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1 What is granular matter and why do we simulate it?

1.1 Not a liquid, not a solid

Sand, pellets, coal, grains all have an important property: They can flow e.g. through hoppers,
but in contrast to a fluid they also form piles. In fact compact granular matter can be hard like a
solid: One needs not worry that ones child drowns in the sandbox. But under certain conditions
the same granular matter can become dangerous: One can drown in a silo or in quicksand.
This duality between fluid- and solid-like behaviour is the reason why granular matter has been
of central technological importance since the beginnings of civilization: Solids can only be
processed in the granular form.

Besides the technological importance and the exotic phenomena of granular matter, there are
basic physical properties which make it an interesting research subject [1-3]. When it flows, it
does so unlike an ordinary viscous fluid, but shows a nonlinear relationship between stress and
strain-rate, and the separation of grains with different properties (e.g. large or small). When
at rest, it does not behave like an ordinary elastic solid either, because of a nonlinear relation
between stress and strain which depends on the fabric of the particle packing. Granular matter
is not ergodic, its statistical physics is similar to the one of glass which freezes into metastable
configurations. In particular the transition between flowing and static granular matter (“jam-
ming”’) poses many challenging and basic questions. Computer simulations are indispensible in
order to trace these macrocscopic phenomena back to the interactions between the particles.

With this goal in mind it becomes natural to restrict this lecture to discrete element methods
(DEM). In a DEM all particle trajectories of a many particle system are calculated. Molecular
Dynamics (MD) is the most versatile of these methods, but when applied to granular matter,
it also has important limitations for rigid multi-contact systems and for rapid shear flows. In
those cases Contact Dynamics (CD) avoids certain artefacts. Both simulation methods will be
explained in the following for cohesionless spherical particles and contacts that do not exert
torques (point contacts). Extensions are possible. They can be found e.g. in [1,4] and in the
new book by Poschel and Schwager [5].

One speaks of granular matter, if one has a large number of particles (or grains) that can ap-
proximately be regarded as rigid bodies and interact weakly enough that they do not break up
into fragments nor fuse into larger agglomerates. Any physical process that would change the
particles is outside the primary scope of granular matter. Thus, the position of a particle is char-
acterized by two vectors, its center of mass, 7, and a vector € fixed inside the particle in order
to describe its orientation in space. The equations of motion for a particle are

d d

27 = 7 i = F (1)
a =Y et ’
d . d, . =
¢ =« X €, an) = T. )

m and I are the mass and the moment of inertia, respectively. Note that the tensor I has to
be calculated in the laboratory frame, where it in general depends on time, because its principal
axes rotate together with the particle. Only for particles with spherical symmetry the moment
of inertia is constant, I = /1. For simplicity, only this special case is considered in this lecture.
v and & are the center of mass velocity, respectively the angular velocity. F and T denote the
sum of all forces, respectively torques acting on the particle.
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1.2 Characterization at the grain level

What is so special about the interactions between the particles compared to those between the
molecules of a fluid or a solid, that granular matter deserves a separate lecture?

Although the enormous number of internal degrees of freedom of each individual particle is
not taken into account explicitely, it gives rise to the first characteristic property of grain-grain
interactions: They are irreversible, i.e. any relative motion of two grains in contact leads to
energy dissipation. Examples are solid friction for tangential and incomplete restitution for
normal relative motion. Solid friction is described by

j_ét = _MdiRn%a for ’\_7)t 7é 07 (3)

tl

where 14 is the coefficient of dynamic friction, R,, the normal force, and \Z the relative tangen-
tial velocity of the two particles at the contact. It is important to distinguish the contact related
quantities, R and V, from F, T’ ¥, and & which are related to the center of mass of a particle.
Incomplete restitution means that the ratio of the relative velocities after and before a binary
head-on collision between spherical particles, the coefficient of restitution

en = [V V0| 4)

n

is smaller than 1. As a result of these dissipative interactions, relative motion of the particles
gets damped out.

The second characteristic property of granular matter is that the grains must be big enough that
their thermal energy kg1’ can be neglected compared to their kinetic energy or to the potential
energy barriers they encounter. For example, if one compares the gravitational energy difference
on the length scale of the particle diameter with the thermal energy of room temperature under
normal laboratory conditions, this requirement restricts the particle diameter to values larger
than about 1 um. As a consequence, granular matter “freezes” into some metastable state unter
its own weight, as soon as one stops agitating it, e.g. by vibration or shearing.

A third characteristic property can most clearly be explained for perfectly rigid particles, which
is the limit considered in Contact Dynamics simulations. The volume exclusion is a constraint
that is only active if the distance between the particle surfaces (“gap”) is zero, and otherwise
has no effect. The number of degrees of freedom in the system depends on the number of
active constraints and is therefore itself a dynamical variable. The volume exclusion constraint
implies that at every contact a repulsive constraint force X,, is acting that can take whatever
non-negative value is needed to prevent the interpenetration of the particles. This is expressed
by the Signorini graph, on the left of Fig. 1.

A second type of constraint, the non-sliding constraint of frictional contacts, is only active, if the
contact is closed and the tangential relative velocity |V,| is zero. In this case the static friction
force can be nonzero and assumes whatever tangential direction and value 0 < |32t| < Ry
are needed to prevent sliding. This inequality means that the contact force R = (Ry, Rt) for
a sticking contact must lie inside a cone with opening angle arctan(yus) in force space, where
ls > [iq 1s the static friction coefficient. If a constraint force outside this Coulomb cone would
be needed, sliding cannot be avoided, and one obtains the well defined sliding friction (3). The
absolute values of the tangential velocity and the friction force lie on the Coulomb graph (right
hand side of Fig. 1).

These constraints are switched on and off depending on the contact status (closed or open,
sticking or sliding) and are an important source of nonlinear behaviour in granular matter.



B13.4 D. E. Wolf

Ry, Ryl /R

fbs
Hd

g V"Vt|

Fig. 1: Volume exclusion constraint (left): Allowed combinations of gap g and constraint force
R, lie on the Signorini graph, i.e. g > 0, R, > 0, g R,, = 0. Non-sliding constraint (right):
The constraint force (static friction force) plus the sliding friction force constitute the Coulomb
graph.

1.3 Bagnold scaling

The Signorini and the Coulomb graph have an important property: They are invariant under
a rescaling of the forces R — aR. If one simultaneously rescales the external forces by the
same factor of a, time like t — a~'/?t, and accordingly the velocity and angular velocity like
7 — al/ 20, & — a'/*@, then the equations of motion (1- 2) remain unchanged, because F
and M are hnear in the contact forces R. This very basic scaling property of granular matter
is called “Bagnold scaling”. It means that granular matter flows only twice as quickly, if the
driving forces are four times larger, in marked contrast to the linear response in ordinary liquids.
This implies in particular that the confining pressure as well as the shear stress are proportional

to the shear rate squared in granular matter:
Ozy < (m/R) (ayvér)QSign(ayUx) (%)

with a dimensionless proportionality constant. R denotes the radius of the particles. Bagnold [6]
derived (5) by analyzing the momentum flux due to binary particle collisions, but the dimen-
sional argument [7] shows that the scaling property is also valid in dense granular flows with
lasting contacts [8,9].

Many of the recent simulation studies concern the dependence of the proportionality constant in
(5) on the various dimensionless parameters of the system [10], or the deviations from Bagnold
scaling due to fixed force scales like gravity [11], finite elastic moduli [9] or adhesion forces
[12,13].

2 Soft Particle Molecular Dynamics Simulations (MD)

2.1 General Remarks

This chapter is based on more extended lecture notes [7] on simulations of granular matter.

In molecular dynamics simulations Newton’s equations of motion (1- 2) are discretized and
solved numerically to give the time evolution of a system of N particles. It should be borne
in mind that this method like any DEM is based on a model of the contact forces, so that the
results have a range of validity which needs to be assessed carefully.
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In particular, in order to avoid the calculation of constraint forces, soft particle MD is designed
such that the number of degrees of freedom is constant equal to three translations and three
rotations per particle (in three dimensions). This requires that the volume exclusion and the
non-sliding constraints have to be softened. The Signorini- and the Coulomb-graph are replaced
by elastic force laws, which allow to calculate the contact forces as functions of the particle
positions and velocities.

Within the soft particles model [14, 15] of granular matter one allows the particles to interpene-
trate (“overlap”) somewhat. For spherical particles of radii I?; and R; the overlap is

én = maX(O,RZ- + Rj — ‘7_’; — 7_’3 ) (6)

It is physically interpreted as a measure of the elastic deformation in normal direction at the
contact. The overlap gives rise to a repulsive force which drives the particles apart. This will be
discussed in the next section.

A simple, yet good scheme for integrating Newton’s equations of motion is the Leapfrog algo-
rithm [16], which is briefly recalled here for later comparison with the integration scheme used
in CD. Only the equations (1) will be considered here; the other two are treated correspondingly.
Suppose one already knows U(t — At/2), ¢(t) and 7(t). Then one proves by Taylor expansion
that

7 (t + %) = 7 (t - %) + % F(t) At + O ((At)?) (7)
Tit+At) = @ (t + %) + % F(t) At +0 ((At)?) (8)
Ft+At) = 7(t)+v (t + %) At + O ((At)?) )

Note that it suffices to determine ¢(¢ + At), which is needed for the force calculation of the next
time step, only to second order in At, because the force is multiplied by At.

The discretization time step At should be about 102 times the duration 7 of a binary collision in
order to keep relative errors of physical quantities integrated over the whole collision time small
of order 10~%. In contrast to Lennard-Jones fluids, where the characteristic time 7 ~ 10~ 3sec,
the collision time here is typically of the order 7 ~ 10 %sec. The computational challenge of
this method lies in the fact, that the hydrodynamic and the agitation time scales which one wants
to investigate are vastly larger than the duration 7 of a binary collision.

2.2 Normal Force

A frequently used model for the normal component of the contact force is
R, = max (0, R}) (10)

with the test force [17]
d
R, = k& +rgéy a1, (11)

which is identified with the normal component of the contact force, if it is positive. By conven-
tion, repulsive contact forces are counted as positive.
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The term with coefficient £ represents the elastic restoring force, and the one with coefficient
v is the result of viscous friction inside the particle. Whereas the first term is always non-
negative, the second one is negative, when the overlap decreases: The internal friction acts
together with the elastic restoring force to resist the approach of the centers of mass, but it
effectively reduces the force with which the particles are driven apart. For small ¢ the second
term can even overcompensate the first one, when the particle centers are moving apart, so
that the test force R; becomes negative. This would correspond to an attractive force, which
is unphysical for non-cohesive particles. Due to the maximum condition in (10) the normal
contact force is then set equal to zero. That the contact force vanishes, when there is still an
overlap of the undistorted particle shapes, means that the elastically deformed particles separate
before they have resumed their original form. The reason is that the centers of mass move apart
faster than the viscoelastic bulk of the particles “flows” back into the undistorted form.

The exponent o depends on the particle shape in the neighborhood of the contact. For spheres,
Hertz derived the elastic part and showed that « = 3/2 [18]. Brilliantov et al. [19] derived the
coefficients k£ and  from linear viscoelasticity of the bulk of the particles. For disks (or parallel
cylinders) o = 1.

As explained in the previous section one needs to know a lower bound for the collision time 7
in order to choose the time step of the simulation appropriately. For this purpose the damping
term in (10) can be neglected, because it can only increase the collision time. It is well known
that in the linear case the collision time is given by

Mefr
k
where m.g is the reduced mass of the two collision partners. The case « > 1 can be viewed as a

spring which becomes stiffer the more compressed it is. The effective stiffness can be estimated
as

for a=1, (12)

T =

ff ~ kfmax? (13)

where the maximal overlap ., can be related to the impact velocity by setting the elastic
energy equal to the kinetic energy of the impact:

«@ meﬁ 7 2 (i)
gm:i - 2 (Vn)> = Ekin’ (14)
As a result one obtains the estimate
1
Mefr Meff \ T+a N
~ ~ Yy e 15
g ket ( k ) (V) (15)

This shows that the time step has to be chosen according to the largest expected collision veloc-
ity, if a > 1.

Similarly, using &, as the characteristic length and VY as the characteristic velocity, one
obtains a rough estimate of the damping term in (10):

7 dtf ~ Ve Vi - (16)

Integrating this damping force from £ = 0 to £ = &, and back gives another factor of &,
for the energy Fy;ss dissipated in a binary collision. For the coefficient of restitution e, (4) this
gives the following estimate:

Fyiss = a1
| —e? = 2 o 0 <T> T (vwyar (17)
m
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Up to a numerical factor, this rough estimate gives the correct result for small velocities [7,20].
It shows, that the coefficient of restitution for @ # 1 depends on the collision velocity. In fact,
experimentally one finds for a large class of materials [17,21-23] that the restitution coefficient
decreases with increasing 'V, i.e. the more violent the impact, the more dissipative it is.

If the relative velocities do not vary over a wide range during a simulation, one often prefers to
use the linear spring-dashpot model, & = 1, where the restitution coefficient does not depend
on the relative velocity. Together with the fact that the collision time does not depend on the
velocity either, and that the linearity makes this law very well behaved numerically, the simple
linear spring-dashpot model is a compromise between physical accuracy and numerical effi-
ciency. Another reason for this is that it is tricky to implement a physically correct tangential
force law consistent with o = 3/2 [24].

2.3 Tangential Force

In the previous section we have seen, how the excluded volume constraint is softened in MD
simulations. In this section it will be shown, how the non-sliding constraint posed by static
frictional contacts can be circumvented. The key observation is that a shear stress at a contact
leads to a tangential elastic deformation of the particles. In a sticking contact the external shear
stress can be compensated by the tangential elastic restoring force. However, if the shear stress
exceeds a threshold, the contact breaks and the surfaces start to slide with respect to each other.
The idea to implement tangential elasticiy dates back to Cundall and Strack [14]. It has been
improved by Brendel and Dippel [25] and further refined by Luding [15]. Here I present the
implementation of Fazekas [26]. As soon as two particles touch, an imaginary spring is attached
to the point of contact. Its displacement Et in the tangential plane represents the tangential elastic
deformation of the particles (like the overlap &,, represents the normal elastic deformation). The
calculation of {: is more subtle than the one of &, though, because its time derivative %Et can
only be identified with the tangential relative velocity at the contact, \7“ if the contact is sticking.
If it is sliding, the tangential elastic deformation is the microscopic origin of the sliding friction
force (3), and g; must be calculated accordingly.

The tangential force is a function of 5; and Vt. First one uses a tangential linear spring-dashpot
model with the tangential stiffness k; and damping coefficient 7; to calculate the test force

Ri(t) = —ki&i(t) — wVi(t). (18)

If the contact has just been formed, the test force is ﬁz‘(to) = — Vi (to).

Then one checks, whether the absolute value of this test force is smaller than the static friction
threshold. The formulas are particularly transparent, if the static and dynamic friction coeffi-
cient have the same value, ps = g = p. If

R ()] < pRa(t), (19)

the contact is regarded as sticking, and the test force is identified with the static friction force.
If the threshold is exceeded, however, the contact is sliding, and one should use the dynamic
friction (3). For the sake of computational efficiency, however, one simply rescales the absolute
value of the test force keeping its direction fixed. In short, the tangential force is given by

p o Kl s
RO = Z 0 (1% (8)], nRa(8)) (20)
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Having determined all contact forces one can update the center of mass velocities and angular
velocities of all particles. Hence one can calculate the relative velocities V(¢ + At/2) at all
contacts. This is needed for the update of the tangential spring.

In the sliding case the tangential elastic deformation should not increase. Moreover, the direc-
tion of the tangential force should then approach the one opposite to the tangential velocity.
Therefore Fazekas [26] updates the tangential displacement by first calculating a test displace-
ment

E(t+ At) = &(t) + Vi (t + At/2) AL. 1)

This is identified with the new tangential displacement, provided it does not give rise to an
elastic restoring force of the tangential spring with an absolute value larger than pXR,. In the
latter case, the test displacement is rescaled maintaining its direction unchanged:

(4 Ay = SLEAD

(22)
& (L + A)]

min (|§;‘(t+At)|,M>.

Kt

I have explained, how to calculate the tangential force for the special case that the normal
vector does not change its direction. In the general case Luding [15] projects &; into the current
tangential plane. In [26] a more complicated rotation into the current tangential plane is used.

2.4 Detachment Effect and Brake Failure

Eq.(15) shows that the collision time 7 and hence the simulation time step is proportional to
k~1/(+2) = As the phenomena one is interested in take place on much larger time scales, one
common simulation strategy has been to choose k£ much smaller than in real materials, thereby
allowing larger time steps. This seemed to be a good trade off for the artificially enlarged colli-
sion times. The restitution coefficient can be kept at a realistic value by choosing 7 accordingly.
Luding [27] showed that the artificial increase of 7 causes anomalously weak dissipation in
dense systems, a simulation artefact called detachment effect. If the collision time is enlarged so
much that it becomes comparable to the time between successive collisions (still much shorter
than the times one is interested in) then the dynamical behaviour of the system changes drasti-
cally. Instead of having many successive binary collisions, one gets clusters of several particles
overlapping at the same time.

Luding considers the simple example of a one dimensional equidistant arrangement of /V grains,
that move all with the same velocity v towards a wall, from which they are going to be reflected.
If the distance is much smaller than v7 then there is essentially a single multi-particle collision
of all grains. The whole cluster can be viewed as a single elastic particle with a total defor-
mation N¢,,.... The collision time of the cluster is then /N times the collision time of a binary
collision. For the linear spring-dashpot model this implies that the dissipated energy per parti-
cle is the same as in a single binary collision. By contrast, if the distance between the particles
initially was much larger than v7 then one gets a sequence of about N2 /2 binary collisions until
all particles are reflected. The dissipated energy per particle is significantly increased. This
example shows that dissipation is suppressed in dense systems, if one artificially increases 7 in
order to be able to simulate larger time intervals.

Soft particle molecular dynamics gives also rise to another artefact, the so-called brake failure
effect [28]. Consider two equal spheres of radius R that collide with initial relative velocity V)
under an angle v (Fig.2). We choose cartesian coordinates such that Vv points in z-direction.
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Fig. 2: Two spheres colliding under an angle 9. In soft particle MD they may penetrate each
other without being properly reflected (brake-failure artefact).

A braking function can be defined as the change of V, caused by the interaction between the
colliding spheres,

AV, / R, (1), 23)
te

where 1, is the time for which the spheres overlap. If they could freely penetrate each other
without feeling any interaction, they would overlap for a time

7o = 4R cos¥/|V?]. (24)

As long as 7 < Ty, the simulation gives correct results: The contact time is determined by the
collision time (15), t¢ ~ 7. Then the spheres are reflected from each other, i.e.

AV, o |V (25)

with geometrical factors depending on ¢). The braking function increases linearly with the initial
velocity.

However, for 7y < 7, the braking function behaves unphysically. The contact exists only for a
short time t; ~ 7. The integral (23) can be approximated by f R (t)dt =~ R, 70, where R, is a
mean force in z-direction. Using (24) we obtain: AV, o 1/|V(®|. This decrease of the braking
function with increasing initial velocity is meant by the term brake failure.

The transition between both regimes takes place at 7o /7 ~ 1, so that we obtain a critical velocity

for brake failure,
B 4R cos v

T

V. (26)

MD simulations of particle collisions exhibit an unrealistically small dissipation when the im-
pact velocity exceeds the critical velocity V... This artefact occurs e.g. for rapid shear flows [28].
It should be emphasized that it cannot be cured by choosing a smaller time step: The brake fail-
ure phenomenon has its origin in the penetrability of the particles, not in the discretization of
time.
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Fig. 3: A time step in MD is the cycle starting with the particle positions and velocities, from
which one obtains the elastic contact displacement f and relative velocities \7 These deter-
mine the contact forces R, from which one calculates the forces and torques F needed for the
equations of motion. In CD all relative velocities and contact forces are determined together by
making the time step of the equations of motion consistent with the constraints. The matrices H
and HT are explained in the text.

3 Contact Dynamics Simulations (CD)

3.1 General Remarks

This chapter is an excerpt of a recent introduction of the method for beginners [29], where also
further details and references can be found. The method is rather new [30].

Contact Dynamics is a discrete element method like Molecular Dynamics. However, it can han-
dle rigid particles and static frictional contacts without regularizing the graphs, Fig. 1. Hence
it is able to overcome some difficulties that arise in soft particle molecular dynamics. On the
other hand, by considering the particles as perfectly rigid, contact dynamics suppresses phe-
nomena caused by particle deformation. It represents the deformation of the granular medium
as a whole in an idealized way exclusively by particle rearrangements.

Imposing constraints requires implicit forces (constraint forces) which cannot be calculated
from the positions and velocities of the particles alone. The constraint forces are determined
such as to compensate all forces that would cause constraint-violating accelerations (see Fig.3).
Collisions of rigid particles give rise to discontinuous velocities during the time-evolution. In
such non-smooth mechanics [31,32] the use of second or higher order schemes for the numerical
integration of the motion is not beneficial and could even be problematic. Therefore an implicit
Euler integration is applied in our CD code:

B+ AL = 6t + %ﬁ(t—#At) At + O ((A1)?). 27)
Ft+At) = 7(t)+ 0+ At) At + O ((At)?). (28)

The forces F are calculated in each step such that the constraints remain fulfilled.
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Fig. 4: Two rigid particles with an incipient contact. A contact force R appears in a time step,
in which the gap g is closing (or, when it was already closed, if it is not opening).

3.2 The single contact case

We consider a pair of rigid spheres already in contact or with a small gap between them. They
are numbered 1 and 2 and are subject to constant external forces F*', F5*' acting on the centers
of mass (Fig. 4). It is useful to introduce generalized velocity and force vectors:

7, Fy Foxt

B N 0 5

V= |, Fo L, Feeo || (29)
(%) F: 2 F. 26 Xt
Gy T, 0

where F contains the interaction forces and torques, while F°* contains the external forces
(external torques are not taken into account here).

Volume exclusion and Coulomb friction may require a constraint force R, where we use the
convention that R acts on particle 2 while its reaction force —R acts on particle 1. The constraint
force R enters the equations of motion for the particle degrees of freedom in terms of interaction
forces ﬁz and interaction torques fi,

F=-R, F=R, T =-LxR, Th=LxR, (30)

where the vectors {1 and I point from the centers of mass to the expected contact point. Ac-
cording to (30), the generalized force vector F is a linear transformation of R,

— A =

F = HR. (31)

The relative velocity at the contact,

—

V=t 43 xbh— (5 +3 x0) (32)
is also linearly related to the generalized velocity vector:
V=H"V, (33)

where HT is the transpose of the matrix H. These two matrices describe the geometry and allow
to transform contact quantities into particle quantities and vice versa (see Fig.3). They are in
general not quadratic (in the present example H is a 12 x 3 matrix).

The equations of motion for the two particles read:

m1l 0 0 0
dV o= o - 0 L1 0 0
— =M ' (F +F™ M = 34
dt E+FT). 0 0 mpl 0 GY

0 0 0 I
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M-~ is the inverse of the generalized 12 X 12 mass matrix 1\71, which contains the masses and
moments of inertia of the particles (1 denotes the 3 x 3 unit matrix).
In order to determine the constraint force R, one transforms Eq. (34) into an equation for the
relative velocity V by applying HT (note that a term (dﬂT /dt) V describing the geometrical
change is neglected here, which is typically a good approximation) :

dv L d\_jfree
= R + 35
dt =M dt ’ (33)
. dV'ee TN p—1ext V! TTN-1H
with pr HM 'F*, and M " =H M H. (36)

qVfree /dt has the meaning of the acceleration without any interaction between the particles,
and M denotes the reduced mass matrix of the contact. M ™! has a simple form in the case of
spheres:

. 1 1
Ml=—i@i+—(1-7®i), (37)
my my
1 1 1 1 1 12 2
— ==, —=—4142z (38)
My mq mo my my Il I2

Here 77 denotes the unit vector perpendicular to the tangent plane, pointing from particle 1
towards particle 2. The tensorial product 77 @7 is the 3 X 3 matrix with elements n,n,. Eq. (37)
shows that normal and tangential components are not coupled for spheres.
Solving Eq.(35) for the contact force in the Euler-scheme (27) one obtains

. . \_7)new _ vfree,new
RV — N 39
At ) ( )
where according to Eq.(36)
ﬁfree,new _ \7 + I:ITM_IFeXtAt (40)

has the meaning of the new velocity if there was no interaction. Here and in the following the
superscript “new” refers to the value at time ¢ + At, while values of g, V and R without this
superscript are taken at time .

In order to determine the two unknowns, the contact force Rme% and the relative velocity vnew,
one has to combine the linear relation (39) with the volume exclusion and non-sliding con-
straints. This is done in three steps in the algorithm.

1. First we check whether the gap g remains positive after the time step At, if the interaction
between the particles is not taken into account, i.e. whether

g+ Vireenew A > () 41)

If condition (41) is fulfilled the incipient contact did not close during the time step so that
the contact force is zero, R™V = 0, and VeV = Vfreenew [f the left hand side of Eq. (41)
1s zero or negative, the algorithm continues with the second step.

2. In this step the algorithm makes an attempt to establish a non-sliding contact, i.e. we
require that the gap closes and that no slip occurs:

g+ VAL =0, V=0, (42)
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Therefore the new velocity is V™ = —(g/At)7i. This determines the contact force
Eq.(39):
qrew — _ Loy (iﬁ n \7&%7“”) . 43)
At~ \At

However, this contact force can only be accepted if it lies within the Coulomb cone |ﬁt| <
uRy,. If this does not hold, we have to give up the assumption of a non-sliding contact.
Then the contact will be a sliding one and R" is recalculated in the third step.

3. lior a sliding contact the first condition £42) remains valid, but the second one not. Then
Vie¥ must be determined together with R} from the following condition: The tangential
part of

= L (9 o 5 3t
new _ __— J = Amew ree,new 44
R oM ( i =V 4V ) (44)

must be equal to sliding friction, i.e.

\Inew
Vt

[Vpew|

Dnew __ new
:Rt - _II"LRH

(45)

There are only three unknowns, the normal component of Rne¥ and the tangential com-
ponents of V**V. The three equations (44) (one for each component) determine these
unknowns.

These three points form a contact law that in general provides the contact force in every time
step. It can be applied for colliding particles, but also for pre-existing contacts. In this respect
no distinction has to be made.

Eq.(42) implies that after the collision of the two spheres the gap is zero. The particles do
not bounce back: Their coefficient of restitution is zero. How nonzero restitution coefficients
can be implemented is described in [32]. In dense granular media it is justified to work with
a coefficient of restitution of zero, though: As they provide an enormous amount of collective
dissipation mechanisms due to rearrangements, frustrated rotations etc. a grain hitting such a
packing will hardly bounce back: The effective restitution coefficient is close to zero.

Due to practical reasons a slight change is recommended in the contact law [31], namely the
application of ¢gP* = max (g,0) instead of g in Egs. (43) and (44). This, in principle, makes
no difference because g should be non-negative. However, due to inaccurate calculations some
small overlaps can be created between neighboring particles. These overlaps would be imme-
diately eliminated in the first version of the inelastic contact law by applying a larger repulsive
force in order to satisfy the first equation (42). This self-correcting mechanism, however, has
the drawback that it pumps kinetic energy into the system, when thrusting the overlapping par-
ticles away from each other. With the application of ¢gP*® one avoids this. Moreover an already
existing overlap is not eliminated, only its further growth is inhibited. This can be used to
monitor the numerical inaccuracies of a CD-simulation.

Simulations may involve also certain confining objects (e.g. container, fixed wall, moving pis-
ton, rotating drum). Therefore the algorithm has to be able to handle not only sphere-sphere
contacts, but also sphere-plane and sphere-cylinder contacts. One can easily verify that the same
simple contact law can be applied as the one derived here for spheres, if planes and cylinders
with infinite moments of inertia are used (I, = o0).
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Fig. 5: A one dimensional array of spheres in contact.

3.3 Multi-contact systems

So far we have only discussed how to treat a single incipient or existing contact in the framework
of Contact Dynamics. However, the most interesting applications of CD involve dense granular
media where many particles interact simultaneously within a contact network that may span a
substantial part of the whole system.
A simple one-dimensional example is given in Fig. 5. Let us assume, that none of the contacts
has freshly formed in the last time step, so that all gaps g; and all relative velocities V; are zero,
but that the whole array will be accelerated or perhaps disrupted by some external forces acting
only on some far away particles of the chain which are not depicted in Fig. 5. Eq.(43) can be
used for the calculation of the constraint force at the i-th contact, but the role of the external
forces is now played by the constraint forces of the neighboring contacts. Replacing F;e"t by
—Iﬁ?ﬂv and F* by R2¥ in Eq.(40) one obtains
new 1 new new

R = B} (RE<Y + RiEY) (46)
where we used that the reduced mass is M = m/2 in this simple case. This is a discretized
Laplace equation which couples all constraint forces in the contact network. When replacing
ﬁf"t by the contact forces from neighboring particles in three dimensions, one should not forget
that they exert also torques T’f’“ and f;’“. They have to be included in the generalized vector
F*'in Eq.(29), where the two torques originally were set to zero.
The example Fig. 5 shows that using constraint forces has an important consequence: A contact
force depends also on adjacent contact forces that press the two particles together. Thus for a
compressed cluster of rigid particles the contact forces cannot be computed locally. Whereas
in the simple one-dimensional example of Eq.(46) the exact calculation of globally consis-
tent constraint forces is feasible, it becomes exceedingly cumbersom for large, complex three-
dimensional contact networks. There may even be more than one solution satisfying all con-
straints [33,34]. Different algorithms have been used to determine globally consistent constraint
forces (e.g. [33,35]), but in general one uses an iterative scheme (called the iterative solver). It
is applied in every time step before the implicit Euler integration can proceed one step further
with the newly provided forces.
This method works as follows. At each iteration step we update every existing or incipient
contact independently in the sense that a “new” contact force is calculated based on the contact
law for the one-contact case, presuming that the current forces of the neighboring contacts were
already the correct ones. The resulting force is stored for the given contact and a new contact
is chosen for the next update. In that way all the contact forces are updated one by one sequen-
tially. Of course, one update per contact (i.e. one iteration step) does not yet provide a global
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solution. Such iteration steps have to be repeated many times letting the forces relax accord-
ing to their neighborhood towards a globally consistent state. After satisfactory convergence is
reached the iteration loop can be stopped. With convergence we mean that a further update of
the contact forces gives only negligible changes, thus the constraint conditions are practically
fulfilled for the whole system. The applied number of iterations N; within one time step de-
pends on the accuracy of the convergence criterion [36,37]. Higher N; provide more accurate
forces but require larger computation time.
As an example let us return to the one-dimensional example, Eq.(46). If one associates a virtual
time step At* = At/N; with each of the IV; iteration steps performed within a single real time
step At of the simulation, the forces relax towards a consistent solution of the equations (46)
according to

RELA) R N g )+ R, @)
i.e. the change of R; per iteration step is equal to the difference between the left and right hand
side of the consistency equation (46). The virtual time evolution (47) is simply a discretized
one-dimensional diffusion equation [38] with diffusion constant

2

R
D x Ni—. 4
X IAt (48)

Also in three dimensions, the force consistency with the constraints spreads diffusively during
the iteration. For a system of linear size L convergence requires DAt > L? ~ (N'/?R)?, where
N 1is the number of particles in the system, which is assumed to be connected throughout, and
d is the space dimension. This implies

N; > N, (49)

The number of iterations needed to reach convergence of the constraint forces for a single time
step grows with the number of particles in the system.

Regarding the order of the update sequence within the list of (existing and incipient) contacts,
it is preferably random and different for each sweep. In this way one avoids any bias in the
information spreading. It has to be mentioned that the random sweep described here differs
from the well known random sequential update: While in the latter the choice of a contact is
independent of the previous choices (the same contact could be selected twice), the random
sweep selects each contact exactly once within one iteration step. We note that in contrast to
this sequential process, a simple parallel update would be unstable.

4 Comparison between CD and MD

(Based on [29].) The Contact Dynamics algorithm has been applied to investigate the physics
of dense granular media by more and more scientists over the last decade, but still Molecular
Dynamics is much wider known and often regarded as easier. This does not mean that Contact
Dynamics is less powerful. On the contrary, The two techniques have complementary strengths.

4.1 Computational effort

In this section we estimate the computing time 7o, needed for the simulation of a dense N-
particle system in d dimensions for a certain real time 7}, . This gives a certain guidance, for
what problems it is advantageous to use Contact Dynamics instead of Molecular Dynamics.
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Fig. 6: Domains where CD, respectively MD simulations are more efficient are separated by a
power law N4/¢.

In the derivation of the contact law changes of the matrix H were neglected. This is only
justified if the relative displacement of adjacent particles during one time step is small compared
to the particle size and to the radius of curvature of the surfaces in contact. This means that the
time step in contact dynamics must be a fraction of R/V, where V is a typical relative velocity
and R a typical radius of curvature. Each time step requires N; ~ N2/? force iterations, each
of which takes order NV computations. Hence the computational effort for a Contact Dynamics
simulation is

TED) N2/, V/R. (50)

comp

In molecular dynamics with elastic interactions modelled by a linear spring of stiffness k each
collision must be time resolved, so that a much shorter time step than in CD is needed. It
must be a fraction of the duration of a collision, /m/k, where m is the particel mass. The
computational effort per time step, however, scales only with the particle number N. Hence

TMD) o NTrea/k/m. (51)

comp

Putting this together we conclude that

(cD)
Leomp - npoga, JTV° (52)
7/(MD) LRZ

comp

Systems where this is smaller than 1 can in principle be simulated with CD more efficiently
than with MD, see Fig. 6.

myv? - . . T . .

Tqz 18 the ratio between a typical kinetic energy per particle and the elastic energy cost to
deform a particle substantially, i.e. on the scale of its radius. In most physical situations this
factor should be small, because in general the kinetic energy does not suffice to deform collision
partners substantially. In particular it is small for quasistatic systems of rigid particles. For such
systems it is advantageous to take the limit of infinite rigidity and to use CD instead of MD,
provided the particle number is not too large.

The factor N*/¢ o Nj is the price for simulating perfectly rigid particles. For large systems
with finite rigidity of the particles, MD costs less computing time than CD. However, if one
is willing to use CD with incomplete force relaxation, i.e. with fixed N; < N?/¢, the CD-

algorithm leads to pseudo-elastic behaviour, analogous to soft particle MD-simulations [38].
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Fig. 7: Localized shear zones in a three dimensional MD-simulation of the deformation of a
cylindrical granular packing laterally confined by an elastic membrane. At the top and bottom
there are rigid walls which move towards each other. The particle rotation speed is color coded.
It is strong in regions with high shear rate. From [26].

This involves sound propagation with finite speed and can be described by a damped wave

equation. Then Téfn?g ~ C@fn?,) even for large N.

4.2 Some recent applications

Contact Dynamics has been successfully applied to study the statistical properties of contact
forces in a granular packing under load. A topic which is currently intensively studied is the
non-uniqueness of realizations of force equilibrium in a dense frictional packing of rigid parti-
cles. Contact Dynamics is ideally suited to adress this question [34].

Fig.7 on the other hand shows a Molecular Dynamics simulation of a large three dimensional
system [26]. If the piston at the top is allowed to tilt one gets spontaneous symmetry breaking;
if it remains parallel to the bottom, the shear zones maintain the cylindrical symmetry. I expect
that a CD-simulation of this system would give the same result, but because of the large parti-
cle number (N = 27000) would require more computing time if pseudo-elasticity were to be
avoided. Indeed a comparative study [9] of a two dimensional packing similarly sheared as in
Fig.7 gives quantitative agreement of the MD- and CD-results: Particle elasticity turned out to
matter only, before the granular material yields.
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