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1 Introduction
This lecture deals with a particular implementation of the renormalization group (RG) idea:
Wilson’s non-perturbative numerical renormalization group (NRG) method for quantum im-
purity models [1]. The method was originally developed in the context of the Kondo model
of magnetic impurities (such as Fe or Mn) in non-magnetic metals (such as Cu, Au, Ag etc),
whose Hamiltonian is given by

HKM =
∑

k,µ

εk,µc
+
k,µck,µ + J ~S.~s0 (1)

Here, ~S represents the spin of the impurity (taken here to be a S = 1/2 for simplicity),
~s0 = f+

0,µ~σµνf0,ν , with repeated indices µ, ν =↑, ↓ summed over, is the conduction electron
spin-density at the impurity site with f0,µ =

∑
k ck,µ the local Wannier state. The model (1)

describes a S = 1/2 local moment interacting antiferromagnetically (J > 0) with the conduc-
tion electron spin-density at the impurity. The first term represents the kinetic energy, εk,µ, of
non-interacting conduction electrons with half-bandwidth D and Fermi level εF .

Before describing the specific RG transformation used by Wilson to solve the quantum mechan-
ical many-body problem represented by (1), it is useful to outline the general idea of the RG for
quantum mechanical systems. Consider a system described by a Hamiltonian H[K], depending
on a set of interaction parameters or coupling constants K = (K1, K2, . . . ). In the case of the
Kondo model, (1), there is initially only a single coupling constant K1 = J . Starting from
the bare Hamiltonian, H[K], one constructs a sequence of effective Hamiltonians, HN , N =
1, 2, . . . , describing the physics on successively lower energy scales ωN , N = 1, 2, . . . with
ω1 > ω2 > . . . . For example, in the case of the Kondo model, one could construct an effec-
tive Hamiltonian by integrating out conduction electron degrees of freedom close to the band
edges ±D so that the new effective Hamiltonian has a reduced band-width D′ = D − δD.
This repeated process of integrating out high energy degrees of freedom, will lead, however,
to effective Hamiltonians with additional interactions, not present in previous effective Hamil-
tonians. In addition, the existing interactions or couplings will acquire renormalized values
K ′. The renormalization group transformation, R, relates the effective Hamiltonians on suc-
cessive energy scales, HN+1 = R[HN ], or, equivalently, it relates the new to the old effective
couplings, [KN+1] = R[KN ]. As one is interested, in particular, in scale invariant behaviour,
one actually works with rescaled effective Hamiltonians, H̄N = HN/ωN , and dimensionless
or rescaled couplings (defined via the H̄N ). An important concept in the RG is that of fixed
points: H̄∗ = R[H̄∗]. In the course of the RG flow, the system may pass several unstable fixed
points before reaching its ground state fixed point in the limit N →∞. In the vicinity of fixed
points, the effective Hamiltonians usually take a simple form, with the deviations representing
interactions which can be either relevant (if they increase under R), irrelevant (if they decrease
under R) or marginal (if to linear order they are unchanged under R). Of particular interest
is the ground state fixed point and the leading irrelevant deviations about it. The ground state
fixed point tells us about the nature of the low energy excitation spectrum, the kind of “quasi-
particles” present and what quantum numbers they carry. The leading irrelevant deviations
about this fixed point describe interactions between quasi-particles [1–3].

The difficulty of this “RG program”, for a quantum mechanical system, is to have a sufficiently
accurate RG transformation in order to obtain the eigenvalues and eigenstates on all energy
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scales, from high energies down to the ground state. In an early analytic implementation of the
RG idea [4], Anderson calculated R perturbatively in the initially small dimensionless coupling
J̃ = J/D ¿ 1 - the so called “Poor Man’s” scaling approach. The calculation showed that the
running coupling J̃ increased with decreasing energy or increasing N . Clearly, once J̃ ∼ O(1),
this approach is no longer valid and so cannot pinpoint the nature of the ground state of the
Kondo model. Wilson’s breakthrough was to succeed in constructing an accurate RG transfor-
mation for the Kondo model which did not use perturbation theory in any running coupling.
This allowed a quantitative description of the crossover from the weak coupling behaviour at
high energies (corresponding to a free spin with unstable fixed point at J̃ = 0) to the strong-
coupling behaviour at low energies (corresponding to a fixed point with J̃ = ∞). Effectively, at
low energies, the impurity spin is bound into a “many-body singlet” involving all the electrons
in the system.

The outline of this lecture is as follows: quantum impurity models are introduced in Sect. 2
and the Anderson impurity and Kondo models are described. The formal mapping of these
models onto one dimensional models in k-space is outlined. Wilson’s NRG method is described
in Sect. 3, where we also indicate the relation between this method and the real-space RG
approaches for critical phenomena and the DMRG approach for 1-d quantum lattice models.
The latter is described in detail in the lecture of Schollwöck in this book. The application of the
NRG to thermodynamics, dynamics and transport properties is described in Sect. 4. An outline
of some recent developments using the NRG is given in Sect. 5, and, Sect. 6 summarizes with
possible future directions.

2 Quantum impurity models

Quantum impurity models describe systems where the many-body interaction (usually a Coulomb
or exchange interaction) acts at a single site, the “impurity”, and the impurity is coupled to a
large system, the heat bath, consisting of a macroscopically large number of non-interacting
particles. These particles can be either bosons (e.g. phonons, magnons, particle-hole pairs etc)
or fermions (e.g. electrons in the conduction band). The “impurity” may be a real impurity, such
as Fe impurities in Au, or a two-level atom coupled to the electromagnetic field, or, just a con-
fined region behaving like an artificial atom, as in the case of quantum dots. It may also simply
represent the lowest two quantum mechanical states of a system with a double-well potential,
as in the case of quantum tunneling between macroscopic fluxoid states in a superconducting
quantum interference device. The transfer of electrons between donor and acceptor molecules in
photosynthesis and other biological processes may also be approximately described in terms of
a two-state system coupled to environmental degrees of freedom. Concrete models describing
the above situations go under the names of (isotropic and anisotropic) single and multi-channel
Kondo models, the Anderson impurity model and the dissipative two-state system [5]. They
describe a large number of physical systems of current experimental and theoretical interest.
Quantum impurity models are also of relevance in the study of correlated lattice models, since
the latter are often well approximated, via the dynamical mean field theory, by a local impurity
model embedded in a medium which has to be determined self-consistently – see lecture by
Liebsch.

Interest in quantum impurities arose when magnetic impurities were found to be present, albeit
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Fig. 1: Resistivity minimum in two
samples of “pure” Au [6]. The ex-
pected behaviour of the resistivity for a
pure metal with some weak static dis-
order is a T 5 term due to phonons and
a saturation to a constant value, ρ0,
at T = 0 due to static disorder. The
former is seen in the experiment, but
at low temperature an additional log-
arithmically increasing contribution is
also found.

in very low concentrations, even in apparently very pure metals such as Au or Ag. In particular,
measurements of the resistivity of Au as early as the 1930’s showed an unexpected minimum at
low temperature (Fig. 1). The puzzle of the resistivity minimum was resolved by Kondo in 1964,
who showed that a small concentration cimp of magnetic impurities modelled by (1) gives rise to
an additional temperature dependent term in the resistivity of the form ρK = −cimp b ln (T/D),
which increases with decreasing temperature. The balance between the decreasing phonon con-
tribution and the increasing Kondo contribution gives rise to the observed resistivity minimum.
The logarithmic contribution to the resistivity, found by Kondo in perturbation theory, cannot
hold down to T = 0 as the total scattering remains finite in this limit (unitarity limit). Wilson’s
non-perturbative NRG provides a way to obtain the correct behaviour of the resistivity also at
low temperature (see Fig. 9). The next section describes the first step in this procedure for the
Anderson and Kondo impurity models.

Anderson and Kondo impurity models: linear chain form

V kd

εd

εF

Fig. 2: Schematic representation of the Anderson impurity
model. Conduction electrons in Bloch states |k〉 hybridize with
an impurity level, εd, below the Fermi level, εF , of a partially
filled conduction band (shaded region). The strength of the hy-
bridization matrix elements is Vkd and the Coulomb repulsion
on the impurity level is U . The impurity is singly occupied and
behaves like a Kondo spin S = 1/2 when the empty and doubly
occupied states are prohibited, i.e. provided εd ¿ εF and U is
sufficiently large.

The Anderson impurity model [3] is the prototype model of strongly correlated impurity sys-
tems. This was introduced in [7] as a microscopic model for local moment formation in non-
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magnetic metals. Its Hamiltonian, represented in Fig. 2, is given by

HAM = εdnd + Und↑nd↓ +
∑

k,µ=↑,↓
(Vkdc

+
kµdµ + H.c) +

∑

k,µ=↑,↓
εkc

+
kµckµ (2)

The first two terms describe the impurity, which, for simplicity, is represented here by a non-
degenerate s-level of energy εd. Electrons in the local level are subject to a Coulomb repulsion
U which acts between spin-up and spin-down electrons. The local level hybridizes with the
Bloch states of a non-interacting s-wave conduction band, the last term in HAM , with amplitude
Vkd. The properties of the model are determined by the hybridization function

∆(ω) = π
∑

k

|Vkd|2δ(ω − εk), (3)

which, like the conduction density of states ρ(ω) =
∑

k δ(ω − εk), will in general be a com-
plicated function of energy. In cases where the interest is in the very low energy physics, it is
a good approximation to set ∆(ω) ≈ ∆(εF ) ≡ ∆. In applications to pseudogap systems [8] or
to effective quantum impurities in dynamical mean field theory, the full frequency dependence
has to be retained.
For a numerical treatment, it is useful to reformulate the Anderson model in the form of a linear
chain model [9]. This allows the model to be iteratively diagonalized by a procedure to be
described in Sect. 3. We first notice that the impurity state in the Anderson model hybridizes
with a local Wannier state |0, µ〉 = f+

0,µ|vac〉, with |vac〉 the vacuum state, and f+
0,µ given by

V f+
0,µ =

∑

k

Vkdc
+
k,µ. (4)

The value of V follows from the normalization {f0,µ, f
+
0,µ} = 1

V = (
∑

k

|Vkd|2)1/2. (5)

Using the above local state one can apply the Lanczos procedure (Appendix A) for tridiagonal-
izing a Hermitian operator, such as Hc, to obtain

Hc =
∑

k,µ

εkc
+
k,µck,µ →

∞∑
µ,n=0

[εnf+
n,µfn,µ + λn(f+

n,µfn+1,µ + H.c.)] (6)

with site energies, εn, and hoppings, λn, depending only on the dispersion εk and hybridization
matrix elements Vkd through the hybridization function ∆(ω) [9]. The Anderson model then
takes the linear chain form

HAM = εdnd + Und↑nd↓ + V
∑

µ

(f+
0,µdµ + d+

µ f0,µ)

+
∞∑

µ,n=0

[
εnf+

n,µfn,µ + λn(f+
n,µfn+1,µ + f+

n+1,µfn,µ)
]

(7)

depicted in Fig. 3. Although, formally, this model looks like the one-dimensional real-space
models treated by the DMRG method [10] in the lecture of Schollwöck, the interpretation here
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Fig. 3: The linear chain form of the Anderson model (7). HU = εd + Und,↑nd,↓. The “site
energies” εn and “hoppings” λn follow from ∆(ω).

is not in terms of electrons hopping on a one-dimensional lattice in real-space. Instead, as will
become clearer in Sect. 3, each successive site added along the chain corresponds to adding
lower energy degrees of freedom, measured relative to the Fermi level. By considering longer
chains one can then access lower energies.
The same procedure can be used to reformulate any quantum impurity model in terms of an
impurity site with local interactions attached to a one-dimensional chain of non-interacting
sites. For example, the Kondo model (1) can be rewritten as

HKM = J ~S.~s0 +
∞∑

µ,n=0

[
εnf

+
n,µfn,µ + λn(f+

n,µfn+1,µ + f+
n+1,µfn,µ)

]
(8)

A zeroth order (high energy) approximation to the spectrum of the Anderson model can be
obtained by considering just the coupling of the n = 0 Wannier state to the impurity and
neglecting all others,

HAM ≈ H0 = εdnd + Und↑nd↓ + V
∑

µ

(f+
0,µdµ + d+

µ f0,µ) (9)

There are 16 many-electron states |nd, n0〉, which can be classified by the conserved quantum
numbers of total electron number Nel, total z-component of spin Stot

z and total spin ~S. Us-
ing these symmetries we can diagonalize the block matrices H0

Ne,S,Sz
to obtain the many-body

eigenstates |Nel, S, Sz, r〉 and the corresponding eigenvalues. For example, in the product basis
|nd〉|n0〉, the Hamiltonian for Ne = 1, S = 1/2, Sz = ±1/2 is given by

HNe=1,S=1/2,Sz=±1/2 =

(
εd V

V 0

)

with eigenvalues

E± = (εd ±
√

ε2
d + 4V 2)/2

Proceeding similarly for the other Hilbert spaces, we find that for the particle-hole symmetric
case εd = −U/2 in the strong correlation limit U À V 2, the spectrum separates into two groups
of states, one group of low energy states lying close to the (singlet) ground state with spacings
O(V 2/U) and one group of high energy states lying at energies O(U/2) higher and also split
by O(V 2/U). This limit corresponds to a singly occupied impurity level effectively behaving
as a S = 1/2. In fact, the 8 lowest states correspond to those obtained from a zeroth order
approximation to the spectrum of the Kondo model via

HKM ≈ H0 = J ~S.~s0 =
J

2
[(~S + ~s0)

2 − ~S2 − ~s2
0]. (10)
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The Kondo model is therefore the low energy effective model of the Anderson model in the
limit of strong correlations and single occupancy. By comparing the splitting of the two lowest
levels in the Kondo model, the singlet and triplet states, with the corresponding splitting of the
same levels in the Anderson model one finds the relation between the bare parameters of the
models (for the symmetric case) to be J = 8V 2/U . Slightly away from particle-hole symmetry,
but still in the limit of large U , the relation becomes J = 2V 2( 1

U+εd
− 1

εd
), in agreement with

that obtained from the Schrieffer-Wolff transformation [3].
Within the above zeroth order approximation of the Kondo model, excitations are unrenormal-
ized. The singlet-triplet excitation takes the bare value J . The key ingredient of Wilson’s NRG,
to be discussed in the next section, is a controlled procedure for adding the remaining states
n = 1, 2, . . . neglected in the above approximation. As we shall see in the calculation of dy-
namical quantities below, this leads to a drastic renormalization of the spin and single-particle
excitations, such that the relevant excitations of the Kondo model are not on the bare scale J but
on the Kondo scale TK = D(ρJ)1/2 exp(−1/ρJ), where ρ = 1/2D is the density of conduction
states (e.g., see Fig. 7-8 in Sect. 3). One can interpret this large renormalization J → TK as a
renormalization of a bare tunneling amplitude (J) due to the dissipative effects of the bath of
conduction electrons.

3 Wilson’s numerical approach

Wilson’s formulation of the RG for the Kondo model is similar in spirit to Anderson’s scaling
method. The main difference lies in the non-perturbative construction of the RG transformation
using a numerical representation of the effective Hamiltonians. The scaling approach uses
perturbation theory in the initially small dimensionless coupling (J/D) to construct such a
transformation, but since J/D increases with decreasing energy scale this approach eventually
becomes inaccurate. In the Wilson approach the RG transformation is perturbative only via a
small parameter Λ−1/2 < 1 which is related to the momentum rescaling factor Λ > 1. The
accuracy of the transformation is the same at each step and is independent of the size of the
running couplings. For this reason it gave the first correct description of the crossover from the
weak coupling to the strong coupling regime of the Kondo model.

Separation of scales

In the Kondo problem, as in other quantum impurity problems, the behaviour of the system
changes qualitatively over many energy scales as it passes through a crossover between fixed
points (e.g. from behaviour characteristic of a well defined magnetic moment at high tempera-
ture to behaviour characteristic of a Fermi liquid at temperatures below the crossover scale). In
order to describe this crossover the idea is to separate out the many energy scales in the problem,
which arise from the conduction band [−D, +D], and to set up a procedure for treating each
scale in turn. We henceforth set D = 1 and assume a constant density of states ρ(εk) = 1/2D.
A separation of energy scales is achieved by discretizing the conduction band into positive and
negative energy intervals, D+

n = [Λ−(n+1), Λ−n] and D−
n = [−Λ−n,−Λ−(n+1)], n = 0, 1, . . . ,

about the Fermi level εF = 0 as shown in Fig. 4. By using
∑

k F (k) =
∫ +1

−1
ρ(εk)dεkF (εk) and

working in the energy representation ck(ε),µ → ρ(εk)
−1/2cε,µ|ε=εk

, we can carry out manipula-
tions on the Kondo Hamiltonian (our derivations will be for a 1-dimensional dispersion εk, but
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−Λ0 −Λ−1
+Λ−1 +Λ0−Λ−2

+Λ−2

Fig. 4: Logarithmic discretization of the conduction band about the Fermi level εF = 0

it can be generalized to a 3-dimensional dispersion εk: see Appendix A of [9]) to obtain,

HKM =

∫ +1

−1

dε ε c+
ε,µcε,µ + Jρ

∫ +1

−1

dε

∫ +1

−1

dε′ c+
ε,µ~σµ,ν cε′,ν .~S

︸ ︷︷ ︸
Jf+

0,µ~σµνf0,ν .~S

,

=

∫ +1

−1

dε ε c+
ε,µcε,µ + Jf+

0,µ~σµνf0,ν .~S, (11)

where,

f0µ =
1√
2

∫ +1

−1

dε cε,µ (12)

is the Wannier state at the impurity.

Logarithmic discretization approximation
Most of the conduction electron states in (11) turn out to be irrelevant as far as impurity prop-
erties are concerned. One therefore uses the logarithmic discretization approximation to select
just a subset of discrete states (which we justify below). Specifically, this approximation con-
sists of choosing from each interval D±

n just one state, the average electron state

c−n,µ ∼
∫ −Λ−(n+1)

−Λ−n

dε cε,µ

and the average hole state

c+n,µ ∼
∫ +Λ−n

+Λ−(n+1)

dε cε,µ

These states have energies

ε±n = ±1

2
(Λ−n + Λ−(n+1)) = ±1

2
Λ−n(1 + Λ−1) (13)

Of all the states one can construct in each interval D±
−n, these are the states which are most

localized near the impurity [9]. The infinite number of states p = 1, 2, . . . neglected in each
interval D±

n are required to be orthogonal to the states defined above. This suggests that the
states neglected p = 1, 2, . . . will be centred at sites away from the impurity. A more precise
argument shows that they are centred at distances r ∼ Λp from the impurity and that they only
couple indirectly to the impurity (for the justification see Appendix B). Consequently they can
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be neglected for the calculation of impurity properties. We therefore arrive at the discretized
Kondo Hamiltonian

H ≈
∞∑

n=0

(ε−nc
+
−n,µc−n,µ + ε+nc

+
+n,µc+n,µ) + Jf+

0,µ~σµνf0,ν .~S (14)

which as in (8) can be put into the linear chain form

H =
1

2
(1 + Λ−1)

∞∑
n=0

Λ−n/2(f+
n,µfn,µ + f+

n+1,µfn,µ) + Jf+
0,µ~σµνf0,ν .~S. (15)

Here, we have used the explicit form of the Lanczos coefficients εn, λn appearing in (8) which
were calculated analytically in [1] for a logarithmically discretized conduction band: εn = 0
and λn ≈ 1

2
(1 + Λ−1)Λ−n/2, n >> 1. This form of the Hamiltonian provides a clear separation

of the energy scales 1
2
(1 + Λ−1)Λ−n/2, n = 1, 2, . . . in H and allows the diagonalization of the

Hamiltonian in a sequence of controlled steps, each step corresponding to adding an orbital fn,µ

which is a relative perturbation of strength Λ−1/2 < 1. Although, formally, we could obtain
in (8) the linear chain form of the Kondo model without using the logarithmic discretization
approximation, in practice, the decay of the coefficients λn, and hence the convergence of the
method, is only guaranteed for such a discretization.

RG transformation
A RG transformation relating effective Hamiltonians on successive energy scales Λ−n/2 and
Λ−(n+1)/2 can be set up as follows. First, H in (15) is truncated to N orbitals to give HN , whose
lowest scale is DN = 1

2
(1+Λ−1)Λ−(N−1)/2. In order to look for fixed points we define rescaled

Hamiltonians H̄N ≡ HN/DN such that the lowest energy scale of H̄N is always of O(1):

H̄N = Λ(N−1)/2[
N−1∑
n=0

Λ−n/2(f+
n,µfn,µ + f+

n+1,µfn,µ) + J̃f+
0,µ~σµνf0,ν .~S], (16)

J̃ =
2Jρ

1
2
(1 + Λ−1)

, (17)

from which we can recover H as

H = lim
N→∞

1

2
(1 + Λ−1)Λ−(N−1)/2H̄N . (18)

The sequence of rescaled Hamiltonians H̄N satisfies the recursion relation

H̄N+1 = Λ1/2H̄N + (f+
N,µfN+1,µ + f+

N+1,µfN,µ), (19)

and allows a RG transformation T to be defined:

H̄N+1 = T [H̄N ] ≡ Λ1/2H̄N + (f+
N,µfN+1,µ + f+

N+1,µfN,µ)− ĒG,N+1 (20)

with ĒG,N+1 the ground state energy of H̄N+1. In fact T defined in (20) does not have fixed
points since it relates a Hamiltonian H̄2n with an odd number of orbitals N = 0, 1, . . . 2n to a
Hamiltonian H̄2n+1 with an even number of orbitals N = 0, 1, . . . 2n + 1 or vice versa. The
even/odd spectra do not match for the Kondo model . However, R = T 2, can be defined as the
RG transformation and this will have fixed points, a set of even N fixed points and a set of odd
N fixed points:

H̄N+2 = R[H̄N ] ≡ T 2[H̄N ] (21)
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5

H0

f f f f f
1 2 3 4

Fig. 5: Iterative diagonalization scheme for H , starting with H0 and then adding successive
orbitals f1, f2, . . . .

Iterative diagonalization scheme
The transformation R relates effective Hamiltonians HN = DNH̄N and HN+1 = DN+1H̄N+1

on decreasing scales DN > DN+1. It can be used to iteratively diagonalize the Kondo Hamilto-
nian by the following sequence of steps:

1. the local part
H̄0 = Λ−1/2 J̃ f+

0,µ~σµνf0,ν .~S = Λ−1/2 J̃ ~s0.~S, (22)

which contains the many-body interactions, is diagonalized (the “zeroth” order step de-
scribed in Sect. 2),

2. assuming that H̄N has been diagonalized,

H̄N =
∑

λ

ĒN
λ |λ〉〈λ| (23)

we add a “site” and use (20) to set up the matrix for H̄N+1 within a product basis

|λ, i〉 = |λ〉N |i〉N+1 (24)

consisting of the eigenstates |λ〉N of H̄N and the 4 states |i〉N+1 of the next orbital along
the chain (i.e. |i〉N+1 = |0〉, | ↑〉, | ↓〉, | ↑↓〉). The resulting matrix

〈λ, i|H̄N+1|λ′, i′〉 = Λ1/2δi,i′δλ,λ′Ē
N
λ

+ (−1)Ne,λ′ 〈λ|f+
N,µ|λ′〉〈i|fN+1,µ|i′〉

+ (−1)Ne,λ〈i|f+
N+1,µ|i′〉〈λ|fN,µ|λ′〉,

with Ne,λ, Ne,λ′ the number of electrons in |λ〉, |λ′〉 respectively, is diagonalized and the
procedure is repeated for the next energy shell as depicted in Fig. 5. Since H̄N is al-
ready diagonalized, the off-diagonal matrix elements, involving N〈λ|fN,µ|λ′〉N , can be
expressed in terms of the known eigenstates of H̄N (see [9] for explicit expressions).

Truncation
In practice since the number of many-body states in H̄N grows as 4N it is not possible to retain
all states after about N = 5. For N > 5 only the lowest 1000 or so states of H̄N are retained.
The truncation of the spectrum of H̄N restricts the range of eigenvalues in HN = DNH̄N to
be such that 0 ≤ EN

λ ≤ KDN where K = K(Λ) depends on Λ and the number of states
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retained. For 1000 states and Λ = 3, K(Λ) ≈ 10. However, eigenvalues below DN are only
approximate eigenvalues of the infinite system H , since states with energies below DN are
calculated more accurately in subsequent iterations N +1, N +2, . . . . Therefore the part of the
spectrum of HN which is close to the spectrum of H is restricted to DN ≤ EN

λ ≤ K(Λ)DN .
This allows the whole spectrum of H to be recovered by considering the spectra of the sequence
of Hamiltonians HN , N = 0, 1, . . . . In this way the many–body eigenvalues and eigenstates
are obtained on all energy scales. Due to the smallness of the perturbation (of O(Λ−1/2) < 1)
in adding an energy shell to go from HN to HN+1, the truncation of the high energy states turns
out, in practice, to be a very good approximation.

Comparison with real space RG methods

Real space RG methods have been used very successfully to investigate second order phase
transitions [11]. In these methods, the form of the effective Hamiltonians, HN , is such that only
a small number of couplings (e.g. nearest-neighbour and next-nearest-neighbour couplings in
the case of the 2D Ising model) is retained during the RG procedure. Despite this, highly ac-
curate results can be obtained for critical properties. The reason for this is that second order
critical points are governed by just a few relevant couplings, so an effective Hamiltonian re-
taining just these couplings is sufficient to describe the critical behaviour. In contrast, for the
Kondo model, and, for quantum impurity models in general, the interest is in obtaining in-
formation about the many-body eigenstates and eigenvalues on all energy scales and not just
close to a particular fixed point where simplifying assumptions about the effective Hamiltonian
might hold. Consequently, a general form of the effective Hamiltonians, including relevant and
irrelevant couplings, is required in order to follow the behaviour of the system as it flows via
various unstable fixed points to the stable fixed point describing the interacting quantum me-
chanical groundstate. Such a general form is possible in the Kondo calculation as a result of the
numerical representation of the HN .

Comparison with DMRG

The DMRG method, described in the lecture Schollwöck, differs from the NRG approach used
in the Kondo calculation in several ways. The most important, and the reason for its success as
applied to one-dimensional lattice models, is the criterion for choosing the basis states of the
subsystems (the “block”, HN in the Kondo calculation) used to extend the size of the system
(the “superblock”, HN+1 in the Kondo calculation). These are chosen according to their weight
in a reduced density matrix built from a few eigenstates of the larger system (in the Kondo
calculation this reduced density matrix would be ρred

N =
∑

i〈i|ρN+1|i〉 where |i〉 are the states
of the N + 1’th site and ρN+1 is the density matrix of HN+1). That is, the states retained in the
subsystems (similar to the lowest states retained in H̄N in the Kondo calculation) are in this case
not necessarily the lowest energy states, but they are the states which couple most strongly, in
the sense of having large eigenvalues in the reduced density matrix describing the subsystem, to
the ones of interest, the target states of the larger system (in the Kondo calculation these might
be taken to be the lowest few eigenstates of H̄N+1). The procedure gives highly accurate results
for these target states, and therefore improves on real space NRG methods.
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4 Calculation of physical properties
Applications of the NRG to quantum impurity models fall into three areas: analysis of fixed
points , calculation of thermodynamics and calculation of dynamic and transport properties.
Tha analysis of fixed points is important to gain a conceptual understanding of the model and
for accurate analytic calculations in the vicinity a fixed point (e.g. near the groundstate). The
ability of the method to yield thermodynamic, dynamic and transport properties makes it very
useful for interpreting experimental results.

Fixed Points
From (21), a fixed point H∗ of R = T 2 is defined by

H∗ = R[H∗]. (25)

Proximity to a fixed point is identified by ranges of N , N1 ≤ N ≤ N2, where the energy levels
ĒN

p of H̄N are approximately independent of N : ĒN
p ≈ Ēp for N1 ≤ N ≤ N2. A typical energy

level flow diagram showing regions of N where the energy levels are approximately constant is
shown in Fig. 6 for the anisotropic Kondo model (AKM) [12]:

HAKM =
∑

kµ

εkc
+
kµckµ +

J⊥
2

(S+f+
0↓f0↑ + S−f+

0↑f0↓) +
J‖
2

Sz(f
+
0↑f0↑ − f+

0↓f0↓) (26)

There is an unstable high energy fixed point (small N ) and a stable low energy fixed point
(large N ). The low energy spectrum is identical to that of the isotropic Kondo model at
the strong coupling fixed point J = ∞ in [1] (e.g. the lowest single particle excitations in
Fig. 6, η1 = 0.6555, η2 = 1.976 agree with the Λ = 2 results of the isotropic model in
[1]). The crossover from the high energy to the low energy fixed point is associated with the
Kondo scale TK . Spin-rotational invariance, broken at high energies, is restored below this
scale (e.g. the j = 0 states with Sz = 0 and Sz = ±1 become degenerate below TK and can be
classified by the same total spin S as indicated in Fig. 6). Analytic calculations can be carried
out in the vicinity of fixed points by setting up effective Hamiltonians Heff = H∗ +

∑
λ ωλOλ,

where the leading deviations Oλ about H∗ can be obtained from general symmetry arguments.
This allows, for example, thermodynamic properties to be calculated in a restricted range of
temperatures, corresponding to the restricted range of N where H̄N can be described by a
simple effective Hamiltonian Heff . In this way Wilson could show that the ratio of the impurity
susceptibility, χimp, and the impurity contribution to the linear coefficient of specific heat, γimp,
at T = 0, is twice the value of a non-interacting Fermi liquid: R =

4π2χimp

3γimp
= 2. We refer the

reader to the detailed description of such calculations in [1,9], and we turn now to the numerical
procedure for calculating thermodynamics, which can give results at all temperatures, including
the crossover regions.

Thermodynamics
Suppose we have diagonalized exactly the Hamiltonian for a quantum impurity model such as
the Kondo model and that we have all the many-body eigenvalues Eλ and eigenstates |λ〉:

H =
∑

λ

Eλ|λ〉〈λ| ≡
∑

λ

EλXλλ. (27)
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Fig. 6: (a) The lowest rescaled energy levels of the AKM for J‖ = 0.443 and J⊥ = 0.01. The
states are labeled by conserved pseudospin j and total Sz [12]. In (b) the static susceptibility
of the Anderson impurity model for U/π∆ = 6, εd/∆ = −5 (full curve) is shown. The symbols
are from the universal susceptibility curve for the isotropic Kondo model (taken from Table V
of [9]), which agrees with the low temperature susceptibility of the Anderson model.

We can then calculate the partition function

Z(T ) ≡ Tr e−H/kBT =
∑

λ

e−Eλ/kBT , (28)

and hence the thermodynamics via the impurity contribution to the free energy Fimp(T ) =
−kBT ln Z/Zc, where Zc = Tr e−Hc/kBT is the the partition function for the non-interacting
conduction electrons. In the NRG procedure we can only calculate the ”partition functions” ZN

for the sequence of truncated Hamiltonians HN :

ZN(T ) ≡ Tr e−HN/kBT =
∑

λ

e−EN
λ /kBT =

∑

λ

e−DN ĒN
λ /kBT (29)

We will have ZN(T ) ≈ Z(T ) provided

1. we choose kBT = kBTN ¿ EN
max = DNK(Λ) so that the contribution to the partition

function from excited states EN
λ > DNK(Λ), not contained in ZN , is negligible, and

2. the truncation error made in replacing H by HN in equating (28) and (29) is small. This
error has been estimated in [9] to be approximately Λ−1DN/kBTN .

Combining these two conditions requires that

1

Λ
¿ kBTN

DN

¿ K(Λ). (30)

The choice kBT = kBTN ≈ DN is reasonable and allows the thermodynamics to be calculated
at a sequence of decreasing temperatures kBTN ∼ DN , N = 0, 1, . . . from the truncated parti-
tion functions ZN . The procedure is illustrated in Fig. 6 for the impurity static susceptibility of
the Anderson impurity model

χimp(T ) =
(gµB)2

kBT

[
1

Z
Tr (Stot

z )2e−H/kBT − 1

Zc

Tr (Stot
z,c)

2e−Hc/kBT

]
.
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Dynamic properties
We consider now the application of the NRG method to the calculation of dynamic properties of
quantum impurity models [13, 14]. For definiteness we consider the Anderson impurity model
and illustrate the procedure for the impurity spectral density ρd,µ(ω, T ) = − 1

π
ImGd,µ(ω, T ),

with

Gd,µ(ω, T ) =

∫ +∞

−∞
d(t− t′)eiω(t−t′)Gd,µ(t− t′) (31)

Gd,µ(t− t′) = −iθ(t− t′)〈[dµ(t), d+
µ (t′)]+〉% (32)

with % the density matrix of the system.
Suppose we have all the many-body eigenstates |λ〉 and eigenvalues Eλ of the Anderson impu-
rity Hamiltonian H . Then the density matrix, %(T ), of the full system at temperature kBT =
1/β can be written

%(T ) =
1

Z(T )

∑

λ

e−βEλ|λ〉〈λ|, (33)

and the impurity Green’s function can be written in the Lehmann representation as

Gd,µ(ω, T ) =
1

Z(T )

∑

λ,λ′
|〈λ|dµ|λ′〉|2 e−Eλ/kBT + e−Eλ′/kBT

ω − (Eλ′ − Eλ)
(34)

and the corresponding impurity spectral density ρd,µ as

ρd,µ(ω, T ) =
1

Z(T )

∑

λ,λ′
|Mλ,λ′|2(e−Eλ/kBT + e−Eλ′/kBT )δ(ω − (Eλ′ − Eλ)) (35)

with Mλ,λ′ = 〈λ|dµ|λ′〉.
Consider first the T = 0 case (T > 0 is described in the next section), then

ρd,µ(ω, T = 0) =
1

Z(0)

∑

λ

|Mλ,0|2δ(ω+(Eλ−E0))+
1

Z(0)

∑

λ′
|M0,λ′|2δ(ω−(Eλ′−E0), (36)

with E0 = 0 the ground state energy. In order to evaluate this from the information which
we actually obtain from an iterative diagonalization of H , we consider the impurity spectral
densities corresponding to the sequence of Hamiltonians HN , N = 0, 1, . . . ,

ρN
d,µ(ω, T = 0) =

1

ZN(0)

∑

λ

|MN
λ,0|2δ(ω + EN

λ ) +
1

ZN(0)

∑

λ′
|MN

0,λ′|2δ(ω − EN
λ′ ). (37)

From the discussion on the spectrum of HN in the previous section, it follows that the ground-
state excitations of HN which are representative of the infinite system H are those in the range
DN ≤ ω ≤ K(Λ)DN . Lower energy excitations and eigenstates are calculated more accurately
at subsequent iterations, and higher energy excitations are not contained in HN due to the elim-
ination of the higher energy states at each N . Hence, for fixed N , and provided that the matrix
elements MN

0,λ′ are also approximately those of the infinite system M0,λ we have

ρN
d,µ(ω, T = 0) ≈ ρd,µ(ω, T = 0) (38)
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Fig. 7: (a) The impurity spectral density for the Anderson impurity model for U/π∆ = 6 and
different local level positions. The Kondo resonance for the case εd = −U/2 is shown in more
detail in (b). The vertical lines in the inset show the sequence of energies ω = 2ωN at which the
spectral density is calculated and demonstrates the ability of the method to resolve low energy
scales.

provided that we choose ω ≈ ωN ≡ kBTN to lie in the range described by HN . A typical
choice is ω = 2ωN for Λ = 2. This allows ρd,µ(ω, T = 0) to be calculated at a sequence of
decreasing frequencies ω = 2ωN , N = 0, 1, . . . from the quantities ρN

d,µ. In practice we are not
interested in the discrete spectra ρN

d,µ(ω) =
∑

λ wN
λ δ(ω − EN

λ ) of the Hamiltonians HN but in
continuous spectra which can be compared with experiment. Smooth spectra can be obtained
from the discrete spectra by replacing the delta functions δ(ω − EN

λ ) by smooth distributions
PN(ω − EN

λ ). A natural choice for the width ηN of PN is DN , the characteristic scale for
the energy level structure of HN . Two commonly used choices for P are the Gaussian and
the Logarithmic Gaussian distributions [13–15]. A peak of intrinsic width Γ at frequency Ω0

will be well resolved by the above procedure provided that Ω0 ¿ Γ, which is the case for the
Kondo resonance and other low energy resonances. In the opposite case, the low (logarithmic)
resolution at higher frequencies may be insufficient to resolve the intrinsic widths and heights
of such peaks. Usually such higher frequency peaks are due to single-particle processes and
can be adequately described by other methods (exceptions include interaction dominated fea-
tures in the Ohmic two-state system, see below, and in strongly correlated lattice models in
high dimensions [16]). In both cases, Ω0 ¿ Γ and Ω0 À Γ, the positions and intensities of
such peaks is given correctly. An alternative procedure for obtaining smooth spectra, which
in principle resolves finite frequency peaks with the same resolution as the low energy peaks,
has been proposed in [17]. This involves a modified discretization of the conduction band with
energies ±1,±Λ−z,±Λ−z−1, . . . instead of the usual discretization ±1,±Λ−1,±Λ−2, . . . . By
considering all z between 0 and 1 one recovers a continuous spectrum without the need to use a
broadening function. The procedure requires diagonalizing H for many values of z. It has also
proved useful for carrying out thermodynamic calculations at large Λ [18].

How accurate is the NRG for dynamic properties ? In Fig. 7 we show results for T = 0
spectral densities of the Anderson impurity model [14]. A good measure of the accuracy of the
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Fig. 8: The T = 0 longitudinal spin-relaxation function, S(ω), for (a) the Anderson impurity
model for U/π∆ = 6 and εd = −5∆, and (b) the AKM for increasing values of the coupling
ρJ‖ corresponding to decreasing values of the dissipation strength α in the equivalent Ohmic
two-state system [12] (∆r = TK).

procedure is given by the Friedel sum rule, a Fermi liquid relation which states that [3]

ρd,µ(0) =
1

π∆
sin2(πnd/2), nd =

∫ 0

−∞
dω ρd,µ(ω) (39)

The integrated value of nd, for the spectral density shown in Fig. 7, is 0.991. Including the
renormalization in ∆ due to the discretization, as discussed in [9], gives ρd,µ(0) = 32.779. The
value extracted directly from Fig. 7 is ρd,µ(0) = 32.31 resulting in a 1.4% error, most of which
is due to using the integrated value of nd over all energy scales. Calculating nd solely from the
low energy part of the spectrum (e.g. as the limit nd(T → 0) in a thermodynamic calculation)
further reduces this error. More important, however, is that the error remains small independent
of the interaction strength 0 ≤ U ≤ ∞.
Two-particle Green functions and response functions can also be calculated. Fig. 8 shows the
longitudinal spin relaxation function

S(ω) = − 1

π

Imχzz(ω)

ω
, χzz = 〈〈Sz; Sz〉〉

of the Anderson impurity model and of the AKM [12]. The former always exhibits incoherent
spin dynamics. It is interesting that the latter can exhibit coherent spin dynamics for sufficiently
large ρJ‖.

Transport properties
The transport properties of quantum impurity models, require knowledge of both the frequency
and temperature dependence of the impurity spectral density. The resistivity ρ(T ) of conduction
electrons scattering from a single Anderson impurity, for example, is given by the expression

ρ(T )−1 = −e2

∫ +∞

−∞
τtr(ω, T )

∂f

∂ω
dω (40)
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Fig. 9: (a) The scaled resistivity ρ(T )/ρ(0) and (b) the thermopower S(T ) of the Anderson
impurity model for U/π∆ = 4 and two values of the local level position in the Kondo regime
[14].

where the transport time τtr(ω, T ) is related to the impurity spectral density by τ−1
tr (ω, T ) =

∆ρd,µ(ω, T ) and ∆ is the hybridization strength. Similar expressions hold for the other transport
coefficients.
The procedure for calculating finite temperature dynamical quantities, like ρd,µ(ω, T ), required
as input for calculating transport properties, is similar to that for T = 0 dynamics described
above [14]. The spectral density ρd,µ(ω, T ) at fixed temperature T is evaluated as above at
frequencies ω ≈ 2ωN , N = 0, 1, . . . , M until 2ωM becomes of order kBT . To calculate the
spectral density at frequencies ω < kBT a smaller “cluster” is used. This is done because when
kBT is larger than the frequency at which the spectral density is being evaluated, it is the excited
states of order kBT contained in previous clusters that are important and not the excitations very
much below kBT .
Results for the resistivity and thermopower of the Anderson impurity model are shown in Fig. 9.
The method gives uniformly accurate results at high and low temperatures, as well as correctly
describing the crossover region T ≈ TK (detailed comparisons of the resistivity with known
results at high and low temperature can be found [14]). These resistivity calculations, and
similar conductance calculations for quantum dots [19], provide a quantitative interpretation of
experiments for S = 1/2 realizations of the Kondo effect .

5 Recent developments

The reduced density matrix and NRG

In evaluating the T = 0 dynamics in Sect. 4 the approximation (38) was made that the excita-
tions EN

λ and matrix elements MN
0,λ of the N’th “cluster Hamiltonian”, HN , were close to those

of the infinite system. This is certainly correct for large N , and explicit calculation demon-
strates that the approximation is close to exact for most cases. However, this approximation to
the dynamics fails in certain cases. For example, when an applied field strongly perturbs the
ground state and low lying excited states, as happens for the Anderson model in a magnetic
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field [20]. In this case the overlap matrix elements MN
0,λ = 〈0|dµ|λ〉 connecting the ground

state and excited states of HN may deviate significantly from those of the infinite system. This
will mainly affect the spectra for small N , i.e. at high energies. In order to overcome this
problem [20] one can make use of the reduced density matrix , %red

N , of HN , obtained from the
density matrix, %M(T = 0), of a much larger cluster, HMÀN , whose ground state is closer to
that of the infinite system, by tracing out intermediate degrees of freedom

%red
N = TriN+1,...,iM %M (41)

Using %red
N in place of % in (32) results in the Lehmann representation for the spectral density

ρd,µ(ω, T = 0) =
∑

κ,λ

Cκ,λM
N
κ,λδ(ω − (EN

κ − EN
λ )) (42)

Cκ,λ =
∑

ν

ρred
ν,λMN

ν,κ +
∑

ν

ρred
κ,νM

N
λ,ν (43)

in place of (36). This is evaluated, as in (38), at ω ≈ 2ωN . Note that the use of the reduced
density matrix “feeds back” information about the ground state of the larger clusters into the
smaller clusters, but the excitation energies of cluster N , EN

κ − EN
λ , which are only approxi-

mately equal to those of the infinite system, are not corrected for by using the reduced density
matrix. Fig. 10 shows corrections to Kondo model spectra in a finite magnetic field using the
reduced density matrix.

−10 −5 0 5 10 15 20
ω/TK

0

0.05

0.1

0.15

0.2

A
↑(

ω
,T

=
0,

H
)

B/TK=0
B/TK=1
B/TK=2
B/TK=5
B/TK=10

Fig. 10: Comparison of spectra for the
Kondo model in a magnetic field [19]
with (dashed lines) and without (solid
lines) the use of the reduced density
matrix. The reduced density matrix
provides much more significant correc-
tions for the high energy features in the
spin-resolved spectra of the Anderson
model, as shown in [20]

Non-equilibrium quantities in NRG
The application of a finite transport voltage across a semiconducting quantum dot [21] (see
Fig. 11) modelled by an Anderson impurity model creates a non-equilibrium state which for
sufficiently large transport voltage can not be described within linear response theory. One
would like to understand both the transient dynamics of the system after the initial switching on
of the field, and also the steady state dynamics in the long time limit. An approach to transient
response within NRG has recently been developed [22, 23] in analogy to the X-ray problem
of core-level spectroscopy [24]. To illustrate this, consider the time-dependent dynamics of a
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Fig. 11: Top view of a quantum dot.
A confined region of electrons (the
“quantum dot”) is formed out of the
two dimensional electron gas (2DEG)
at the interface of a GaAs/AlGaAs het-
erostructure by patterning electrodes
as shown and applying negative volt-
ages. The constrictions at the left and
right connect the dot electrons to the
remaining 2DEG. Confinement implies
district levels and large Coulomb re-
pulsion on the dot, so this system be-
haves like an Anderson impurity model
with tunable hybridization matrix ele-
ments (via VL,R) and level position (via
VG).

Kondo spin subject to an initial state preparation at t < 0and a sudden perturbation at t = 0 of
the form

H(t) = [1− θ(t)]HI + θ(t)HF (44)

We take the initial state Hamiltonian, HI , to be the anisotropic Kondo model with a local mag-
netic field −BSz, B → ∞ forcing the spin to have 〈Sz〉 = 1/2 for times t < 0 and the final
state Hamiltonian, HF , to be HAKM with the local magnetic field switched off. An interesting
question is whether P (t) = 〈Sz(t)〉%I

, with %I = e−βHI , exhibits coherent or incoherent dynam-
ics. By obtaining the many-body eigenstates |mI〉 (|mF 〉) and eigenvalues EmI

(EmF
) of HI

(HF ) using the NRG, one can obtain the Fourier transform of P (t) in Lehmann representation

P (ω) =
∑

mI ,mF ,m′
F

e−βEmI

ZI

〈mI |mF 〉〈m′
F |mI〉〈mF |Sz|m′

F 〉δ(ω − (EmF
− Em′

F
)) (45)

In contrast to equilibrium dynamical quantities (36), no ground state energy appears in the
above expression for P (ω) (even for T = 0), reflecting the absence of a ground state in a non-
equilibrium situation. This also implies, that in evaluating (45), at a frequency ω = ωN we
cannot simply use the excitations of HF from a single cluster M = N . Instead excitations
between arbitrary excited states of HF arising from all cluster sizes contribute and have to be
taken into account [22]. The approximation of using a single shell M = N to evaluate (45) at
ω = ωN ,

P (ωN) ≈
∑

mF ,m′
F

〈mI,GS|mF 〉N〈m′
F |mI,GS〉N〈mF |Sz|m′

F 〉Nδ(ω − (EN
mF
− EN

m′
F
)) (46)

is valid for short time scales (t ≤ 1/TK) or high frequencies (ω À TK). Typical results are
shown in Fig. 12. Recently, the problem of summing over all energy shells proposed in [22] has
been solved [23]. In [23], a complete basis set of states for the Hilbert space of HI,F is used,
made up not from the retained states of the HN

I,F , but from the high energy states eliminated
at each step N . Since, as N → ∞, all states are eliminated, the set of all eliminated states is
a complete eigenbasis of HI,F . This allows contributions to P (ω) from all energy shells to be
summed up, thereby allowing the study of the long-time behaviour of transient dynamics [23].
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NRG as a “quantum impurity solver” in DMFT

As described in the lecture of Liebsch in this book, it is possible, using dynamical mean field
theory (DMFT), to approximate models of correlated electrons on a lattice by a quantum impu-
rity embedded in an effective medium (bath) which has to be determined self-consistently. For
example, the Hubbard model can be mapped onto an effective Anderson impurity model with a
hybridization function ∆(ω), whose frequency dependence is unknown and needs to be deter-
mined from the DMFT self-consistency condition. This requires the impurity Green function
Gdσ to be identical to the local lattice Green function G0σ =

∑
k 1/(ω +µ− εk−Σ(ω)), where

µ is the chemical potential, εk the dispersion relation of the lattice and Σ(ω) is the electron
self-energy, identified as the impurity self-energy in DMFT. A highly accurate representation of
Σ(ω) for quantum impurity models has been introduced in [29] and finds application in DMFT.
Fig. 13 shows the behaviour of the T = 0 spectra for the Hubbard model on going through the
metal-insulator transition using this approach.
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Fig. 13: Local spectral density of
the Hubbard model on Bethe and
hypercubic lattices showing how the
T = 0 metal-insulator transition oc-
curs with increasing Coulomb interac-
tion U [25]. For U < Uc the system is
metallic with a quasi-particle peak at
ω = 0, whereas for U > Uc the sys-
tem is insulating with a gap between
the upper and lower Hubbard bands
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6 Summary
The NRG transformation for the Kondo model is a powerful tool for the study of quantum
impurity models. It gives information on the many-body eigenvalues and eigenstates of such
models on all energy scales and thereby allows the direct calculation of their thermodynamic,
dynamic, and transport properties. Recently it has been further developed to yield the transient
response of these systems to sudden perturbations for both short and long-time limits [22, 23].
The method has been extended in new directions, such as to models with bosonic baths [26]
to study spin-boson models and the interplay of correlations and phonon effects in Anderson-
Holstein models [27]. It has also been used successfully to make progress on understanding
the Mott transition, heavy fermion behaviour and other phenomena in correlated lattice models
[15, 25, 28].
There is room for further improvement and extensions of the method both technically and in
the investigation of more complex systems such as multi-orbital models [30]. The use of a log-
arithmic discretization of the conduction band, for example, gives rise to insufficient resolution
at higher energies. Approaches [17] for overcoming these difficulties are therefore of interest.
The NRG also has potential to give information on the non-equilibrium transport through corre-
lated impurity systems such as quantum dots. However, away from equilibrium, the absence of
a ground state requires new criteria other than energy for eliminating unimportant states. Ideas
based on the DMRG may prove useful in this respect.

Appendices

A Lanczos procedure
Neglecting spin indices, the conduction electron operator is

Hc =
∑

k

εkc
+
k ck

The Lanczos algorithm for tridiagonalizing this operator by repeated action on the state |0〉 is

|1〉 =
1

λ0

[Hc|0〉 − |0〉〈0|Hc|0〉] (47)

|n + 1〉 =
1

λn

[Hc|n〉 − |n〉〈n|Hc|n〉 − |n− 1〉〈n− 1|Hc|n〉] (48)

yielding

Hc =
∞∑

n=0

εnf
+
n fn + λn(f+

n fn+1 + H.c.) (49)

where εn = 〈n|Hc|n〉 and λn are normalizations obtained from (47-48).
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B Logarithmic discretization approximation
The approximation

Hc =

∫ +1

−1

dε ε c+
ε,µcε,µ ≈

∞∑
n=0

(ε−nc+
−n,µc−n,µ + ε+nc+

+n,µc+n,µ) (50)

used to replace the continuum band in (11) by the discrete one in (14) can be analyzed by
introducing a complete orthonormal basis set of states for the conduction electrons in each
interval ±[Λ−(n+1), Λ−n] using the following wavefunctions

ψ±np(ε) =

{
Λn/2

(1−Λ−1)1/2 e
±ωnpε for Λ−(n+1) < ±ε < Λ−n

0 otherwise
(51)

Here p is a Fourier harmonic index and ωn = 2πΛn/(1 − Λ−1). The operators cεσ can be
expanded in terms of a complete set of new operators anpσ, bnpσ labeled by the interval n and
the harmonic index p

cεσ =
∑
np

[anpσψ
+
np(ε) + bnpσψ

−
np(ε)]. (52)

In terms of these operators, the Kondo Hamiltonian becomes,

HKM =
1

2
(1 + Λ−1)

∑
np

Λ−n(a†npσanpσ − b†npσbnpσ)

+
(1− Λ−1)

2πi

∑
n

∑

p6=p′
Λ−n(a†npσanp′σ − b†npσbnp′σ)e

2πi(p−p′)
1−Λ−1

+ Jf+
0,µ~σµνf0,ν .~S (53)

where in terms of the new operators, f0,µ = 1√
2

∫ +1

−1
dε cε,µ contains only p = 0 states:

f0,µ =
1√
2

∫ +1

−1

dε cε,µ =

[
1

2
(1− Λ−1)

]1/2 ∞∑
n=0

Λ−n/2(an0µ + bn0µ) (54)

We notice that only the p = 0 harmonic appears in the local Wannier state. This is a consequence
of the assumption that the Kondo exchange is independent of k. Hence the conduction electron
orbitals anp, bnp for p 6= 0 only couple to the impurity spin indirectly via their coupling to the
an0, bn0 in the second term of (53). This coupling is weak, being proportional to (1−Λ−1), and
vanishes in the continuum limit Λ −→ 1, so these states may be expected to contribute little
to the impurity properties compared to the p = 0 states. This is indeed the case as shown by
explicit calculations in [1]. The logarithmic discretization approximation consists of neglecting
conduction electron states with p 6= 0, resulting in Hc given by Eq. (50) with c+n,µ ≡ an,0,µ and
c−n,µ ≡ bn,0,µ and a discrete Kondo Hamiltonian given by Eq. (14).
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