operation. There are also more fine grained synchronization methods
available in the form of the General Active Target Synchronization or via locks.

4 OpenMP
OpenMP[3, 12] is a directive-based programming interface for the shared memory program-
ming model. It consists of a set of directives and runtime routines for Fortran 77 (published
1997), for Fortran 90 (2000), and a corresponding set of pragmas for C and C++ (1998).
Directives are special comments that are interpreted by the compiler. Directives have the ad-
vantage that the code is still a sequential code that can be executed on sequential machines (by
ignoring the directives/pragmas) and thus no two separate versions, a sequential and a parallel
version, need to be maintained.
Directives start and terminate parallel regions. When the master thread hits a parallel region
a team of threads is created or activated. The threads execute the code in parallel and are
synchronized at the beginning and the end of the computation. After the final synchronization
the master thread continues sequential execution after the parallel region. The main directives
are:

!$OMP PARALLEL DO specifies a loop that can be executed in parallel. The DO loop’s
iterations can be distributed among the set of threads according to various scheduling
strategies including STATIC(CHUNK), DYNAMIC(CHUNK), and GUIDED(CHUNK).
STATIC(CHUNK) distribution means that the set of iterations are consecutively dis-
tributed among the threads in blocks of CHUNK size (resulting in block and cyclic dis-
tributions). DYNAMIC(CHUNK) distribution implies that iterations are distributed in
blocks of CHUNK size to threads on a first-come-first-served basis. GUIDED (CHUNK)
means that blocks of exponentially decreasing size are assigned on a first-come-first-
served basis. The size of the smallest block is determined by CHUNK size.

!$OMP PARALLEL SECTIONS starts a set of sections that are each executed in parallel by
a team of threads.

D2.10 B. Mohr

!$OMP PARALLEL introduces a code region that is executed redundantly by the threads. It
has to be used very carefully since assignments to global variables will lead to conflicts
among the threads and possibly to nondeterministic behavior.

!$OMP DO is a work sharing construct and may be used within a parallel region. All the
threads executing the parallel region have to cooperate in the execution of the parallel
loop. There is no implicit synchronization at the beginning of the loop but a synchroniza-
tion at the end. After the final synchronization all threads continue after the loop in the
replicated execution of the program code.

The main advantage of this approach is that the overhead for starting up the threads is
eliminated. The team of threads exists during the execution of the parallel region and
need not be built before each parallel loop.

!$OMP SECTIONS is also a work sharing construct that allows the current team of threads
executing the surrounding parallel region to cooperate in the execution of the parallel
sections.

Program data can either be shared or private. While threads do have their own copy of pri-
vate data, only one copy exists of shared data. This copy can be accessed by all threads. To
ensure program correctness, OpenMP provides special synchronization constructs. The main
constructs are barrier synchronization enforcing that all threads have reached this synchroniza-
tion operation before execution continues and critical sections. Critical sections ensure that
only a single thread can enter the section and thus, data accesses in such a section are protected
from race conditions. For example, a common situation for a critical section is the accumulation
of values. Since an accumulation consists of a read and a write operation unexpected results
can occur if both operations are not surrounded by a critical section. For a simple example of
an OpenMP parallelization see the appendix.

5 Parallel Debugging
Debugging parallel programs is more difficult than debugging sequential programs not only
since multiple processes or threads need to be taken into account but also because program
behavior might not be deterministic and might not be reproducible. These problems are not
solved by current state-of-the-art commercial parallel debuggers. They deal only with the first
problem by providing menus, displays, and commands that allow to inspect individual processes
and execute commands on individual or all processes.
The widely used debugger is TotalView from Etnus Inc[13]. It provides breakpoint definition,
single stepping, and variable inspection via an interactive interface. The programmer can exe-
cute those operations for individual processes and groups of processes. TotalView also provides
some means to summarize information such that equal information from multiple processes is
combined into a single information and not repeated redundantly. It also supports MPI and
OpenMP programs on many platforms.

6 Parallel Performance Analysis
Performance analysis is an iterative subtask during program development. The goal is to iden-
tify program regions that do not perform well. Performance analysis is structured into four

Parallel Computing D2.11

phases:

1. Measurement

Performance analysis is done based on information on runtime events gathered during
program execution. The basic events are, for example, cache misses, termination of a
floating point operation, start and stop of a subroutine or message passing operation.
The information on individual events can be summarized during program execution or
individual trace records can be collected for each event.

Summary information has the advantage to be of moderate size while trace information
tends to be very large. The disadvantage is that it is not fine grained; the behavior of
individual instances of subroutines can for example not be investigated since all the in-
formation has been summed up.

2. Analysis

During analysis the collected runtime data are inspected to detect performance problems.
Performance problems are based on performance properties, such as the existence of
message passing in a program region, which have a condition for identifying it and a
severity function that specifies its importance for program performance.

Current tools support the user in checking the conditions and the severity by visualizing
program behavior. Future tools might be able to automatically detect performance prop-
erties based on a specification of possible properties. During analysis the programmer
applies a threshold. Only performance properties whose severity exceeds this threshold
are considered to be performance problems.

3. Ranking

During program analysis the severest performance problems need to be identified. This
means that the problems need to be ranked according to the severity. The most severe
problem is called the program bottleneck. This is the problem the programmer tries to
resolve by applying appropriate program transformations.

Current techniques for performance data collection are profiling and tracing. Profiling collects
summary data only. This can be done via sampling. The program is regularly interrupted, e.g.,
every 10 ms, and the information is added up for the source code location which was executed
in this moment. For example, the UNIX profiling tool prof applies this technique to determine
the fraction of the execution time spent in individual subroutines.
A more precise profiling technique is based on instrumentation, i.e., special calls to a monitoring
library are inserted into the program. This can either be done in the source code by the compiler
or specialized tools, or can be done in the object code. While the first approach allows to
instrument more types of regions, for example, loops and vector statements, the latter allows to
measure data for programs where no source code is available. The monitoring library collects
the information and adds it to special counters for the specific region.
Tracing is a technique that collects information for each event. This results, for example, in
very detailed information for each instance of a subroutine and for each message sent to another
process. The information is stored in specialized trace records for each event type. For example,
for each start of a send operation, the time stamp, the message size and the target process can
be recorded, while for the end of the operation, the time stamp and bandwidth are stored.

D2.12 B. Mohr

The trace records are stored in the memory of each process and are written to a trace file either
when the buffer is filled up or when the program terminates. The individual trace files of the
processes are merged together into one trace file ordered according to the time stamps of the
events.

7 Summary

This article gave an overview of parallel programming models as well as programming tools.
Parallel programming will always be a challenge for programmers. Higher-level programming
models and appropriate programming tools only facilitate the process but do not make it a
simple task.
While programming in MPI offers the greatest potential performance, shared memory program-
ming with OpenMP is much more comfortable due to the global style of the resulting program.
The sequential control flow among the parallel loops and regions matches much better with the
sequential programming model all the programmers are trained for.
Although program tools were developed over years, the current situation seems not to be very
satisfying. Program debugging is done per thread, a technique that does not scale to larger
numbers of processors. Performance analysis tools do also suffer scalability limitations and,
in addition, the tools are complicated to use. The programmers have to be experts for perfor-
mance analysis to understand potential performance problems, their proof conditions, and their
severity. In addition they have to be experts for powerful but also complex user interfaces.
Future research in this area has to try to automate performance analysis tools, such that fre-
quently occurring performance problems can be identified automatically. It is the goal of the
IST working group APART on Automatic Performance Analysis: Resources and Tools to inves-
tigate base technologies for future more intelligent tools[1]. An important result of this work
is a collection of performance problems for parallel programs that have been formalized with
the ASL, the APART Specification Language[4]. This approach will lead to a formal repre-
sentation of the knowledge applied in the manually executed performance analysis process and
thus will make this knowledge accessible for automatic processing. First automatic tools are
already available: ParaDyn[8] from the University of Wisconsin-Madison and KOJAK[7] from
the Research Centre Jülich.
A second important trend that will effect parallel programming in the future is the move towards
clustered shared memory systems. Clearly, a hybrid programming approach will be applied on
those systems for best performance, combining message passing between the individual SMP
nodes and shared memory programming in a node. This programming model will lead to even
more complex programs and program development tools have to be enhanced to be able to help
the user in developing these codes.

Appendix

This appendix provides three versions of a simple example of a scientific computation. It com-
putes the value of π by numerical integration:

π =

∫ 1

0

f(x)dx with f(x) =
4

(1 + x2)

Parallel Computing D2.13

This integral can be approximated numerically by the midpoint rule:

pi =
1

n

∫ n

1

f(xi) with xi =
(i− 0.5)

n
for i = 1, . . . , n

Larger values of the parameter n will give us more accurate approximations of π. This is not,
in fact, a very good way to compute π, but it makes a good example because it has the typical,
complete structure of a numerical simulation program (initialization - iterative calculation -
wrap-up), and the whole source code fits one one page or slide.
To parallelize the example, each process/thread computes and adds up the areas for a different
subset of the rectangles. At the end of the computation, all of the local sums are combined into
a global sum representing the value of π.

Sequential and OpenMP Version of Example Program

The following listing shows a Fortran90 implementation of the π numerical integration exam-
ple parallelized with the help of OpenMP. As OpenMP is based on directives (which are plain
comments in a non-OpenMP compilation mode), it is at the same time also a sequential imple-
mentation of the example.

1 program main
2 i n t e g e r : : i , n
3 double p r e c i s i o n : : f , x , sum , pi , h
4 f (x) = 4 . d0 / (1 . d0 + x∗x)
5 w r i t e (∗ , ∗) ” number o f i n t e r v a l s ? ”
6 read (∗ , ∗) n
7

8 h = 1 . 0 d0 / n
9 sum = 0 . 0 d0

10 ! $omp p a r a l l e l do p r i v a t e (i , x) r e d u c t i o n (+: sum)
11 do i = 1 , n
12 x = (i − 0 . 5 d0)∗ h
13 sum = sum + f (x)
14 end do
15 p i = h ∗ sum
16

17 w r i t e (∗ , fmt=” (A, F16 . 1 2) ”) ” Value o f p i i s ” , p i
18 end program

The OpenMP directive in line 10 declares the following do-loop as parallel resulting in a con-
current execution of loop iterations. As the variables i and x are used to store values during the
execution of the loop, they have to be declared private, so that each thread executing iterations
has its own copy. The variable h is only read, so it can be shared. Finally, it is specified that
there is a reduction (using addition) over the variable sum.

D2.14 B. Mohr

MPI Version of Example Program

The corresponding implementation of the π integration example using MPI is more complex,
as every single aspect of the parallelization (e.g., communication or data distribution) has to be
explicitly specified.
First, the MPI system has to be initialized (lines 7 to 9) and terminated (line 33) with the
necessary MPI calls. Next, the input or parameters (line 11 to 14) and the output of results (lines
29 to 31) has to be restricted so that it is only executed by one processor. Then, the input has to
be broadcasted to the other processors (line 16). The biggest (and most complicated) change is
to program the distribution of work and data. The do-loop in line 20 has to be changed so that
each processor only calculates and summarizes its part of the distributed computations. Finally,
the reduce call in lines 26/27 collects the local sums and delivers the global sum to processor 0.

1 program main
2 i n c l u d e ’ mpif . h ’
3 i n t e g e r : : i , n , i e r r , myrank , numprocs
4 double p r e c i s i o n : : f , x , sum , pi , h , mypi
5 f (x) = 4 . d0 / (1 . d0 + x∗x)
6

7 c a l l M P I I n i t (i e r r)
8 c a l l MPI Comm rank (MPI COMM WORLD, myrank , i e r r)
9 c a l l MPI Comm size (MPI COMM WORLD, numprocs , i e r r)

10

11 i f (myrank == 0) then
12 w r i t e (∗ , ∗) ” number o f i n t e r v a l s ? ”
13 read (∗ , ∗) n
14 end i f
15

16 c a l l MPI Bcast (n , 1 , MPI INTEGER , 0 , MPI COMM WORLD, i e r r)
17

18 h = 1 . 0 d0 / n
19 sum = 0 . 0 d0
20 do i = myrank +1 , n , numprocs
21 x = (i − 0 . 5 d0)∗ h
22 sum = sum + f (x)
23 end do
24 mypi = h ∗ sum
25

26 c a l l MPI Reduce (mypi , p i , 1 , MPI DOUBLE PRECISION , &
27 MPI SUM , 0 , MPI COMM WORLD, i e r r)
28

29 i f (myrank == 0) then
30 w r i t e (∗ , fmt=” (A, F16 . 1 2) ”) ” Value o f p i i s ” , p i
31 e n d i f
32

33 c a l l M P I F i n a l i z e (i e r r)
34 end program

Parallel Computing D2.15

As one can see, because of the need to explicitly program all aspects of the parallelization, the
MPI version is almost twice as long as the OpenMP version. Although this is clearly more
work, it gives a programmer much more ways to express and control parallelism. Also, the MPI
version will run on all kinds of parallel computers, while OpenMP is restricted to the shared
memory architecture.

References
[1] APART: IST Working Group on Automatic Performance Analysis Resources and Tools,

http://www.fz-juelich.de/apart/.

[2] D. P. Bertsekas, J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Meth-
ods, Prentice-Hall, ISBN 0-13-648759-9, 1989.

[3] L. Dagum, R. Menon, OpenMP: An Industry-Standard API for Shared-memory Program-
ming, IEEE Computational Science & Engineering, Vol. 5, No. 1, 46–55, 1998.

[4] Th. Fahringer, M. Gerndt, B. Mohr, F. Wolf, G. Riley, J. Träff, Knowledge Specification
for Automatic Performance Analysis, APART Technical Report, Research Centre Juelich
FZJ-ZAM-IB-2001-08, 2001.

[5] I. Foster, Designing and Building Parallel Programs, Addison Wesley, ISBN 0-201-
57594-9, 1994.

[6] G. Fox, Domain Decomposition in Distributed and Shared Memory Environments, Inter-
national Conference on Supercomputing June 8-12, 1987, Athens, Greece, Lecture Notes
in Computer Science 297, edited by C. Polychronopoulos, 1987.

[7] F. Wolf and B. Mohr. Automatic Performance Analysis of Hybrid MPI/OpenMP Applica-
tions. Journal of Systems Architecture, 49(10–11):421–439, November 2003.

[8] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvine, K. L. Kar-
avanic, K. Kunchithapadam, and T. Newhall, The Paradyn Parallel Performance Measure-
ment Tool, IEEE Computer, Vol. 28, No. 11, 37–46, 1995.

[9] MPI Forum: Message Passing Interface, http://www.mpi-forum.org.

[10] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra. MPI - the Complete
Reference, Volume 1, The MPI Core. 2nd ed., MIT Press, 1998.

[11] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W . Saphir, and
M. Snir. MPI - the Complete Reference, Volume 2, The MPI Extensions. MIT Press,
1998.

[12] OpenMP Forum: OpenMP Standard, http://www.openmp.org.

[13] Etnus Inc.: Totalview, http://www.etnus.com/.

