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1 Introduction

One of the most common and important class of molecules in living systems are proteins. Mus-
cles and connective tissues are formed by them, and as enzymes, they catalyze and regulate
biochemical reactions in the cell. Greatly differing in size and structure, all proteins are chem-
ically linear chain molecules with the twenty naturally occurring amino acids as monomers.
Locally, regular elements like helices, sheets and turns are formed, but the biological function
of a protein is decided by its unique overall three-dimensional shape that is specified solely by
the sequence of amino acids.

The sequence of amino acids that make up a protein is set in the genome. Hence, after the
successful completion of the human genome project one knows in principal the chemical com-
position of all proteins in the human body. However, for most of the resolved protein sequences
one does not know the corresponding structures. Since proteins are only functional if they fold
into their specific shape, it is important to understand how the structure and function of proteins
emerge from their sequence of amino acids.

One possibility to unveil the sequence-structure (function) relationship are computer experi-
ments. Most proteins exist at room temperature in a unique structure that one can identify it
with the lowest potential energy conformation [1]. Hence, structure prediction of proteins is
a global optimization problem. Both deterministic methods such as the aBB algorithm [2]
and stochastic methods like Monte Carlo minimization [3], simulated annealing [4] or genetic
algorithms[5] are often exploited.

As with all optimization problems, choice of an appropriate energy function is of crucial impor-
tance. As calorimetric measurements show that a protein in its native state is only marginally
more stable (by a free-energy difference of ~ 10 — 20 kcal/mol) than the ensemble of the de-
natured conformations it is important to use realistic models where the interactions among all
atoms are taken into account. The resulting potential energy Eix = Eprotein + Esory (glven in
kcal/mol) is often written as a sum of two terms. The first term, £, tein, describes the interac-
tions between all atoms within a protein, and the second term, F;,, the interaction of a protein
with the surrounding water. Since explicit inclusion of water molecules is computationally de-
manding one often has to rely on implicit solvent models. One example is the introduction of a
solvent-accessible surface term that approximates the hydrophobic forces on the protein [6]

Egorw = ZO_ZAz - (D

Here A; is the solvent-accessible surface area of the ¢ — th atom in a given configuration, and
o0, 1s the empirically determined solvation parameter of the atom «.

As an example for the atomic force fields that model the interactions within a protein I show
here the ECEPP energy function [7]. It is defined by the sum of an electrostatic term FE., a
van der Waals energy E,q1v, and a hydrogen-bond term £}, for all pairs of atoms in the peptide
together with a torsion term E,,.s for all torsion angles:
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Here, r;; is the distance between the atoms ¢ and j, and ¢ is the torsion angle for the chemical
bond [. The parameters (g;, A;j;, Bij, Cij, D;j, U; and n;) are calculated from crystal structures
of amino acids. Since the bond lengths and bond angles are set constant, the true degrees of
freedom are rotations around these bonds characterized by dihedral angles ¢, ¢, w, and ;.
Unfortunately, computer simulations are notoriously difficult for such detailed protein models.
Containing both repulsive and attractive terms, all-atom models of proteins lead to a very rough
energy landscape with a huge number of local minima separated by high energy barriers. For
this reason, sampling of low-energy conformations becomes a hard computational task, and
physical quantities cannot be calculated accurately from simple low-temperature molecular dy-
namics or Monte Carlo simulations. Only recently has been progress in alleviating the above
stated multiple-minima problem. For a review, see, for instance, Ref. [8]. In the following,
I will describe some of these methods that proved to be successful in numerical simulations
and in whose development I was involved. I will further present some recent applications that
illustrate the success and limitations of current protein simulations.

2 Energy Landscape Paving

A general characteristic of successful optimization techniques is that they avoid entrapment
in local minima and continue to search for further solutions. One example that proved very
promising in protein studies is ENERGY Landscape Pavingg (ELP) [9]. In this technique, one
performs low-temperature Monte Carlo simulations with an effective energy designed to steer
the search away from regions that have been already explored:

w(E) = e B/FT  with E=F+ f(H(q,t)) . )

Here, T is a (low) temperature, E serves as a replacement of the energy £ and f(H(q,t)) is a
function of the histogram H(q, t) in a pre-chosen “order parameter” ¢. This may be a “natural”
quantity for the system under study or the energy itself.

The weight of a local minimum state decreases with the time the system stays in that minimum,
i.e. ELP deforms the energy landscape locally till the local minimum is no longer favored,
and the system will explore higher energies. It will then either fall in a new local minimum or
walk through this high energy region till the corresponding histogram entries all have similar
frequencies, and the system again has a bias toward low energies. Since the weight factor is time
dependent it follows that ELP violates detailed balance. Hence, the method can not be used to
calculate thermodynamic averages. Note, however, that for f(H(q,t)) = f(H(q)) detailed
balance is fulfilled, and ELP reduces to the generalized-ensemble methods [10] discussed later.
The small peptide Met-enkephalin is used to illustrate the search process in ELP [9]. This
pentapeptide has the sequence Tyr-Gly-Gly-Phe-Met and is a frequently used benchmark model
to examine new algorithms. Its ground state is known for the ECEPP/2 field (see Eq. 3), as
implemented in the computer code SMMP [11], and has an energy Fy = —10.7 kcal/mol.
Since the next higher local minimum has an energy of £y = —9.8 kcal/mol [12], one can
easily identify any configuration with energy below £ = —9.8 kcal/mol as a representative of
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the ground state. As in our algorithmic presentation of ELP we use the potential energy itself
as an order parameter. Thus the deformed energy landscape of Met-enkephalin is generated by
E = E + H(E,t), where H(FE,t) is the histogram in energy at MC sweep ¢. We chose a bin
size Ey;, = 0.25 kcal /mol in the histogram and set the temperature to 7' = 50 K.

Fig. 1 illustrates the search process in energy landscape paving. The starting configuration has
an energy of Fg,y = —5.1 kcal/mol and was obtained from a random configuration through
quenching in initial 100 sweeps. The simulation soon gets trapped in a local minimum of
E ~ —7.8 kcal /mol (after only 250 MC sweeps). Through the following MC sweeps entries in
the corresponding histogram bin are accumulated and the energy landscape locally deformed,
until after about 750 MC sweeps the simulation escapes this local minimum to find a lower
local minimum after 2000 MC sweeps. This process is repeated till the simulation finds the
global minimum conformation for the first time after 7260 sweeps. Within the 50,000 sweeps
of our simulation the ground state region (E < —9.8 kcal/mol) was reached 5 times each time
separated by explorations in the high energy region. Note that the range of energies covered
increases with MC time: ELP starts with filling up the small ‘potholes’ in the energy landscape,
but fills up also large valleys as the simulation continues.
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Fig. 1: “Time series” of energy for a ELP simulation of the peptide Met-enkephalin. The figure
is taken from Ref. [9]

We have tested the efficiency of ELP by performing 20 independent ELP runs of each 50,000
MC sweeps. The results of the ELP runs are compared with 20 simulated annealing [4] runs
of equal statistics using the annealing schedule that proved to be optimal for Met-enkephalin
in Ref. [13]. However, even with this optimized annealing schedule, the ground state is found
only in 8/20 = 40% of the simulations and the average value of the lowest energy confor-
mation ((Eyin) = —8.5 kcal/mol) is above our threshold for ground state configurations
(—9.8 kcal/mol). On the other hand, with ELP we find the ground state in each of the 20
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Fig. 2: “Time series” of temperature for one copy of Met-enkephalin and energy at temperature
T = 50K as obtained from a parallel tempering simulation. The figure is taken from Ref. [16]

runs. As a consequence the average of lowest energy states (FE,,;,) = —10.3 kcal /mol is well
below our threshold for ground state configuration.

Note also that ELP allows even the possibility of zero-temperature simulations [14]. For 7" — 0
only moves with AE < 0 will be accepted. If we choose: £ = E + cH(E,t), we find as
acceptance criterion:

AE + cAH(q,t) <0< cAH(q,t) < —AFE (5)

where I is the physical energy. Hence, within ELP the system can overcome even at 7' = 0
any energy barrier. The waiting time for such a move is proportional to the height of the barrier
that needs to be crossed. Note that the factor ¢ sets now only the time scale and in this sense the
T = 0 form of ELP is parameter-free.

3 Parallel Tempering

Structure prediction by means of global optimization requires the use of an energy function that
describes the interactions within a protein and between the protein and the surrounding water.
Hence, any global optimization approach to structure prediction of proteins is limited by the
accuracy of the force fields. Global optimization techniques are also not suitable for investiga-
tions of the structural transitions in proteins that are a key issue for understanding the folding
and biological function of a number of proteins. As with structure prediction, it is necessary to
go beyond global optimization techniques such as ELP and to measure thermodynamic quanti-
ties, i.e. to sample a set of configurations from a canonical ensemble and take an average of the
chosen quantity over this ensemble.

Such sampling is hampered by the roughness of the energy landscape. One popular method to
overcome the resulting extremely slow thermalization at low temperatures is parallel tempering
[15] (also known as replica exchange method or Multiple Markov chains), a techniques that
was first applied to protein studies in Ref. [16]. In its most common form, one considers in
parallel tempering an artificial system built up of N non—interacting replicas of the molecule,
each at a different temperature 7;. In addition to standard Monte Carlo or molecular dynamics
moves that act only on one replica (i.e. the molecule at a fixed temperature), an exchange of
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conformations between two copies ¢ and j = ¢ + 1 is allowed with probability
w(C — C") = min(1, exp(—3%E(C)) — B;E(C;) + BE(Ci) + B;E(Cy))) . (6)

The exchange of conformations will at low temperatures lead to a faster convergence of the
Markov chain than is observed in regular canonical simulations with only local moves. This
is because the resulting random walk in temperatures allows the configurations to move out of
local minima and cross energy barriers. Note that parallel tempering does not require Boltzmann
weights. The method can be combined easily with other generalized-ensemble techniques as
was demonstrated first in Ref. [16].

Met-enkephalin is used again to illustrate the parallel tempering algorithm. Simulations with
seven copies were performed [16]. The corresponding temperatures are 77 = 1000 K, 75 = 500
K, T3 = 330K, T, = 250K, T = 170 K, T = 100 K and 75 = 50 K. The simulation consists
of 144,000 sweeps for each copy. After each sweep, an exchange of conformations between
pairs of copies at neighboring temperatures was tried. The “time series” of temperatures for
one of the seven copies is shown in Fig. 2. Due to the exchange move the configuration walks
randomly between low temperatures and high temperatures. The resulting random walk in en-
ergy ensures - as in the case of ELP - that any energy barrier can be overcome, and the molecule
will thermalize at all 7 temperatures. The faster convergence can be seen in Fig. 2 where also
the “time series” in energy is displayed for both a regular canonical simulation at 7" = 50 K and
for the copy with 7' = 50 K of a parallel tempering simulation. Obviously the regular canonical
Monte Carlo got trapped in a local minimum and was not able to thermalize. From previous
simulations (see Ref. [17]) it is known that even 1,000,000 sweeps are not enough to thermalize
Met-enkephalin at 7" = 50 K. On the other hand, with the exchange of configurations by parallel
tempering the simulation thermalizes at 7' = 50 K in less than 10,000 sweeps.

An interesting variant of the parallel tempering idea is “model hopping” [18] where the random
walk in temperatures is replaced by one through an ensemble of models with slightly altered
energy functions. For this we assume that the energy function can be separated in two terms:
E = E4 + aFBp. As in parallel tempering, MH considers N non-interacting copies of the
molecule, but copies are now exchanged according to

w(Co — C™) = min(1,exp{—3[Fa(C;) + a;Ep(C;) + Ea(C;) + a; Ep(C;) (7)
—E4(Cy) — a; Ep(Cy) — Ea(C)) — a; Ep(CH)]}) - (8)
= min(l, exp{SAcAEg}) . )

Here, Aa = aj — a; and AE = Ep(C)) — Ep(C;). Due to this exchange move configurations
perform a random walk on a ladder of models with a; =1 > ay > a3 > .... > ay that differ by
the relative contributions of Fp to the total energy E of the molecule. For instance, barriers in
the energy landscape of proteins often arise from van der Waals repulsion between atoms that
come too close. In MH the protein walks randomly up and down on a ladder of models with
successively smaller contributions from the van der Waals energy. While the ’physical” system
is on one side of the ladder (at a; = 1), the (non-physical) model on the other end of the ladder
(at ay << 1) may allow atoms to share the same position in space. As the protein “tunnels”
in this way through energy barriers, sampling of low-energy configurations will be enhanced in
the ’physical” model (at a; = 1).
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4 Multicanonical Sampling

Generalized-ensemble simulations [10] offer another possibility to overcome the multiple min-
ima problem and to calculate reliable low-temperature quantities. The idea is again to ensure
that a simulation does not get trapped in local minima but samples both low and high energy
states with sufficient probability. Such movement in and out of local minima is obtained by
requiring that a Monte Carlo or molecular dynamics simulation shall lead to a uniform distribu-
tion of a pre-chosen physical quantity. Probably the earliest realization of this idea is umbrella
sampling [19], but it has been lately re-discovered in various forms such as multicanonical
sampling [20], simulated tempering [21], ect. The first application of these new techniques to
protein simulations can be found in Ref. [22] where a Monte Carlo technique was used. Later,
a formulation for the molecular dynamics method/ was also developed [23].

In the multicanonical algorithm [20] configurations with energy £ are assigned a weight w(FE)
such that the distribution of energies

Pru(E) < n(E)wp,(E) = const, (10)

where n(E) is the spectral density. Since all energies appear with the equal probability, a free
random walk in the energy space is enforced: the simulation can overcome any energy barrier
and will not get trapped in one of the many local minima. In order to demonstrate the latter
point the “time series” of energy is shown in Fig. 3 as a function of Monte Carlo sweeps for
both a regular canonical Monte Carlo simulation at temperature 7" = 50 K (dotted curve) and a
multicanonical simulation. The displayed data are again from a simulation of the pentapeptide
Met-enkephalin using a slightly modified version [13] of the ECEPP/2 force field. Starting
from a random configuration the two simulations continued for 1,000,000 Monte Carlo sweeps.
For the canonical run the curve stays around the value £ = —7 kcal/mol with small thermal
fluctuations, reflecting the low-temperature nature. The run has apparently been trapped in a
local minimum, since the mean energy at this temperature is (F) = —11.1 kcal/mol as found
in Ref. [13]. On the other hand, the multicanonical simulation covers a much wider energy
range than the canonical run. It is a random walk in energy space, which keeps the simulation
from getting trapped in a local minimum. From such a multicanonical simulation one can not
only locate the energy global minimum, but also calculate the expectation value of any physical
quantity O at temperature 7’ by re-weighting techniques [24]

[ dE O(E)Ppu(E) w,, (E) e F/FsT
(O = [dE Pyu(E) w2l (E) e E/ksT 1D
[ dz O(x) )) e BE)

EE(m (12)

T wnt (50

Cb

where z stands for configurations.

Unlike in the canonical ensemble the weights w,,,(E) o< n~'(E) are not a priori known and
one needs their estimates for a numerical simulation. Hence, multicanonical sampling consist of
three steps: Calculation of the multicanonical (and other generalized-ensemble weights) is usu-
ally done by an iterative procedure [22, 13]. The following algorithmic presentation describes a
simple version of this procedure. In it, one uses that the histogram of a multicanonical simula-
tion can be written as H (E) = n(E)w!  (E) where w’, ,(E) is the i-th estimate of the canonical
weight. Setting w,,, = 1/n(F), one obtains the iterative relation w’! = w! (F)/H(E). Iter
is the number of iterative improvements of the weights w,,, (), sweeps is the number of Monte
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Fig. 3: “Time series” of energy for the pentapeptide Met-enkephalin. Shown are both the results
from a canonical simulation at T' = 50 K (dotted line) and a multicanonical simulation.

Carlo sweeps in each cycle, and nbin is the number of energy bins. We remark that calculation
of the weights can be slow (about 40% of the total CPU time was spent in Ref. [22] ion this
point) and several attempts were made to obtain generalized-ensemble weights in a faster way;
see, for instance, Ref. [25].

S Other generalized-ensemble techniques

In multicanonical simulations the computational effort increases with the number of residues
like ~ N* (when measured in Metropolis updates) [26]. In general, the computational effort in
simulations increases with ~ X? where X is the variable in which one wants a flat distribution.
This is because generalized-ensemble simulations realize by construction of the ensemble a 1D
random walk in the chosen quantity X. In the multicanonical algorithm the reaction coordinate
X is the potential energy X = E. Since F o< N? the above scaling relation for the compu-
tational effort ~ N? is recovered. Hence, multicanonical sampling is not always the optimal
generalized-ensemble algorithm in protein simulations. A better scaling of the computer time
with size of the molecule may be obtained by choosing more appropriate reaction coordinate
for our ensemble than the energy.

One often used choice is simulated tempering [21] where the temperature itself becomes a
dynamic variable and is sampled uniformly. Temperature and configuration are both updated
with a weight:

wer (T, E) = e~ P/FeT-9(1) (13)
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Here, the function ¢(7) is chosen so that the probability distribution of temperature is given by
Psr(T) = /dE n(E) e P/FsT=90) — const | (14)

Physical quantities have to be sampled for each temperature point separately and expectation
values at intermediate temperatures are calculated by re-weighting techniques [24].

As common in generalized-ensemble simulations, the weight wsr (T, E') is not a priori known
(since it requires knowledge of the parameters ¢(7')) and their estimator has to be calculated.
They can be again obtained by an iterative procedure as described in section 4. In the simplest
version the improved estimator for ¢ (") for the 4-th iteration is calculated from the histogram

of temperature distribution H éi:;l) (T") of the preceding simulation as follows:
g(T) = g (1) +log Hp (T . (15)
In this procedure one uses that the histogram of the ¢-th iteration is given by
Hep(T) = e 9D Z(T) (16)
where Z;(T) = [ dEn(E)exp(—E/kgT) is an estimate for the canonical partition function at

temperature 7. Setting exp(g;(T')) = Z;(T') leads to the iterative relationship of Eq. 15.

6 Structure Predictions of Small Proteins

Fig. 4: Left: Experimental structure of HP-36 as deposited in the PDB data-bank. Middle:
Lowest energy structure as obtained in a simulation of the solvated peptide. Right: Lowest
energy structure of HP-36 as obtained in a simulation in gas phase.

The second example is the 36-residue villin headpiece subdomain HP-36, one of the small-
est peptides that can fold autonomously. HP-36 was chosen by Duan and Kollman for a 1-
microsecond molecular dynamics simulation of protein folding [27]. The experimental struc-
ture was determined by NMR analysis [28]. Luc Wille (Florida Atlantic University) and I have
used this protein to study the efficiency of the ELP algorithm. We have used the approach of
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Fig. 5: Average number of helical residues (ny)(T) of HP-36 as a function of temperature for
both the solvated protein and in gas-phase. The figure is taken from Ref. [30]

Eq. 1 to approximate the interaction between protein and water with the parameters o; chosen
from Ref. [29].

Build up only out of a-helices as secondary structure elements, HP-36 allows in a simple way
the definition of an order parameter to characterize configurations other than by their energy.
This natural order parameter is the number ny of residues in the peptide which are part of an
a—helix. Throughout the search process we try to deform the energy landscape by means of a
histogram H(FE, ny,t) in both helicity and energy: E = E + H(FE,ny,t). Operating again at
a temperature 7" = 50 K, we find as weights for the search algorithm

w(E,ny,t) = e AETHELY) 17)

Using this weight we performed simulations with 50,000 MC sweeps (starting from random
configurations) keeping track of the lowest energy configuration during the search process.

The structure of HP-36 as obtained from the Protein Data Bank (PDB code 1vii) is shown in
Fig. 4. The structure consists of three helices between residues 4-8, 15-18, and 23-32, respec-
tively, which are connected by a loop and a turn. We find for this structure in our model an
energy (ECEPP/2 + solvation term) F£,,; = —276 kcal/mol. Our approach led to a configu-
ration with the lowest energy FE,,;, = —277 kcal/mol which we show also in Fig. 4 [9]. The
above structure consists of three helices where the first helix stretches from residue 2 to residue
11 and is more elongated than the corresponding one in the native structure (residues 4-8). The
second helix consist of residues 13-17 (compared to residue 15-18 in the native structure) and
the third helix stretches from residue 23-33 (residues 23-32 in the PDB structure). The struc-
ture has 95% of the native helical content and a radius of gyration 2, = 10.1 A which indicates
that the numerically obtained structure is slightly less compact than the experimental structure
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Fig. 6: Average radius of gyration (r,,)(T") of HP-36 as a function of temperature for both the
solvated protein and in gas-phase. The figure is taken from Ref. [30]

(R, = 9.6A). 60% of native contacts are formed. These values are comparable with the results
in Ref. [27] (but required orders of magnitude less computer time) where the optimal structure
of a 1 us molecular dynamic folding simulation showed 80% of native helical content and 62
% of native contacts. Similarly comparable were the values of the root-mean-square devia-
tion (RMSD) of both numerically determined conformers to the native structure: 5.8 A versus
5.7 A in Ref. [27] (counting only backbone atoms). On the other hand, an ELP simulation of
50,000 sweeps relying only on the ECEPP/2 force field led to a structure with an ECEPP energy
of Egp = —192 kcal/mol. That structure, shown in the bottom of Fig. 4, is build out of two
helices (between residues 2-16 and 23-33) connected by a loop, differs significantly from the
regularized PDB structure with the higher potential energy £, = —176 kcal/mol. Hence, the
native structure of the peptide HP-36 is not the global minimum configuration in ECEPP/2 in
gas phase.

In order to understand more the differences between the gas-phase results and that with a solvent
accessible surface term, Chai-Yu Lin, Chin-Ku Hu (both Academia Sinica, Taiwan) and I have
simulated recently HP-36 with parallel tempering on 20 nodes of a cluster of IBM 4-ways
375MHZ SMP Thin Nodes [30]. We have chosen as temperatures 7" = 1000, 900, 800, 700,
610, 560, 530, 510, 495, 485, 475, 465, 450, 420, 390, 360, 330, 300, 275, 250 K. On each
node, we performed 150,000 MC sweeps, and a replica exchange move was attempted after
each sweep. Both gas-phase simulations and such relying on a solvent-accessible surface term
with the parameter set OONS of Ref. [6] were performed.

From these parallel tempering simulations we have calculated the number of helical residues
as function of temperature. Fig. 6 displays our results. Little difference is found at high tem-
peratures. However, below the transition temperature 7" ~ 490 K the data for both simulations
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diverge. The helicity grows rapidly with decreasing temperature in the OONS simulation while
it stays small in gas phase. Configurations in gas phase and in OONS simulations differ also in
their compactness. We display in Fig. 6 for HP-36 two quantities that measure the compactness
of protein configurations. The main graph is a plot of the average radius of gyration (r,,)(7") as
a function of temperature. The corresponding values for the total number of contacts (nrc(7))
are shown in the inlet. Both plots indicate that configurations in gas-phase are substantially
more compact than the ones in the OONS simulation. For instance, at 7' = 300 K, we find
Trgy = 9.6(1) A in gas phase compared to 7,4, = 12.5(1) A in OONS simulations. Note that
even at 7' = 1000 K, the peptide in gas phase has a radius-of gyration 7,4, = 15.6(1) A and is
substantially more compact than in OONS simulation ( rg, = 19.2 A). We conjecture that this
bias toward compact configurations inhibits the formation of a-helices, and that the low-energy
states of HP-36 in gas phase are characterized by large density and low helicity.

Our simulations of HP-36 demonstrate that the simulation techniques described in this review
allow one not only to predict the structure of small peptides but also to evaluate the limitations
of the utilized energy functions. For instance, in our example, we were able to determine the
reasons behind the failure of gas-phase simulations when compared to such with simple solvent
approximations. Since presently available energy functions are often parametrized for small
molecules, their limitations will become more obvious as one proceeds toward larger systems.
Modern simulation techniques may open ways to unveil and finally overcome these limitations.

7 Conclusion

I gave a brief introduction into some techniques used in simulations of the protein folding
problem. These examples demonstrate that modern simulation algorithms are well-suited for
investigations both of the thermodynamics of proteins and the prediction of their structure. It
seems now that all-atom simulations of proteins are rather restricted by the accuracy of the
present energy functions than by the efficiency of the search algorithms.
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