D1 Optimization of Numerical Codes

S. Goedecker
Institut fGr Physik
Universitat Basel

The material of this article is taken with permission of SIAM from the book: S. Goedecker, A.
Hoisie: ”Performance Optimization of Numerically Intensive Codes”, SIAM publishing com-
pany, Philadelphia, USA 2001 (ISBN 0-89871-484-2)

Contents
1 Introduction 3

2 Notions of computer architecture 3
2.1 The on-chip parallelism of superscalar architectures 3
2.2 Overview of the memory hierarchy of modern architectures 5
2.3 Mappingrulesforcaches 6
2.4 Ataxonomyof cachemisses, 7
25 TLBMISSES . . . v v v v v it e e e e e 8
2.6 Multi-level cache configurations oL 8

3 A few basic efficiency guidelines 8
3.1 Selection of best algorithm L. 9
3.2 Useofefficientlibraries 9
3.3 Optimal datalayout 10
3.4 Use of Compiler optimizations 10
4 Timing and profiling of a program 11
4.1 Subroutine level profiling L oo 11

4.2 Timing small sections of your program 12

D1.2 S. Goedecker
5 Optimization of floating point operations 13
5.1 Fused Multiply-Add instructions 14
5.2 Exposing Instruction Level Parallelism in a Program 14
5.3 Improving the ratio of floating point operations to memory accesses 15
5S4 Alasing e 16
5.5 Special functions 20
5.6 Ifstatements 20
5.7 Loopoverheads 21
5.8 Copyoverheadsin Fortran90 21
6 Optimization of memory access 21
6.1 Loop reordering for optimal data locality 21
6.2 Cachethrashing 23
6.3 Squareblocking 25
6.4 Lineblocking 27
6.5 Prefetching e 31

Optimization of Numerical Codes D1.3

1 Introduction

Modern computers are highly complex machines which typically deliver only a very small
fraction of the theoretically possible peak speed for ordinary programs. Better performance
can be achieved if the architectural features are already exploited during the development of a
program. The basic knowledge for writing efficient code will be presented.

2 Notions of computer architecture

The computer architectures that are at the focus of this article are “superscalar” type architec-
tures, characterized by on-chip instruction parallelism. All the workstations of major vendors
belong to this category. Superscalar only refers to the execution of instructions and does not
constrain other architectural features. We will analyze in this article superscalar microproces-
sors with a hierarchical memory structure. Because of the memory hierarchy, the memory
access times are not independent of the location of the data in memory.

2.1 The on-chip parallelism of superscalar architectures

Superscalar architectures can perform several operations in one cycle. An n-way superscalar
processor is capable of fetching up to n instructions per cycle. Typically, a processor can per-
form a combination of adds, multiplies, loads/stores and branching instructions in one cycle.
This instruction-level parallelism can be implemented in hardware or by a combination of hard-
ware and software support. In hardware, a processor can have several units that work concur-
rently. Instruction-level parallelism can be increased by special instructions, such as the fused
multiply-add (section 5.1), that allows the execution of a floating point multiplication and a
consecutive addition in one assembler instruction.

All modern processors are pipelined. Processor pipelines take advantage of the fact that all
instructions can be processed in several smaller subtasks, each of which can be done within one
clock cycle. The pipeline is typically subdivided into the following stages:

e Fetch instruction: instructions are fetched from the instruction cache into the processor
e Instruction decode

e Issue and execute: instructions are issued to different functional units and are executed.
Some functional units, such as the floating points unit, are often again pipelined. We call
this “functional unit pipelining” to differentiate it from processor pipelining.

e Write back and commit: instructions broadcast the execution result to
other instructions and commit the results to the registers.

A schematic diagram of a processor of the type described in the preceding text is shown in
Figure 1.

The functional unit pipeline requires a more explicit description. This pipelining means that,
besides the ability of executing different instructions in different functional units, instructions
can be executed in the same functional unit simultaneously at different pipeline stages. Fre-
quently two multiplications and two additions can be processed simultaneously in each of these
units when the pipeline is full, each instruction being processed in one of the three stages of the

D1.4 S. Goedecker

PROCESSOR PIPELINE

Integer

| | | |
FETCH DECODE Floating point additio WRITE

(upto 4 (upto 4 (upto4

instruc- instruc- results)
tions) tions)

FUNCTIONAL UNIT
PIPELINES

Fig. 1: Schematic diagram of a hypothetical four-way superscalar pipelined processor with two
floating point pipelines, one integer pipeline and one load/store pipeline. The depth of these
functional unit pipelines varies between two and three cycles in this processor. Consequently,
the depth of the entire processor pipeline varies between five and six cycles.

pipeline. We say in this case that the pipeline has a depth of three. In each cycle, work on a new
instruction can start in the pipeline, but it takes three cycles for its completion.

The latency of dependent operations is given by the depth of the functional unit pipeline and
not by the depth of the whole processor pipeline. For a single stream of dependent operations,
modern processors can typically finish a result every two to four cycles.

Special instructions, such as the fused multiply-add already mentioned under the aspect of in-
creased parallelism, are also a means to reducing the operation’s latency.

Processors with out-of-order execution capabilities show less performance degradation in the
presence of dependencies, if several independent streams of dependent instructions can be pro-
cessed. On such architectures, a queue of several instructions waiting to be executed is main-
tained. Instructions for which all the operands are available are executed. The processor is
dynamically switching back and forth between different streams, working only on those for
which the pipeline will not stall because of missing operands.

The depth of the whole processor pipeline becomes visible as the latency of a mispredicted
branch. This typically happens at the end of a loop. The program flow has to jump to a new
location and start feeding the processor pipeline with a new stream of instructions. Branch
prediction, found on some processors, helps to reduce the number of mispredicted branches by
extrapolating the program flow pattern from data accumulated during the run.

A pipeline that cannot accept a new instruction at a certain stage is called “stalled”. Several
reasons for such stalls are possible. Two of the reasons, dependent operations and branches
were mentioned above. Other causes for stalls are due to memory access. Either the consec-
utive instruction is still on its way from the memory towards the processor, or, more likely, a
numerical operand that has to be loaded is not yet available due to a cache miss. Keeping all
the pipelines busy without stalling is one of the key ingredients for achieving high performance

Optimization of Numerical Codes DI1.5

on superscalar processors. From the point of view of the programmer, a pipeline with a latency
of s cycles has practically the same effect as s separate floating point units that have a latency
of just one cycle. This assertion will become clear in the discussion of the subroutine “Ingth4”
in section 5.2.

2.2 Overview of the memory hierarchy of modern architectures

The memory subsystem of computers is organized hierarchically. It can be visualized as a lay-
ered inverted pyramid. Layers at the top are big, but have slow access times. Layers towards the
bottom of the pyramid are small but have fast access times since they are close to the CPU. The
size of the data packets transferred among the different layers varies as well. Data movement
between the layers at the top involves larger amounts of data. The chunks of data transferred
decreases to as little as one word at the bottom of the memory hierarchy. We will now describe
this reversed pyramid in more detail, starting at the bottom with the smallest layer.

The fastest, but smallest memory level is composed of the registers, placed on the chip, housing
the Central Processing Unit (CPU). IBM processors have 32 floating point logical registers
that can be accessed without any delay (O cycle latency). Pentiums and opterons have fewer
registers. In 64 bit mode they have 16 general purpose registers and 16 SSE vector registers.
In 32 bit mode these numbers are cut into half. In addition there are integer registers. They
are used for integer arithmetic, including the calculation of the addresses of array elements that
are loaded or stored. In this context it is worthwhile pointing out that the number of physical
registers can be larger than the number of logical registers.

The next level in the memory hierarchy is the cache. Many machines have multiple cache
levels, a level-1 (1) cache and a level-2 (L2) cache, for example. An L1 cache can usually
be accessed with a 1-cycle latency, if the data is available in the cache. Since in many cases a
load or store from the L1 cache to a register can be overlapped with floating point operations,
this 1-cycle latency can often be hidden, giving the appearance of a 0-cycle access time. Data
transfer from the L1 cache to the registers takes place in units of words (i.e. single or double
precision numbers). If the data is not in the L1 level, it has to be fetched from the higher level
of the memory hierarchy, the memory or the L2 cache. A “cache miss” occurs and the program
execution has to wait for several cycles until the data are transferred into the L1 cache. In the
same way, an L2 cache miss can occur, necessitating a data transfer from the main memory.
The penalty for a L2 cache miss is larger than for a L1 cache miss. The penalty is typically in
the range of a few dozen cycles for an L1 miss, and as high as 100 cycles for an L2 miss. The
smallest possible unit that can be loaded from memory into the cache is a cache line, typically
comprising between 4 and 32 words. The cache line sizes for the various cache levels can be
different. A typical memory hierarchy is shown in Figure 2.

At this point it is important to note that although we will be concentrating in this article on
data caches, L1 instruction caches are also present. The goals of the instruction cache are very
similar to those of the data cache, only applied to instructions. Frequently used instructions are
accommodated closer to the CPU in order to achieve faster access times. If two cache levels
exist, then typically the second level cache is used for both data and instructions.

The next generic hierarchy level is the memory attached to one processor. The slow access time
(high latency) of the CPU to data in the main memory is a major bottleneck in many scientific
applications. Another, equally important bottleneck, is the limited memory bandwidth, i.e. the
limited amount of data that can be transferred from the memory towards the lower levels of the
memory hierarchy. One architectural technique leading to an increased memory bandwidth is

D1.6 S. Goedecker

MAIN MEMORY: arbitrary size

Data packet size: 4,8,16, or 32 doublewords
v Accesstime: afew dozen cycles

CACHE: afew thousand doublewords

Data Packet size: 1 doubleword
v Accesstime: afew cycles

\ 32 REGISTERS

Data packet size: 1 doubleword

v Accesstime: 0 cycles

Fig. 2: Schematic view of a memory hierarchy

memory interleaving. Some workstation have four memory banks. If a cache line, 32 words
in size, is brought into cache from memory, then the first eight words are filled from the first
memory bank, the second eight words form the second bank and so on. The memory bandwidth
is increased four times compared to the case of a single memory bank. However, memory
interleaving has no beneficial effect on the latency. If only a single word of the 32 words of
a cache line is needed, the memory access time is latency bound and would not benefit from
memory interleaving. Data access with stride one is therefore faster compared with larger stride
access.

2.3 Mapping rules for caches

In a fully associative cache, a cache line can be placed in any free slot in the cache. Fully
associative caches are rarely used for data caches, but are sometimes for TLB (see 2.5). In the
standard non-fully associative cache, a cache line that is loaded from the main memory can only
be placed in a limited number of locations in the cache. Based on the number of such possible
locations, we distinguish between directly and indirectly mapped caches. In a directly mapped
cache, there is only one possible location. Indirectly mapped caches allow for more than one
location.

If the size of the cache is n words, then the ith word in memory can be stored only in the position
given by mod(i, n) in directly mapped caches. If we have an m,-way associative cache of size
Mmas X N, then any location in memory can be mapped to m, possible locations in cache, given
by the formula j x n+mod(i,n), where j = 0, ...m4s — 1. The situation for a 4-way associative
cache with a cache line size of two words is illustrated in Figure 3.

If, in an m,s-way associative cache, all the m,s possible locations for a data set are taken, one

Optimization of Numerical Codes D1.7

n n+1 n+2 2n-2 | 2n-1
2n 2n+l | 2n+2 3n-2 | 3n-1

MEMORY

\
\

\
Vo
[A
| o
\/ \/ a
/oy \/ v
\
¢ |
oo
P I
! |

/

M
>
a
3

m

Fig. 3: Mapping rules for a 4-way associative cache. Each memory location can be mapped to
four cache locations, but many memory locations map to the same four cache locations. Since
we assumed that the cache line size is two words, the portion to be transferred is the framed
area.

of them has to be overwritten.

2.4 A taxonomy of cache misses

Cache misses can be categorized as follows:

e Compulsory cache misses: These misses occur when the cache line has to be brought into
the cache when first accessing it. They are unavoidable.

e Capacity cache misses: They are related to the limited size of the cache preventing all the
necessary data to be simultaneously in the cache. New data brought into the cache may
have to overwrite older entries.

e Conflict cache misses: These misses occur in directly mapped or set associative caches.
Because of the mapping rules, the effective cache size is usually smaller than the physical
cache size. The effective cache size would be equal to the physical cache size only if a
data item from the main memory could go into any location in the cache. Since this is not
the case, unoccupied cache lines slots will frequently be found in the cache, thus reducing
the effective cache size. The extreme case, when most of the physical cache space is not
available because of these mapping rules, is called cache thrashing.

Programming techniques leading to a reduction of the number of cache misses will be discussed
later.

D1.8 S. Goedecker

2.5 TLB misses

Modern workstations are virtual memory machines. This means that they distinguish between
a logical and a physical memory address. The logical address is the one utilized in a program to
identify array elements. The array elements x(100) and x(600) have the logical address of 100
and 600 respectively. However, they are not necessarily at the physical locations 100 and 600
in the memory. Logical addresses are translated into physical ones as described below.

Each address belongs to a page in the memory. The size of a memory page varies from machine
to machine. For example, on the IBM 590 one page holds 2° = 512 doublewords (one double-
word = 8 bytes). In this case, the array element x(100) would be on the first logical page, while
x(600) would belong to the second logical page. A page can be stored in any physical page slot
in memory or even on disk.

A page table, stored in the main memory, keeps track of the mapping from physical to logical
addresses. The most frequently used entries of that table are stored in a special cache called the
Translation Look-Aside Buffer (TLB). Thus, when accessing a logical memory location that
belongs to a logical page whose mapping to a physical address is not present in the TLB, that
page location has to be fetched from the much larger page table. A TLB miss will occur, very
similar to a cache miss for all practical purposes, only costlier.

From the point of view of the programmer, the effect of a TLB is exactly the same as if there
was an extra cache level, whose cache line size is equal to the page size and whose overall
size is equal to the total number of words contained in all the pages whose physical addresses
can be held in the TLB. For optimal performance, any data item has to be contained in both
memory hierarchy levels. In other words both the capacity misses and the conflict misses have
to be minimized not only for the real cache levels but also for the TLB level. On an IBM 590,
the TLB is a two-way associative cache with 2 x 256 entries each holding 512 doublewords.
Its effect is therefore the same as an additional two-way associative cache level with a total
capacity of 2'® words and a cache line length of 512. The TLB and the data caches are accessed
in parallel. Thus, in the event of a combined cache and a TLB miss, the latency is smaller than
the sum of the individual latencies.

2.6 Multi-level cache configurations

Most of the modern computers have two or even three cache levels. The reason for this lies
in the tradeoffs that a computer architect has to make in order to achieve a balanced, high-
performance architecture. An L1 cache is usually built on-chip. Given the limitations on the
number of transistors on a chip and the high cost of a cache in terms of transistor consumption,
a tradeoff is made between the size of the cache and the features and complexity of the CPU.
For these on-chip “real-estate” reasons, the larger L2 caches are built off-chip. Because of
the longer signal traveling time, off-chip caches are slower in access time, but they can be
significantly larger than the L1 caches.

3 A few basic efficiency guidelines

In this chapter we will not dive deeply into sophisticated optimization techniques. Rather we
will propose some basic efficiency guidelines that can improve program performance without
any significant time investment by the programmer.

Optimization of Numerical Codes DI1.9

3.1 Selection of best algorithm

Usually several algorithms are available for a specific problem. Choosing the algorithm that is
best suited for the problem of interest and the target computer clearly is the first and most im-
portant step. Frequently, the complexity or scaling behavior of two algorithms is different. For
instance, the number of operations in a matrix-matrix multiplication is N3 for N x N matrices
with the ordinary algorithm, but only N2 with the Strassen algorithm. For large data sets, the
advantage of using a low complexity algorithm (the Strassen algorithm in the matrix multipli-
cation example) is overwhelming and certainly dominating other suitability aspects. If, under
such circumstances, the implementation of a low complexity algorithm is not well adapted to the
computer architecture, the advantages of using it could be lost. The common sense solution is to
find a better implementation of this algorithm instead of using a potentially high-performance
implementation of the higher complexity algorithm. In a different situation, if two algorithms
differ in their operation count only by a small factor, the potential for a good implementation on
a specific architecture may be the dominating aspect. This article will present the information
necessary to judge the suitability of different algorithms for various architectures.

3.2 Use of efficient libraries

For most of the basic computational problems high quality numerical libraries are available
today. Instead of duplicating work by developing and optimizing one’s own version, one should
definitely use such library routines whenever available.

For most basic dense linear algebra computations, the BLAS (Basic Linear Algebra Subrou-
tines) (http://www.netlib.org/index.html) is a highly recommendable library, particularly when
provided in optimized form by computer vendors for their specific architecture. Since the call-
ing sequences is the same in all vendor-optimized implementations, a program using BLAS
routines is portable to any computer.

There are three levels of BLAS. Level-1 contains vector-vector kernels, such as a scalar product
between two vectors, level-2 deals with matrix-vector operations, such as matrix times vector
multiplication and level-3 contains matrix-matrix routines, such as matrix times matrix mul-
tiplication. For reasons that will be discussed in section 5.3, the higher BLAS level routines
run faster than the lower level ones. As shown in Table 1, optimized Level-3 BLAS frequently
come close to the peak speed of the machine. By reordering loops in a code it is frequently
possible to replace several calls to lower level BLAS by a single call to a higher level routine.
Even though the vendor supplied BLAS routines are usually well optimized, exceptions exist,

Table 1: Comparison of the speed of different levels of BLAS routines on an Intel Xeon running
at 2.4 GHz.

’ BLAS routine ‘ Speed (Mflops) ‘
DGEMM (Level-3: matrix matrix mult.) 3500
DGEMYV (Level-2: matrix vector mult.) 550
DDOT (Level-1: scalar product) 500

particularly on new computer models. If the time spent in BLAS routines is significant, it is a
good practice to verify by timing (as it will be explained in section 4) whether the performance
of BLAS is reasonable. If the loops are very short, the overhead of calling a BLAS routine can

D1.10 S. Goedecker

become prohibitive. Even a moderately optimized user-written loop structure can be faster in
this case. Cray compilers automatically replace user-written loop structures by matching level-2
and level-3 BLAS routines, unless the loops are expected to be short.

A very good quality public domain library is LAPACK, containing all the standard dense linear
algebra operations, such as the solution of linear systems of equations, singular value decom-
positions and eigenvalue problems. It supersedes the older LINPACK and EISPACK libraries.
This library is built on top of the BLAS library leading to very good performance, particularly
if a vendor optimized version of BLAS is utilized. Some of the LAPACK routines can also be
found in optimized form in some of the vendors’ mathematical libraries. Further information
on LAPACK can be found in its users’ guide at http://www.netlib.org/index.html.

In addition to these public domain libraries, several computer manufacturers provide scientific
libraries containing additional routines, such as special functions, Fast Fourier Transforms, in-
tegration and curve fitting routines.

3.3 Optimal data layout

This very important aspect of any optimization work, the layout of all the data structures needed
in the calculation, should take place before the writing of the program starts. Data that are
processed simultaneously should be located close to each other in the physical memory. This
will ensure “data locality”, meaning that data that are brought in cache will be used at least
once before being flushed out of cache. Thus, the high cost of a cache miss is distributed among
several memory accesses.

For instance, a Fortran array containing the positions of a collection of n particles should be
dimensioned as

dimension r (3,n)
instead of
dimension r (n, 3)

since most likely the three spatial coordinates for a given particle will be accessed consecutively.

3.4 Use of Compiler optimizations

Programs compiled without any optimization usually run very slowly. Using a medium opti-
mization level (-O2 on many machines) typically leads to a speedup by factors of two to three
without a significant increase in compilation time. Using the highest available optimization
levels can lead to further performance improvements, but to performance deterioration as well.
The compiler applies transformation rules, based on heuristics, that in most cases improve per-
formance. Since the compiler does not have all the necessary information to determine whether
certain transformations of the program will pay off, the success of the transformations is not
guaranteed. It is certainly worthwhile to try several optimization levels and possibly some other
compiler options too and assess their effect on the overall program speed.

Optimization of Numerical Codes DI1.11

4 Timing and profiling of a program

The starting point of any optimization work is the timing and profiling of the program. Timing
and profiling are the means to determine the performance of a code. The measured time, to-
gether with either estimates or counts of the number of floating point operations, allows us to
calculate the speed usually measured in Mflops (Millions of Floating Point Operations per Sec-
ond). A comparison between the measured Mflops and the peak Mflops rates for that machine
gives a good indication of the efficiency of your program. The dividing line between accept-
able and poor performance is, of course, disputable. One rule-of-thumb is that for large-scale
scientific applications 50 % of peak performance is very good, albeit hard to achieve, whereas
less than 10 % should be an indication that optimization work is in order. In this order of mag-
nitude type of analysis, contrasting the performance of your code against existing benchmarks
performing similar computations can be helpful, too.

For the interpretation of the output of the timing and profiling tools it is necessary to understand
the various time metrics that are used.

The most important time measure is the CPU time. This is the time in which the CPU is
dedicated to the execution of a program. It is the sum of two parts, the user time and the system
time. The user time is the time spent executing the instructions of the program. The system
time is the time spent by the operating system for service operations requested by the program.
In general, the system component of the CPU time is small compared to the user component of
the CPU time. If it is not, this is an indication of an inefficiency in the code.

Another important metric is the elapsed or wallclock time. If several programs are running on a
computer, the total execution time of one program will be larger than its CPU time. Assuming
that three programs are running with the same priority, the elapsed time will be roughly three
times the CPU time. Even in standalone (i.e., when a single code is running on the computer),
the CPU will timeshare between that code and pure systems tasks. Because of this, the elapsed
time will be larger than the CPU time.

Overall timing information of a program can be obtained using the UNIX commands “timex”
or “time”. This simply involves preceding the running command for the code, say “a.out”, by
the “timex” or “time” command, such as in “time a.out”. At the end of the run, the CPU time,
split up in user and system time, and the elapsed time will be printed out. The exact format of
this timing output varies among different vendors, but is described in the man pages.

Because of the ambiguities and interference effects mentioned above, there are always consider-
able fluctuations in measured times. Even in standalone, fluctuations of a few percentage points
are normal. When the machine is shared with other jobs, these fluctuations can be even bigger.
The first thing to know when starting to optimize a program is which parts of it take most of
the runtime, i.e. the identification of the “hotspots”. Profiling the program will answer this
question. Several profiling techniques are available and will be discussed in the next sections.

4.1 Subroutine level profiling

A subroutine level profile is obtained by compiling the program with a special compiler flag,
usually “-p”. The compiler will then insert timing calls at the beginning and end of each sub-
routine. At execution time, the timing information is written to a file, typically “mon.out”. The
“prof” command allows you to read in the information contained in this file and to analyze the
code in the form of a “profile”. Let us profile the following short program:

implicit realx8 (a-h,o-z)

D1.12 S. Goedecker

parameter (nexp=13, n=2+*nexp)
dimension x (n)
do 15,i=1,n
15 x(1)=1.234d0
do ic=1,1000
call subl (n,x,suml)
call sub2(n,x,sum2)
enddo
write (6, *) suml, sum2
end

subroutine subl (n, x, sum)
implicit real*8 (a-h,o0-z)
dimension x(n)
sum=0.d0
do 10,1i=1,n
10 sum=sum+2.d0xx (1) +(x (1) -1.d0) »*2+3.d0+ix1.d-20-4.d0x (1i—-200) =2
return
end

subroutine sub2 (n, x, sum)
implicit realx8 (a-h,o-z)
dimension x(n)
sum=0.d0
do 10,1i=1,n

10 sum=sum+x (1) **.3333333333d0
return
end

On an IBM Power2, the output obtained from the “prof” command looks like this:

Name $Time Seconds Cumsecs #Calls msec/call
._pow 63.8 21.11 21.11 8192000 0.0026
.__mcount 28.4 9.39 30.50

.subl 3.8 1.27 31.77 1000 1.270
.sub2 2.3 0.77 32.54 1000 0.770

First, it is apparent that the time spent in the compiler library functions is not attributed to the
subroutines from which they are called, but to the functions themselves (the exponentiation
function is called from subroutine sub2). As a result, if the same library function is called from
several subroutines, it is not possible to find out directly which subroutines invokes them more
frequently and thus takes more time. Second, we note an additional category “mcount”, which
is the time spent in the timing routines themselves, i.e. the overhead of profiling. This can be
a significant fraction of the total execution time and it can bias the timing analysis. Calls to
subroutines that are part of libraries, such as BLAS, cannot be analyzed in this way.

4.2 Timing small sections of your program

Very frequently one wants to know the CPU time spent in a code’s hotspots. By calculating
the number of floating point operations executed in hotspots, the timing information allows the
calculation of the sustained speed. This is done by manually inserting timing calls.

Optimization of Numerical Codes DI1.13

real tl,t2
integer countl, count2,count_rate, countmax

call system_clock (countl, count_rate, count_max)
call cpu_time(tl)

code to be timed ...

call cpu_time (t2)
call system_clock (count2, count_rate, count_max)

printx, ’'CPU time (sec)’,t2-tl
printx, ‘elapsed time (sec)’, (count2-countl)/float (count_rate)

The Fortran90 standard provides for two functions that measure the CPU time and the elapsed
time, as shown above. As in the case of profiling, the time spent in these timing routines, i.e.
the overhead of timing, can be significant if they are called very frequently.

A possible problem with this analysis method is that the resolution of the timing routines is usu-
ally fairly coarse (1/100 of a second for *'mclock’, 1/1000 for most others). In order to get good
statistics, the runtime of the hotspot has to be much longer than this resolution. Frequently this
necessitates artificially repeating the execution of the hotspot by bracketing it with an additional
timing loop. Since in these repeated executions data can be available in cache at the beginning
of a new timing iteration, the performance numbers can be artificially high. In order to avoid
this pitfall, a call to a cache flushing routine has to be inserted at the beginning of each timing
iteration. Any routine that refreshes all the cache lines can be used as a cache flushing routine.

In timing runs one has to make sure that no floating point exceptions (such as overflows) are
present, since they will increase the CPU time. Testing with zeroes can be problematic too
on some machines. Some compilers are able to figure out that the numerical results of the
timing loops are never utilized and do not execute those loops at all. In this way, the speed of
the program can get close to infinity! Therefore, a good practice is to print out some of the
numerical results of a timing run in order to make sure that the compiler is not outsmarting you.

5 Optimization of floating point operations

As we have pointed out several times, memory access problems are usually the single most
detrimental factor leading to large performance degradation. Nevertheless, we will start our
optimization discussion with the topic of floating point operations. As a matter of fact, when
tuning a program, it is recommendable to start with addressing this type of optimizations before
moving on to memory access optimizations. In order to discern the effect of floating point
optimizations, it is necessary to eliminate limiting effects due to memory access issues. In
the floating point optimization phase this can be easily achieved by working with small data
sets that fit in cache, even though they may not represent the memory requirements of a realistic
application. Consequently, we will assume in this section that all the necessary data are available
in cache and that therefore cache misses do not limit performance. The topic of memory access
optimization will be taken up in detail in the next section.

In general, floating point operations dominate in “number-crunching” scientific codes. This is in
contrast to other applications, such as compilers or editors, that are integer arithmetic bound. We
will not analyze in detail integer performance by itself in this article. Even though the “useful”

D1.14 S. Goedecker

operations in most of the scientific codes are floating point operations, integer operations occur
frequently too. For example, they are needed to calculate the addresses of array elements, with
the effect that practically all load or store operations require integer arithmetic. As a matter
of fact, the load and store operations on several architectures are handled by the integer unit.
In this article we will not distinguish between the calculation of the address and the process
of transferring data from the cache into the registers, but instead consider these two steps as a
single operation.

5.1 Fused Multiply-Add instructions

The Fused Multiply-Add instruction (FMA), found on several modern architectures, provides
for the execution of a multiplication followed by an addition (a+b*c) as a single instruction.
This reduces the latency compared to the case where a separate multiplication and addition is
used and makes the instruction scheduling easier for the compiler.

5.2 Exposing Instruction Level Parallelism in a Program

As mentioned in section 2.1, superscalar CPUs have a high degree of on-chip parallelism. The
same degree of parallelism has to be exposed in the program in order to achieve the best effi-
ciency. As an illustration, let us look at a simple vector norm calculation.

program length
parameter (n=2xx14)
dimension a(n)
subroutine 1lngthl (n,a,tt)
implicit realx8 (a-h,o-z)
dimension a (n)
tt=0.d0
do 100, 3=1,n
tt=tt+a (j)*a(3j)
100 continue
return
end

We aim to optimize this vector norm subroutine on an IBM 590 workstation. This processor
has two floating point units. However, the program has only one independent stream and thus
cannot keep two units busy. Furthermore, we see that the output ¢t of one fused multiply-add is
the input for the next fused multiply-add. Hence, we have a dependency. Since the latency of
the FMA is two cycles, we cannot start a new FMA every cycle, as it would be possible if we
had independent operations. With this in mind we restructure the program as follows.

subroutine 1lngth4 (n,a,tt)
c works correctly only if the array size is a multiple of 4
implicit realx8 (a-h,o-z)
dimension a (n)
t1=0.d0
t2=0.d0
£3=0.d0
t4=0.d0
do 100, j=1,n-3,4
c first floating point unit, all even cycles

Optimization of Numerical Codes DI1.15

tl=tl+a (j+0) *a (j+0)
c first floating point unit, all odd cycles
t2=t2+a(j+1) xa(j+1)
c second floating point unit, all even cycles
t3=t3+a (j+2) xa (j+2)
c second floating point unit, all odd cycles
td=t4d+a (J+3) *a (j+3)
100 continue
tt=tl1+t2+t3+t4
return
end

This kind of transformation is called loop unrolling. Its effect is that it usually improves the
availability of parallelism within a loop. The number of independent streams generated by loop
unrolling, four in the subroutine Ingth4, is called the depth of the unrolling. On an IBM 590
workstation, the unrolled version runs at peak speed (260 Mflops), whereas the original version
runs at just one fourth of the peak speed. Of course, this is true only for data sets that are cache
resident.

Most compilers will try to do optimizations of this type when invoked with the highest opti-
mization level. Even in this simple example some subtleties are present and it can not be taken
for granted that the compilers generate optimal code.

5.3 Improving the ratio of floating point operations to memory accesses

In addition to the advantages already discussed, loop unrolling can also be used to improve the
ratio of floating point operations to load/stores. This improved ratio can be beneficial for loops
that have many array references. Such loops are dominated by memory accesses. Let us look
at the following matrix-vector multiplication routine, multiplying the vector by the transposed
matrix.

subroutine mult (nl,ndl,n2,nd2,vy,a, x)
implicit realx8 (a-h,o-z)
dimension a(ndl,nd2),y(nd2),x(ndl)
do i=1,n2

t=0.d0

do j=1,nl

t=t+a(j,i)*x(j)

enddo

y(i)=t
enddo
return
end

First of all, we note that the loop ordering is optimal from the point of view of data locality. All
the memory accesses have unit stride. If the loop over ¢ were the innermost one, the stride would
be ndl for accesses to a. The problem with this subroutine is that, even though the vector x has
only n1 elements, we are loading nl1 x n2 elements of z. Expressed differently, each element
of x 1s loaded n2 times. This is clearly a waste of memory bandwidth.

The subroutine “multo” shown below is an unrolled version of “mult”. The effect to be demon-
strated here is related to a better ratio of floating point to load/stores in the optimized version
“multo”.

Dl1.16 S. Goedecker

subroutine multo(nl,ndl,n2,nd2,vy,a,x)
c works correctly only if nl,n2 are multiples of 4

implicit realx8 (a—h,o-z)

dimension a(ndl,nd2),y(nd2),x(ndl)

do i=1,n2-3,4

t1=0.d0

t2=0.d0

£3=0.d0

t4=0.d0

do j=1,nl-3,4
tl=tl+a(j+0,1+0) *x (j+0)+a (j+1,1+0)»x (J+1)+a(j+2,1i+0
t2=t2+a (j+0,1i+1) *x (j+0) +a (j+1,i+1) *»x (j+1)+a(j+2,i+1
t3=t3+a (j+0,1+2) *x (j+0) +a (j+1,1i+2) »x (j+1)+a (j+2,1i+2
td=td+a (j+0,1+3) *x (j+0) +a (j+1,i+3) »x (J+1)+a (j+2,1i+3
enddo

vy (i+0)=t1l

y(i+l)=t2

v (i+2)=t3

y (i+3)=t4

enddo

return

end

*x (J+2) +a (343, 140) xx (3+3)
*X (J+2)+a (3+3,1+1) *x (J+3)
*X (J+2)+a (J+3,1+2) *x (3+3)

(()

)
)
)
) *x (J+2)+a (J+3,1i+3) »x (J+3

In the case of the unoptimized version, two array elements (a(j,?), z(j)) have to be loaded into
registers, resulting in two loads for one multiplication and one addition per loop iteration. In the
unrolled case, 20 elements (16 elements of a, 4 of x) have to be loaded into registers, resulting
in 20 loads for 16 multiplications and 16 additions. This effect is particularly important on
machines that can do more floating point operations than loads in one cycle. At the same
time, we have eliminated dependencies and better exposed the instruction parallelism. Timing
on an IBM 590 workstation shows that, for the unoptimized version, one cycle is needed per
loop iteration, whereas in the optimized version only .27 cycles are needed, corresponding to
a speed of 240 Mflops. This impressive performance number cannot be explained solely by
the eliminated dependencies and improved parallelism. If we had two loads per loop iteration,
the best we could expect would be .8 cycles. Our earlier observation (Table 1), that the higher
level BLAS routines perform better than the lower level ones, is related to the fact that, by
suitable loop unrolling one can obtain a better floating point to load/store ratio for the higher
level routines than for the lower level ones.

In this simple case, loop unrolling was enough to obtain this speedup. Most compilers do a
good job at unrolling when invoked at an appropriate optimization level.

5.4 Aliasing

Two arrays, labeled by different names, are aliased if they refer to identical memory locations.
The rules for allowing certain kinds of aliasing are different in various programming languages.
Fortran severly restricts aliasing, whereas C allows it. Hence, a Fortran compiler has more
information than a C compiler and presumably can do a better optimizing job. In this section
we will first explain the issues related to aliasing and then describe solutions for C and C++
programs.

Let us consider the following subroutine

subroutine sub(n,a,b,c, sum)
implicit real*8 (a-h,o-z)
dimension a(n),b(n),c(n)

sum=0.d0
do 100,i=1,n

Optimization of Numerical Codes D1.17

a(i)=b (i) + 2.d0*c (1)
sum=sum + b (i)
100 continue

return
end

According to the Fortran rules, two dummy arguments cannot be aliased if either one of them is
modified by the subroutine. When calling a subroutine with identical arguments, the compiler
will usually tolerate it, but the results are unpredictable. Such a subroutine call is syntactically
correct, but semantically incorrect. We show below a semantically incorrect call to the sub-
routine and a semantically correct call. We can imagine other scenarios leading to the same
aliasing. For example, if we equivalenced the arrays a and b in the main program, the semanti-
cally correct sequence would become incorrect.

implicit realx8 (a-h,o-z)
parameter (n=1000)
dimension a(n),b(n),c(n)

do 10,i=1,n

a(i)=1.do0

b(i)=1.d0

c(i)=2.d0
10 continue

c semantically correct call
call sub(n,a,b,c,sum)

c semantically incorrect call
call sub(n,a,a,c,sum)

As we have learned already, most compilers do software pipelining. There are many possible
ways to software pipeline the subroutine sub. One such possibility is shown below, in Fortran.
For simplicity, let us assume that we are running on hardware capable of performing one floating
point operation and one load or store per cycle. Let us also assume that the depth of the floating
point unit is two stages for a fused floating point multiplication-addition, i.e. the result is only
available two cycles after the operation started. The latency of load/store operations is one cycle.
Under these assumptions, all the groups in the code below separated by comments, containing
one or two instructions, can be performed in consecutive cycles. This is due to the fact that
dependent groups are separated by at least one cycle. Therefore, three cycles only are needed to
complete one loop iteration. As expected, the correct result is obtained using the semantically
correct calling sequence. If the instructions are executed exactly in the order shown below, an
incorrect result is obtained in the case of the semantically incorrect calling sequence. This is
due to the fact that the old elements of b are used to form the sum, instead of the updated ones.

th=b (1)
tc=c (1)
do 100,i=1,n-1

c first cycle
ta=tb+2.d0xtc
tc=c(i+1)

D1.18 S. Goedecker

c second cycle
sum=sum+tb
tbh=b (i+1)

¢ third cycle

a(i)=ta
100 continue
i=n

ta=tb+2.d0x*tc
sum=sum+thb
a(i)=ta

Let us now consider a second possible way to schedule the instructions, as shown below. In
this case the software pipelining is not optimal. In order to resolve the dependencies, we intro-
duce an idle cycle, denoted by NOOP. Moreover, the floating point addition is not overlapped
with a load/store. This loop iteration takes eight cycles, instead of three cycles in the software
pipelined version. As the reader can verify, this non-optimal instruction schedule gives the
correct result for both the semantically correct and the semantically incorrect Fortran calling
sequences. Even though “NOOP”, is not a Fortran instruction we have mixed it with conven-
tional Fortran syntax.

do 100,i=1,n
tc=c (1)
tbh=b (1)
ta=tb+2.d0xtc
NOOP
a(i)=ta
tbh=b (1)
sum=sum+tb

100 continue

An important point is that a semantically incorrect structure in Fortran is perfectly correct in
standard C or C++. According to the ANSI C standard, any two variables of the same type
(such as integers or double precision numbers) can be aliased. This means that the compiler
always has to assume the worst case scenario, the one in which severe aliasing is present. This
is confirmed by looking at the assembler code generated by the IBM C compiler for the corre-
sponding C version of the program. The instruction schedule generated is essentially identical
to the one shown above. Obviously, the standard C conventions prevent the compiler from doing
efficient, software pipelined, instruction scheduling. The execution time of the C program on
an IBM 550 workstation is eight cycles per loop iteration, compared to three cycles per iteration
for the Fortran code.

In the example above we concentrated only on the relatively simple case where a(i) was equiv-
alenced to b(7). More complicated aliasing schemes are possible in C, such as a(i) being equiv-
alenced to b(i +2). Scalar variables could also be aliased to certain array elements, such as a(9)
being equivalenced to sum.

Most C compilers allow for compiler options or compiler directives that declare aliasing to be
illegal. The details are vendor specific and can be found in the man pages. If these options are
used, a C code should, in principle, be as fast as the corresponding Fortran code. The C compiler
has then the same information and should be able to do essentially the same optimizations. In
practice though, this is not always the case. Another possibility to alleviate the performance

Optimization of Numerical Codes DI1.19

penalty associated to aliasing is to assign by hand all array elements that are not subject to
aliasing to different local scalar variables. In this way, the compiler can perform beneficial
optimizations.
Even though aliasing problems exist mainly in C, they can also be found in Fortran, when
indirectly indexed arrays or pointers are used. Let us look at an example involving indirectly
indexed arrays.

subroutine sub(n,a,b, ind)
implicit real*8 (a-h,o-z)
dimension a(n),b(n),ind(n)

do 100,i=1,n
b(ind(i))=1.d0+2.d0xb(ind(i))+3.d0*a (i)
100 continue

return
end

Evidently, consecutive loop iterations are not independent if ind(i) = ind(i + 1). Fortran
compilers have to take this possibility into account and therefore turn off software pipelining
which involves working on several independent loop iterations simultaneously. Some compilers
allow for the use of directives indicating that ind(7) is an invertible mapping and hence aliasing
is not present.

Pointers are a standard in Fortran90. They are another feature which can lead to aliasing am-
biguities. We will illustrate this effect for the sample Fortran90 program shown below that
updates the positions of a set of n particles using their velocities. As discussed earlier, the ideal
data structure would be one where the x, y and z components of all the arrays are adjacent in
memory. In this example, we assume that the three components are in different arrays. Since
the different elements of the position and the velocity are referenced by pointers only in the
subroutine “move”, the compiler has to allow for the possibility that they are aliased. The gen-
erated code may not be efficient. Any arithmetic operation has to be preceded directly by the
loads of all the operands involved and followed by an immediate store of the result.

MODULE declarations
type position_type
double precision, dimension(:), pointer :: rx, ry, rz
end type position_type
type velocity_type
double precision, dimension(:), pointer :: vx, vy, Vz
end type velocity_type
END MODULE declarations

PROGRAM test
USE declarations
implicit none

integer :: n

type (position_type) :: position
type (velocity_type) :: velocity
n=1000

ALLOCATE (position%rx (n),position%ry (n),position%rz (n))
ALLOCATE (velocity%vx (n),velocity%vy (n),velocity%svz (n))
position%rx=0.d0; position%ry=0.d0; position%rz=0.d0

D1.20 S. Goedecker

velocity%svx=1.d0; velocity%vy=1.d0; velocity%$vz=1.d0
call move(n,position,velocity)
END PROGRAM

SUBROUTINE move (n,position,velocity)
USE declarations

implicit none

integer :: i,n

type (position_type) position

type (velocity_type) velocity

double precision, parameter :: dt=1.d-1

do i=1,n-1,2

position%$rx (i)=position%rx (i) +dtxvelocitysvx (i)

position%ry (i)=position%ry (i) +dtxvelocitySsvy (1)

position%rz (i)=position%rz (i) +dtxvelocity%svz (1)

position%rx (i+l)=position%rx(i+l)+dt*velocity%svx(i+l)

position%$ry (i+l)=position%ry (i+l)+dtxvelocity%vy (i+1)

position%rz (i+l)=position%rz (i+l)+dt*velocity%vz (i+1)
enddo

END SUBROUTINE move

5.5 Special functions

The calculation of special functions, such as divisions, square roots, exponentials and loga-
rithms requires anywhere between a few dozen cycles up to hundreds of cycles. This is due to
the fact that these calculations have to be decomposed into a sequence of elementary instruc-
tions such as multiplies and adds. The first advice is to keep the number of special function
calls to a strict minimum. The number of special function calls can sometimes be reduced
by storing the values of repeatedly used arguments in an array, instead of recalculating them
every time. Frequently, usage of mathematical identities can reduce the number of special func-
tion evaluations. For example, calculating log(x*y) is nearly two times faster than calculating
log(x)+log(y).

A large fraction of the CPU time in the evaluation of special function goes into the calculation
of the last few bits. Relaxing accuracy demands has the potential of considerably speeding up
these calculations. Most vendors have libraries that calculate special functions with slightly
reduced accuracy, but significantly faster.

5.6 If statements

If statements slow down a program for several reasons. First, the compiler can do fewer opti-
mizations in their presence, such as loop unrolling. Second, the evaluation of the conditional
takes time by itself. Third, the continuous flow of data through the pipeline is interrupted when
branching. The time for executing the branch condition itself is actually negligible, and/or over-
lapped by other instructions. In many cases, if statements can be significantly reduced or even
eliminated completely by restructuring the program. This restructuring is very much context
dependent, so that it is difficult to provide general guidelines on how to do it.

Optimization of Numerical Codes D1.21

5.7 Loop overheads

Loops involve certain overheads. Registers needed within the loop need to be freed by storing
their old values in memory. Other registers containing loop counters and addresses have to be
set. The exit from the loops necessarily involves a mispredicted branch. The resulting overhead
can vary from a few up to a few dozen cycles. Such overhead is obviously negligible if a lot of
work is done within the loop, either because one iteration of the loop involves a lot of numerical
operations or because many iterations through the loop are present.

5.8 Copy overheads in Fortran90

In Fortran90, it is possible to work on substructures of arrays. For example, a row of a matrix
can be considered as a vector. In principle a good compiler can avoid, in most cases, copying
the substructure into a work array. Unfortunately many compilers frequently do unnecessary
copies, requiring superfluous operations as well as additional memory.

6 Optimization of memory access

As it has been stressed already several times in this article memory access is the major bottle-
neck on machines with a memory hierarchy. Therefore, optimizing the memory access has the
largest potential for performance improvements. While floating point optimization can speed
up a program by a factor two for in-cache data, memory access optimization can easily lead to
performance improvements by a factor of ten or more for out of cache data.

In this section we discuss issues pertinent to memory access optimization. For readability, many
examples will present loop structures that were not unrolled or otherwise optimized according
to the principles put forward in the previous section. When timings are presented, the floating
point optimizations are done by hand or by invoking the compiler with appropriate options.

6.1 Loop reordering for optimal data locality

The following code sequences differ in their loop ordering only:

dimension a(n,n),b(n,n) dimension a(n,n),b(n,n)
C LOOP A C LOOP B

do 10,1i=1,n do 20, 3j=1,n

do 10,3=1,n do 20,i=1,n
10 a(i,j)=b(i, 3) 20 a(i,j)=b(i,3)

Let us discuss the memory access patterns of these two loops for the case of small and of big
matrices. To simplify the analysis we assume that the size of the cache is very small, 128
double precision numbers only. In this case, a matrix is small when n is less than eight words,
and therefore both @ and b fit in cache. The length of a cache line is assumed to be eight
doublewords. According to the Fortran convention, the physical ordering of matrix elements in
memory is the following:

a(l,1),a(z,1),a(3,1), ... ,an,1) , a(l,2),a(2,2),a(3,2), ... ,a(n,2),
We refer to this access pattern as “column major order”. In C, the storage convention is just

the opposite, “row major order”’, meaning that the last index is “running fastest”. Therefore, the
physical indexing of our small (n=8) and big (n=16) matrices is the following, in Fortran:

D1.22 S. Goedecker

O J o U W R

O ~J o U b w N

©

10
11
12
13
14
15
16

9 17 25 33 41 49 57
10 18 26 34 42 50 58
11 19 27 35 43 51 59
12 20 28 36 44 52 60
13 21 29 37 45 53 61
14 22 30 38 46 54 62
15 23 31 39 47 55 63
16 24 32 40 48 56 64

17 33 49 65 81 97 113 129 145 161 177 193 209 225 241
18 34 50 66 82 98 114 130 146 162 178 194 210 226 242
19 35 51 67 83 99 115 131 147 163 179 195 211 227 243
20 36 52 68 84 100 116 132 148 164 180 196 212 228 244
21 37 53 69 85 101 117 133 149 165 181 197 213 229 245
22 38 54 70 86 102 118 134 150 166 182 198 214 230 246
23 39 55 71 87 103 119 135 151 167 183 199 215 231 247
24 40 56 72 88 104 120 136 152 168 184 200 216 232 248
25 41 57 73 89 105 121 137 153 169 185 201 217 233 249
26 42 58 74 90 106 122 138 154 170 186 202 218 234 250
27 43 59 75 91 107 123 139 155 171 187 203 219 235 251
28 44 60 76 92 108 124 140 156 172 188 204 220 236 252
29 45 61 77 93 109 125 141 157 173 189 205 221 237 253
30 46 62 78 94 110 126 142 158 174 190 206 222 238 254
31 47 63 79 95 111 127 143 159 175 191 207 223 239 255
32 48 64 80 96 112 128 144 160 176 192 208 224 240 256

In the following discussion we assume that the first matrix elements of both @ and b are aligned
on a cache line boundary, i.e. the first element of each matrix is also the first element of a
cache-line. We also assume that all the data are out of cache at the beginning of the calculation.
We distinguish the following cases:

Loop A, small matrices
In this case the matrix elements will be accessed in the following order:

x(1,1),x(1,2),x(1,3), .. ,x(1,8) , x(2,1),x(2,2),x(2,3), .. ,x(2,8),

where x denotes either a or b. However, this is not the physical order in memory. The
elements x(1,7) and x(1,i + 1) are actually eight doublewords apart and thus a cache
miss will occur on the first eight loads of both a and b, as we access the physical memory
locations 1, 9, 17, 25, 33, 41, 49 and 57. Since the cache can house all of the 2 x 8 = 128
doublewords that were brought in during the first eight iterations of the double loop, all
subsequent memory references will be cache hits. No other cache misses will occur in all
of the remaining loop iterations. The load of all the 2 x 82 elements involved 2 x 8 cache
misses, 1.e. one cache miss for every 8 words.

Loop A, big matrices

The memory access pattern will be the same as above, i.e. consecutive memory references
are not adjacent. In this case they are 16 doublewords apart. After the first 16 iterations
of the loop (each of which caused a cache miss) we will have loaded 2 x 16 cache lines,
1.e. 2 x 16 x 8 = 128 doublewords. The cache will be full. All of the subsequent cache
lines loaded will need to overwrite the existing ones. The old cache lines will be flushed
out of cache and stored back in the main memory. The cache line holding elements 129

Optimization of Numerical Codes D1.23

to 136 will replace the cache line holding elements 1 to 8, the cache line holding elements
145 to 152 will replace the cache line holding elements 17 to 24, and so on. In the second
iteration of the outer loop, the array element x(2, 1), which was loaded in cache along
with x(1, 1), will no longer be available, as its cache line was replaced. This implies that
the number of cache misses is now 2 x 162, i.e. one cache miss for every word accessed.

e LoopB
In this case we access the matrix elements exactly in the order in which they are stored in
memory. We will then have one cache miss for every 8 doublewords for both small and
large matrices. All the data brought in cache by the cache misses will be reused by the
subsequent inner loop iterations.

We see that, for large matrices, the loop structure A results in a significant performance loss.
For a realistically scaled up example, the performance degrades roughly by a factor of 30 on
an IBM 590 when using loop A instead of loop B. Loop B gives the best data locality and 1is
always to be preferred, even though in the case of small matrices the performance is the same
for both orderings. The above conclusion remains valid in the more stringent, but realistic case,
where the matrices are not aligned on a cache line boundary.

This example was chosen for didactic reasons only. In practice, for array copying, using the
BLAS DCOPY routine is recommended. By using the calling sequence

call DCOPY (n#*n,b,1,a,1)

the matrices a and b are considered as one-dimensional vectors of length n? and the copying is
done optimally from a data locality standpoint. At high optimization levels good performance
can be obtained without BLAS, if the compiler collapses the two loops into a single one.

6.2 Cache thrashing

As explained in section 2.4, cache thrashing occurs if the effective size of the cache is much
smaller than its physical size because of the constraints of the mapping rules. In this section we
analyze cases where cache thrashing can occur in codes. Let us look at the following program.

program cache_thrash
implicit realx8 (a-h,o-z)
c array x without buffer
parameter (nx=2+xx13, nbuf=0)
c array x with buffer
C parameter (nx=2+xx13, nbuf=81)
dimension x (nx+nbuf, 6)

nl=2x%10
call sub(nl,x(1,1),x(1,2),x(1,3),x(1,4),x(1,5),x(1,6))
end

subroutine sub(n,x1,x2,x3,x4,y1,y2)
implicit real*8 (a-h,o-z)
dimension x1 (n),x2(n),x3(n),x4(n),yl(n),y2(n)

do 15,1i=1,n-1,2

D1.24 S. Goedecker

1(1i4+40)=x1(1i40)+x2 (1+0)
1(i4+1)=x1(i+1)+x2 (i+1)
2(1i4+0)=x3(14+0)+x4 (1+0)
2(i+1)=x3 (i+1)+x4 (i+1)
15 contlnue
return

end

On an IBM 590, with nbu f=0 we get a performance of just 3.5 Mflops, whereas 67 Mflops
is achieved with nbu f=81 or any other reasonable nonzero value. Note that we did not mod-
ify at all the subroutine that is doing the numerical work. The reason for the extremely poor
performance, in the first case, is that all six memory references are mapped to the same four
slots in cache (Figure 3). So, even though all the data of size 6 x 2!9 = 6144 words that are
accessed in the subroutine could easily fit in cache, the effective cache size in this case is only
four cache lines (4 x 32 = 128 doublewords), which is not enough to hold all of the six cache
lines. This example is of course contrived. In most applications the starting elements of these
six arrays will not be separated by a high power of two. However, there are many algorithms,
most notably Fast Fourier transforms, fast multipole methods, multigrid methods and wavelet
transforms, where the leading dimensions are typically high powers of two. Padding the arrays
will fix the performance problem in these cases. It is clear that the likelihood of running into
cache thrashing is higher for directly mapped caches than for set associative ones.

On a computer with several cache levels, cache thrashing can occur for each level as well as
for the TLB. In dealing with this, we recommend the conservative assumption that all memory
levels behave like inclusive caches. This means that strides (usually leading dimensions) need
to be adjusted in such a way that conflict cache misses are avoided for all cache levels.

Even in the absence of arrays with pathological cache behavior, there will seldom be perfect
mapping. Good usage of the cache size is particularly difficult in the case of directly mapped
caches. In this case, in order to increase the effective cache size, the arrays may have to be
aligned by hand in memory. This can be done by copying them in a work array, and choosing
the starting positions of the sub-arrays in the work array in an optimal way. An alternative is to
align them in a common block. The first method has the advantage that the starting positions
can be chosen dynamically. For the program cache_thrash this first solution can be implemented
as follows:

implicit realx8 (a-h,o-z)
parameter (nn=1024, nx=2x%15)
dimension w(nn*6),x(nx,6),1ist (6)

nl=....

iist=1
do j=1,6
ist(j)=iist
do i=1,nl
w(iist)=x (i, J)
iist=iist+1
enddo
enddo

Optimization of Numerical Codes D1.25

35 I I I I I I I I I

30 .

by et 1 nd
1y m ,\ vl|r |Wl i m\I/m AM, {\IWMWNV l,‘Ja\,vr: W'.'," a w\ ““n‘ “JI
| I

20 ”ﬁ H::H ! H ¢ .J ' H_

1|~1\JW’0\ ﬂ,».;il‘u\“'y I ""llh,! ¥

* r‘ i

15 |

10

Mega copies/second

0 | | | | | | | | |
400 600 800 1000 1200 1400 1600 1800 2000
size of matrix

Fig. 4: Performance of a matrix transposition with (dashed line) and without (solid line) block-
ing. In absence of blocking the performance decreases dramatically for large matrix sizes. The
performance of the blocked version stays fairly constant with the exception of certain matrix
sizes where cache thrashing occurs.

Q
@
—
—
%)
c
o
=)
'_l
=
-
)
pa
O
=
o)
o)
it
N
=
o)
o)
it
R

end

6.3 Square blocking

Square blocking (or tiling) is a strategy for obtaining spatial data locality in loops where it is
not possible to have small strides for all referenced arrays. One simple example is a matrix
transposition, performed by the program below.

subroutine rot (n,a,b)
implicit realx8 (a-h,o-z)
dimension a(n,n),b(n,n)

do 100,1i=1,n
do 100, j=1,n
b(jri)za(irj)
100 continue

return
end

Obviously, it is not possible to have unit stride access for the elements of the arrays a and b
at the same time. For large data sets, that do not fit in cache, the performance degradation is
significant, as shown in Figure 4.

The fact that reasonable performance is achieved for small data sets suggests the solution for
large data sets. Instead of transposing the matrix in one big chunk, we subdivide it into smaller
sub-matrices and we transpose each of the smaller arrays. This divide-and-conquer strategy

D1.26 S. Goedecker

£
t~
N
L 4)
/w
—

!
ol
)p!

-

&

o
.” "
s
wavs

=

gs
o
{A
Jols!
(3
ogs;
Gl
R
’(0,

a&
a&
i

!
&
Sl

<
G
03
{7
(K
<)
.
e

KK
»
bal)

Fig. 5: Schematic representation of a blocked matrix transposition. The matrices are first sub-
divided into sub-matrices (in this case of size 2 by 2) denoted by differently hashed backgrounds
and then each pair of sub-matrices is transposed.

is called blocking and is shown schematically in Figure 5. The sub-matrices are indicated by
different hashing patterns.
The Fortran implementation of the blocked version is the following:

subroutine rotb(n,a,b, lot)
implicit realx8 (a-h,o-z)
dimension a(n,n),b(n,n)

c loop over blocks
do 100,1ii=1,n, lot
do 100, 33=1,n, lot

c loop over elements in each block
do 100,i=ii,min(n,ii+ (lot-1))
do 100, 3=jj,min(n, jj+ (lot-1))

b(j,1i)=a (i, J)
100 continue

return
end

The blocking parameter (ot depends on the cache size. If the full physical cache were available,
then lot would be chosen such that 2 x [ot? = the cachesize. Because of the mapping rules
previously discussed, the effective cache size is smaller than the physical cache size and we
have to choose a smaller value of [ot. The exact value could be determined by using subroutine
“cache_par”. Simply taking the effective cache size as equal to half the physical cache size
works reasonably well for most matrix sizes, but cache thrashing occurs for some values, as
shown in Figure 4.

An interesting question is whether it is necessary to square block with respect to several levels
of the memory hierarchy, such as for the L1 cache, L2 cache and the TLB. According to our
experience that is usually not necessary. L1 caches are usually small and blocking for them
will lead to poorly performing short loops. Blocking for the TLB is necessary only for very

Optimization of Numerical Codes D1.27

large data sets. In addition, the number of TLB misses is, in general, negligible compared to the
number of cache misses. In the case of a three-level memory hierarchy, it is only necessary to
block for the L2 cache. The new IBM Power3 architecture, with large L1 and L2 caches, might
be an exception from this rule.

Blocking is error prone and the code is likely to become less legible. Most compilers do square
blocking when invoked with certain options. We verified that the IBM and SGI compilers
generate optimal blocking, if invoked appropriately, in this easy example. For more complicated
loops, compilers are unlikely to do a satisfactory blocking job.

6.4 Line blocking

Square blocking is based on a static picture. A big matrix is subdivided into smaller rectangular
matrices, on which we work sequentially. Square blocking causes a doubling of the number of
loops. Line blocking, also called row- or column-oriented blocking is based on the understand-
ing of the dynamics of the data flow through the cache. Whereas in simple blocking rectangular
(or square) blocks are utilized, whose size is related to the size of the cache, irregular domains
(Figure 8) can be used in line blocking, as will be explained in the following. The advantage is
that fewer loops are needed and, in general, the innermost loops are longer.

To derive line blocking let us start with the blocked version of the matrix transposition subrou-
tine rotb. Evidently, the algorithm is independent of the order in which we visit the different
blocks. Hence, we can switch the order of the 72 and jj loops. In addition, we can also merge
the 72 and 7 loops to obtain:

subroutine rots(n,a,b, lot)
implicit realx8 (a-h,o-z)
dimension a(n,n),b(n,n)

do 100, 33=1,n, lot
do 100,i=1,n
do 100, 3=3j,min(n, jj+ (lot-1))
b(jri):a(irj)
100 continue

return
end

Let us first consider the simplest, but unlikely, case where the leading dimension n is a multiple
of the cache line length. For the moment we will only concentrate on the data access pattern for
the array a, since the array b has the best spatial data locality due to its stride one access. The
array elements of a needed at different stages of transposition, as well as their location in cache,
are shown in Figure 6.

The storage locations for the elements of a in a directly mapped cache are shown in Figure 7.
Matrix elements that are brought in at a certain stage, without being used immediately, are used
in subsequent iterations before the cache line holding these elements is overwritten by other
cache lines.

In general, the dimension of the matrix is not a multiple of the cache line size. The cache lines
that are needed in this case are shown in Figure 8.

The choice of the blocking parameter [ot was obvious for the data set defined in Figure 6 and a
cache whose characteristic parameters were declared in Figure 7. In realistic cases, the determi-
nation of the largest possible value of lot is more difficult and is best done by experimentation.

D1.28 S. Goedecker

Fig. 6: Areas of the matrix a that are used during three successive iterations of the i-loop in the
subroutine “rots”. The leading dimension n of a is taken to be twelve, the blocking parameter
lot is eight. A cache line holds four doublewords. The elements accessed for fixed values of
1 are denoted by the hashed horizontal bars. The cache lines to which these elements belong
are indicated by black vertical bars. Since “rots” is written in Fortran, the matrix is stored in
column major order.

. 11— 12— 13——

1=1 14— 15— 16—
17— 1,8——

) —21— — 22— —23—

=2 — 24— — 25— —26—
— 27— —28—

. — 31— — 32— — 33—

1=3 — 34— — 35— —3,6—
— 37— — 38—

. — 4] — 47 — 43

1=4 — 44 — 45 — 46
— 47 —— 48

. 51— 50— 53—

1=5 54 —— 56 —— 5,6——
57— 58——

Fig. 7: Cache locations of the elements of a in the subroutine “rots”. As in Figure 6, the
leading dimension n of a is taken to be twelve, the blocking parameter lot is eight. The first
five iterations of the i loop are depicted. The order in which the elements are accessed in the
7 loop is obtained by reading the elements in the usual order, i.e. from left to right and then
downwards. The figure assumes that one cache line (depicted as a box) can hold four array
elements and that the entire cache (directly mapped) can hold eight cache lines. We note that
all cache lines are occupied after eight iterations of the j loop. Of the 32 words loaded during
the first i iteration, only eight are used in the same iteration. However, all the other 24 array
elements are used in the following three 1 iterations. No other cache lines have to be loaded
during these three 1 iterations. The elements are overwritten after four iterations of the i loop,
but then they are no longer needed. In absence of the j loop blocking, these 24 elements would
be overwritten before used.

Optimization of Numerical Codes D1.29

Fig. 8: Areas of the matrix a that are used during two successive iterations of the i loop in the
subroutine “rots”. The leading dimension n of a is not a multiple of the cache line size. The
symbols used for the cache lines and elements accessed are the same as in Figure 6.

The performance of a matrix transposition done in this way is shown in Figure 9. Even though
cache thrashing is prevented in this case, we observe certain large matrix sizes where serious
performance degradation occurs. This is due to TLB thrashing. Since the TLB behaves like a
higher level cache, we can use the same simulation program *“cache_par” to determine leading
dimensions nd and blocking parameters /ot that avoid both cache and TLB thrashing, as shown
below. In contrast to square blocking, line blocking with respect to several cache levels does not
lead to a larger number of loops. The number of loops is the same as for blocking with respect
to a single level, only the leading dimension has to satisfy more constraints.

nd=n
111 continue
call cache_par (ncache_line,ncache_size,nd, lotc)
call cache_par (ntlb_line,ntlb_size,nd, lott)
c 1f we have frac of the physical cache and tlb size, we are satisfied
frac=0.75d0
if (lotc.ge.frac*ncache_size/ncache_line .and.
& lott.ge.fracxntlb_size/ntlb_line) then
goto 222
endif
nd=nd+1
goto 111
222 continue
lot=min (lotc, lott)

Once nd and lot are optimized for cache and TLB, we get good performance for all matrix
sizes, as shown in Figure 10.

The performance data shown in Figures 4, 9, and 10 were actually obtained with unrolled
versions of the subroutine “rots”. Neglecting the tail section, which would insure correctness
for odd values of n, this code has the following form:

D1.30 S. Goedecker

30 I I I I I I I I I

‘| A

20 §

Mega copies/second

18

16 |

14 | | | | | | | | |
400 600 800 1000 1200 1400 1600 1800 2000
size of matrix

Fig. 9: Performance of a matrix transposition using one-dimensional blocking with an optimally
adjusted leading dimension and a value of lot calculated by the cache simulation program
“cache_par”. For certain matrix sizes, serious performance degradation occurs due to TLB
thrashing.

30 I I I I I I I I I

5 N i | i
TR N M \ ,
) WA (Wi} 0 Mo at Y]
28 Hi Mt i i,{u" RO m”"/"'”“‘ RN f"‘ynhn"‘\,{m"\“ﬂvl an”, b .'.,'\)
1k 1Kt \',\ TNy R ’NI\ g Loy \/“’\,\gw,’" r‘i)\"‘"
| | [
(Rt i ‘V i "f"l« Mo WYL \ ‘\“' W‘Al
26 i W ! ¢y
1 | !
I
|

24 -

22

20

Mega copies/second

18 |

16 |

14 | | | | | | | | |
400 600 800 1000 1200 1400 1600 1800 2000
size of matrix

Fig. 10: The dashed lines show the performance of a matrix transposition using one-
dimensional blocking where nd and lot were optimized with respect to both cache and TLB.
The solid lines show the performance of the “DGETMO” matrix transposition subroutine from
the ESSL library for the same leading dimensions nd.

Optimization of Numerical Codes D1.31

do 100, 33=1,n, lot

do 100,1i=1,n-1,2

do 100, j=3j,min(n, jj+lot-1),2
b(3j+0,i+0)=a(i+0, 3+0)

b(j+0,i+1)=a(i+1, 3j+0)

b(j+1,i+0)=a (1+0, j+1)

b(j+1,1i+1)=a(i+1, j+1)
100 continue

The fact that in this unrolled version we are referencing the array elements a(i + 0,7 + 0) and
a(i 4+ 1,5 + 0) suggests that we might actually use data belonging to two adjacent cache lines.
The referenced array elements could even belong to two adjacent pages, an unlikely possibility
which we choose to neglect. In all the tests presented in this section, we have determined nd
and (ot such that one associativity class of the cache can be filled up to a certain fraction of its
physical capacity. In the case that two adjacent cache lines are accessed in one loop iteration,
the second cache line can always be stored in another associativity class. The remaining two
associativity classes are, roughly speaking, reserved for the two data streams of the input array
b (b(*,1) and b(*,i+1)), each having a stride one access pattern. Using two associativity classes
for the input array b seems to be a waste. Its cache lines could, in principle, be overwritten
immediately after being used. However, since we have no influence over which elements are
overwritten (the least recently used policy in general determines that), we have to let these array
elements age sufficiently in cache before they can be overwritten by useful new data. It is
obvious that for this kind of memory access optimization, it is very convenient to have a larger
number of associativity classes, such as the four-way associative cache of the IBM Power2
series that was used for these tests.

The optimization techniques presented here are well beyond what a compiler can do. No com-
piler can determine optimal leading dimensions nd, nor change the leading dimensions in a
program. Similarly, no compiler can determine the blocking parameter [ot, since the leading
dimension may not be known at compile time.

The performance of one-dimensional blocking is limited by two factors. Since we have trans-
formed a data access pattern with no locality into one with spatial data locality, the performance
cannot exceed the stride one performance. The best possible performance is reached depending
upon whether the innermost loop is long enough, i.e. the blocking parameter /ot is big enough.
The maximum value of the blocking parameter with respect to one memory hierarchy level is
given by the number of slots available on that level, by which we mean the number of basic
units such as cache lines or pages that that level can accommodate. The overall blocking pa-
rameter [ot equals the smallest blocking parameter of all the cache levels. On an IBM 590, each
associativity class of the cache and the TLB has 256 slots. Loops of length 256 give reasonably
good performance. For matrix transposition, the performance shown in Figure 10 is close to
the one obtained for stride one data access. On the Digital AU433, the TLB has only 64 entries
which leads to loops too short for good performance in matrix transposition.

6.5 Prefetching

As mentioned repeatedly in this article, frequently, the CPU is not fed fast enough with data
from memory. There are two possible reasons that can give rise to this bottleneck. The first
reason is that the memory bandwidth is not large enough for data to arrive at the required rate
from main memory. If a program schedules one load per cycle but the bandwidth to main

D1.32 S. Goedecker

memory only allows one transfer every two cycles, that program will be slowed down by a
factor of two. Even if the bandwidth allows for the transfer of one item per cycle, there is a
second reason why programs can be slowed down, the memory latency. If load instructions are
scheduled briefly before the data item is needed, possible cache misses can cause the CPU to
idle until the data arrives in registers. To avoid this effect, the data item has to be requested long
before needed. If the time between the initial request and the use of the data can be bridged
with other computations for which the operands are available, the CPU will not idle and good
performance is obtained. To a certain extent the compiler tries to schedule loads way ahead.
However, there are limits to what the compiler can do, mainly related to the number of available
registers. If a data item is loaded long before it is needed, it will occupy a register during this
entire period. The solution would be an instruction that transfers one or several cache lines from
the main memory into cache. In this case, it is no longer necessary to schedule the load way
ahead, but only slightly earlier (as explained in section 5.2) since the data will be in cache and
no cache misses will occur. An instruction of this type is called a prefetch. Prefetch instructions
are part of several instruction sets. Prefetch instructions are not provided for in the specifications
of commonly used programming languages.

Alternatively, prefetching can be implemented in hardware, for example by using stream buffers.
Based on runtime information from the first few iterations of a loop, a prediction is made as to
what cache line will be needed in subsequent iterations. These cache lines are then preloaded
into the stream buffer from which they can be transferred very rapidly in cache. Stream buffers
work well for simple access patterns only, such as small and constant stride access.

