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1 Introduction

Optimization is one of the most important techniques in natural sciences, in engineering sci-
ences and economic sciences. In contrast to simple one dimensional text book problems where
nearly any method works, optimization problems are usually of a quite different nature. To
avoid abstractness typical representatives are listed here:

A. a) tomographic problems:
i) computer tomography in medicine
ii) exploration of soil structure [1, 2]

b) learning in neural networks [3]
B. yes/no decision about the success of experiments
C. reconstruction of noisy and/or deformed patterns [4]

D. a) traveling salesman problem [5, 6, 7]
b) magnetic ground state of solids (spin glass) [8]

c) formation of molecule clusters in the ground state [9, 10]
E. optimization problems in economy

In all these examples a cost function or evaluation function is defined. It depends on parameters
or variables of the system and indicates how well these parameters/variables have been chosen
compared with other sets of parameters/variables. The best set minimizes the cost function.
Obviously this optimization has to be done typically not in a 2 or 3 dimensional space but in a
multidimensional space. In fact, the dimension can be of order 10* or more (problem of group
C and group Dc), of order 10? (again problems of group C' and group Dc) up to 10° in problems
of group A, B, D and F.

In addition to the multidimensionality another difficulty arises in all problems (except ) and
in particular in those of group D: There exists not only a global minimum but local minima
as well. In group D the number of these local minima increases enormously, possibly even
exponentially with the system size. Problems having this property are called NP complete
[6, 5].

A word on problems of group B is in order. In problems of this kind the method of support
vector machines [11, 12, 13, 14] (SVM) can be applied successfully. This success rests on the
fact that within this framework the cost functions have only one single minimum'.

The above listed problems can be treated with various methods. The simplest one is that of
steepest descent [5]. This method and its more sophisticated variants as conjugate gradient
method (5], Gauss-Newton method [15] and Levenberg-Marquardt method [16] including possi-
ble regularization [17] will be discussed in section 2. It is surprising how well these procedures

! After a tricky transformation into high dimensions a problem of group B becomes linear and analogous to the
task of optimizing the perceptron. (The perceptron is one of the earliest neural networks and optimization of its
cost function is simple since there is only a single minimum.) A discussion of SVM is beyond the scope of this
paper. But one should keep in mind that it is the only method in which a nonlinear complicated problem can be
mapped onto one in which only a single minimum appears that has to be determined. This makes this method very
interesting.
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work in problems of group A, B and partly in problem C' although these methods are searching
for the next local minimum and are expected to get stuck there.

In problems of group C' and even more of group D it is not sufficient to detect a minimum
because there are many local ones well above the global minimum. And either the global
minimum is of interest (e.g. when determining the ground state of a molecule) or at least
a minimum that is close to the global minimum (e.g. when determining the ground state of
a spin glass, in the traveling salesman problem, etc.). The most useful methods applicable
here are methods derived from thermodynamics: It is an experimental fact that a system first
heated and then slowly cooled down will get into its ground state. This is due to thermal
fluctuations allowing the system to overcome local minima. The Metropolis algorithm [18]
is a mathematical analogy of this. Defining the cost function as an energy, introducing an
inverse temperature (3 and applying the Metropolis procedure leads to the simulated annealing
[5, 19, 20] method which is most useful in dealing with NP complete problems [5, 6]. To
demonstrate how this method is used it is applied to the cost function of the electron microscope
[4]. This cost function is derived in section 3 and the demonstration is presented in section 4.
In section 5 problems and variants of the simulated annealing method are discussed.

Closely related to simulated annealing is the genetic algorithm which starts with an ensemble
that repeatedly generates ‘mutations’ in analogy to the simulated annealing method. The new
ingredient is the generation of ‘offsprings’ to include parameters that have an exponentially
small probability of being included in the simulated annealing method. The genetic algorithm
is applied to the cost function of the electron microscope (section 6). Problems and variants of
that method are discussed in section 7.

Both the simulated annealing method and the genetic algorithm face difficulties if the accessi-
ble states are continuous. One suggestion in this case is applying the downhill simplex method
together with simulated annealing [5]. The downhill simplex method generates a moving struc-
ture of N + 1 points in an N dimensional space, takes into account N + 1 values at the same
time and therefore can overcome a local minimum without further ingredients if the basin of
attraction of that minimum is sufficiently small [21]. Therefore the combination of this method
with simulated annealing is quite interesting.

But there is a different method: A cost function, say F/, with parameters, say q, is interpreted
as a potential energy V'(q) and added to it is a (fictitious) kinetic energy term K. Thus we
obtain a fictitious Hamiltonian / = K + V' and can follow fictitious trajectories. Along these
trajectories /1 is a constant of motion and V' is not. This means that parameter values are
allowed with higher values of V' in an interval width AV o 1/. Reducing the kinetic energy
K (e.g. by adding a dissipative term) leads to a decrease of AV and corresponds to reducing the
temperature. In this way one can hope to find a global minimum of the cost function V. This
scheme has been applied to finding the ground state of molecules [22] and will be presented
in section 8. The scheme demonstrates also connections between molecular dynamics [23] and
simulated annealing. The conclusion ends the paper.

We will not elaborate on problems of group £ in the following text. The reason they were
mentioned at all is to give a quite different example for the applicability of the optimization
methods described here. These methods are essential for solving problems far beyond the range
for which they were originally developed.
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surface

Fig. 1: Schematic view of different soil structures and electrodes which can either inject positive
and negative electric current into the soil or measure the electric potential P.

2 Tomographic Problems, Neural Networks and the Steepest
Descent Method

Tomographic problems consist of a forward problem, a backward problem and a cost function
connecting the two. Take the exploration of soil structure via dc currents as an example. Quite
often the conductivity of the soil is sufficient to identify its structure. This fact is exploited
in the electric resistivity tomography scheme (ERT) [2], in which the conductivity of the soil
is determined: cables containing electrodes are dug in the soil partly close below its surface,
partly in boreholes, cf. Fig. 1. Currents flowing to and from electrodes through the soil generate
voltages at the electrodes which are measured. Given a configuration of o values?

o= (01,...,0n,) (1

the electric potential ® can be computed at any point? r in the soil for that configuration (forward
problem):
b =P(r,0) )

The quality of the solution can be found when it is compared with the measurements at points
r;, ¢ = 1,..N,,. To get the best o values we define a cost function

1 &
E(o) = WZ(@(ri,a)—@)?. 3)
™ oi=1

The minimum of the cost function gives the best choice of o. The backward problem consists
in finding this minimum.

ZWe assign o values to small volumes of soil. Thus the dimension Ny of o can become quite large. E.g.
choosing a relative resolution in each direction of 1/30 means Ny = 30°.
3To get ® a partial differential equation of the Poisson type has to be solved.



Algorithms for Optimization D4.5

Feed forward neural networks are well known [3]. They have an input layer with input x, an
output layer with output G(x), G real*, and one or more inner layers with ‘neurons’ representing
nothing but sigmoid functions® ¢ (s), s and ¢ are real. The efficiency of the networks rests on
the universal approximation theorem [3] which states:

G/(x) real and continuous, x a vector of a closed subset S C R” then for any ¢ > 0 there
exist M < oo, coefficients «; and ¢; and a real matrix W;; such that

“4)
|G(x) = Gop(x)] <€

M N
GGP(X) = Z 0%‘90(2 Wyx, — 6;)
i=1 =1

This theorem is quite important but it does not tell how to calculate the coefficients - in contrast
to the Fourier theorem for example. However, that is not an disadvantage because it is impos-
sible to compute Fourier coefficients by a Fourier transform for high dimensions, (O(100) is
typical). The learning process of the network is nothing but finding out appropriate coefficients
of the expansion. To achieve this a cost function is defined

Ny
E(0) = =3 (Gi = Gup(x))?, & =, W0 )
=1

2N, 4

G, are values G(x;), ¢ = 1,...N, that are known. The minimum of the cost function gives the
best approximation for the coefficients a, W, 6.

It is obvious that the minimum search in the backward problem of tomography and the learning
phase of the feed forward neural networks are mathematically identical. The simplest method
is obtained when looking at small changes® of E:

dE =VE -dx (6)
Obviously the steepest descent occurs for
dx =—nVE n>0 n<l. (7

The size of 1 depends on the problem. One possibility is the finding of the minimum along the
direction of —V E, in other cases 7 is treated as a parameter. But we can do better. The reason
for this is the special structure of the cost functions. They have the form

1
E= 't (8)

and its global minimum value is 0 (if no noise is present) or very small (if noise is present).
This means that in the final stage of the minimum search the second derivative of £ is well

4@ need neither be a scalar nor real, but we treat the simplest case here.

Sa real function () is sigmoid if it is monotonously increasing and (s = —oc) = 0, (s = c0) = 1.

®We assume for simplicity that x is a real quantity in Eq. (6). Otherwise the always real function £ could not
be differentiated with respect to x. However, if x is complex, E can be written as E(x1,x2) with x; = x and
X9 = x*. Applying this trick F becomes differentiable with respect to x; and x». It is then sufficient to discuss the
steepest descent with respect to x; since the steepest descent with respect to xo does not lead to a new condition.
Thus the modifications for complex x are trivial and will not be discussed here.
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Fig. 2: Approximation of sin(x) in [0, 27| using the universal approximation theorem [25]. The
number of neurons is 9, n = 0.1, (c¢f. Eq. (7)). As sigmoid function the Fermi function has
been chosen:p(s) = 1/(1 4 e~®). Red line: sin(z), black line: approximation. a) cost function
E < 1072, b) cost function E < 1075,

approximated by first derivatives of f. This fact is exploited in various iteration schemes like
the Gauss-Newton method, Levenberg-Marquardt method and in connection with those: the
conjugate gradient method. Details are given in appendix A.

Quite often the minimum of the cost function is ill conditioned, which spoils the uniqueness
of the solution because there is a null space present. If a unique solution is required as in
tomographic problems a regularization becomes necessary [17]. This acts as a filter enforcing
the uniqueness. Details are given in appendix A.

The idea behind the steepest descent method is not very deep, the method itself is simple and, as
expected, its convergence is not fast. Despite of that it is one of the most used methods in feed
forward neural networks’ and it builds the fundamental system of equations in the Kohonen
model [3, 24] of neural networks®.

The main objection against the steepest descent and the related refined methods comes from
a quite different argument: We approach the minimum of the first basin of attraction, and this
minimum does not need to be the global minimum. In the view of this fact it is really surprising
how well these methods work, cf. Fig. 2. Nevertheless, as soon as there are many local minima
around these methods are bound to fail. This can be detected by starting at very different points
in phase space and comparing the results. If the results do not coincide, probably those methods
have to be applied that will be described in sections 4, 5 and 6. Their mode of action will be
demonstrated in a relatively uncomplicated case, the cost function of the electron microscope.
This cost function is derived in the following section.

3 The Cost Function of the Electron Microscope

In the high resolution electron microscope (resolution 0.8A, magnification 1 : 10°) an electron
beam is generated, accelerated and focused when passing through a system of magnetic lenses.
It hits a target of thickness about 30 nm located in the object plane of the microscope. After
having passed the object plane the beam is directed by another magnetic lens system (system 2)

"The method is called back-propagation [3] in this context.
8In Kohonen’s network the gradient is replaced by stochastic terms that are gradients only in the average.
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electron source
U =400 kV

lens system 1

object plane
with target

lens system 2
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Fig. 3: Scheme of the electron microscope: the electrons are generated in the electron source,
accelerated to 400 keV, focused in the object plane. After penetrating the target and passing
lenssystem 2 they hit the image plane. The image plane can be moved up and down by changing
the defocus Z to measure the intensity for different phases.

to the image plane where a high-resolution CCD camera (resolution 20 m per pixel) measures
the intensity distribution of the beam for a given focus value Z;, cf. Fig. 3

Ins(ri, 2Z), i = 1.N )

(The r; are uniformly distributed on the image plane.) Typical high-resolution intensity images
for different Z values are shown in Fig. 5.

The intensity distribution in one image plane contains insufficient information. Needed is the
electronic wave function W after just having passed the target:

U(r) = / FR)E™ ¢ = (2,y,2), k= (kn Ky, k2) (10)

The complex coefficients F'(k) have to be found.
In vertical direction (i.e. perpendicular to the target) the k vector component is in very good
approximation determined by the kinetic energy of the beam, thus constant and we can write

~

F(k) = F(k, k, = const) = F(k), k = (ka, k). (11)
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The connection between intensity distribution [ in the image plane and the amplitude F' of ¥ is
given by [4]

I(q,2) = /F*(k)F(k+q)T(k+q, k, Z)d2k. (12)

The so called transfer function 7'(k;, ks, Z) is a known function of the electron microscope,
reflecting its properties including lens aberrations (spherical aberration, astigmatism, coma etc.)
and in particular the change due to defocusing by an amount 2.

With this knowledge the cost function

E = B({F}) (13)

must be constructed. Now because of Eq. (12) for each set { F'} and each defocus Z an intensity
T{FY(xi, 2) = Y T{F} Kk, Z)e* (14)
k

can be computed and the vectors

I(Z) = (I{F})(r1,2)),... I{F})(rn, Z)) (15)
Ls(Z) = (Ins(r1,21), .y Ims(rn, Z7)) (16)

be defined, the components of which are just the computed intensity distribution. Normalizing
the intensities a cost function can be defined as’

o (UZ) LulZ) )
E({F}) = zl: (|I(Zl)| B IIms(Zz)|>
(7)) - Lns(Z))
= [Ls(Z) | Ls(Z0)]

= 2-2

The scalar product defines a cos ¢ between the measured and computed distribution. We require
high sensitivity for small deviations i.e. for small angles. Since Fj is rather insensitive in that
regime we prefer to define the cost function as [4]

I(Zl) : Ims(Zl)

. 17
T(Z) || L (Z0) a7

E({F}) = Zarccos Y1, Cosp =
I

The next task is minimizing £. This will be achieved with the simulated annealing method in
section 4 and with the genetic algorithm in section 5.

4 Minimizing a System with the Simulated Annealing Method

Simulated annealing is now applied to minimize the cost function £ [4]: Interpreting the cost
function as an energy of the corresponding configuration, we can do thermodynamics in the
spirit of Monte Carlo [18]: We attribute to each configuration the Boltzmann factor e "%, /3
acting as a parameter, the ‘inverse temperature’. Then we go through the following steps:

°It is perhaps counterintuitive that out-of-focus intensities, i.e. intensities with focus values Z # 0 are used,
but this is an ingenious trick yielding further important information on the complex amplitudes of W, in particular
on the phases.
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Fig. 4: Schematic plot of the cost function as function of u. There are many local minima
possible far above the global minimum. This situation can occur in nearly any optimization
problem and is present in the so called NP complete problems. An exception are problems to
which the support vector machinery can be applied. Then there exists only one minimum, cf.
the introduction.

1.: Initializing the variables { '} at the beginning:
These are determined by a random number generator. The idea behind this is that at high
temperature each configuration has the same weight. Consistent with this is the choice of
a small (3 value.

2.: As in Monte Carlo we define a transition probability 7,_,,, from the present state F';, to a
new one F,, by

7Tp—>n o< e_IB(En_Ep)

We require 7,_,,, = 1 for E,, — I, < 0. This means because of continuity

—BE—E) for B, > E
WM—{Q of fn =B (18)

1 otherwise

Eq. (18) is the Metropolis algorithm. This is the heart of the method: unfavorable states
are not completely excluded as in standard methods. Rather they can appear in the next
step with a nonzero probability. The idea behind it is to overcome the local minima by
a simulated thermal fluctuation, cf. Fig. 4. In our example one F'(k), randomly chosen,
is changed using a random number generator, with this new F' the difference £,, — I, is
computed and the new configuration is chosen with a probability given by Eq. (18).

3.: Step 2 is repeated N, times. In analogy to thermodynamics one could argue that N

should be so large that

O(AE) = % AE = |E, - E,| (19)

In reality NV, is an experimental parameter.

4.: The value of /3 is increased by A/, which reduces the possible fluctuations of E. A[ is a
parameter as well. Now step 3 is repeated.
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Fig. 5: Simulated high-resolution intensity images of NiyMo [4]. 4 X 4 unit cells are shown.
Image 1 is simulated for a defocus value of —35 nm, image 2 is simulated for a defocus value
of =70 nm.

5.: Step 4 is repeated reducing the possible fluctuation further and further till the cost function
does not decrease any more. The obtained { 7'} is taken as solution.

The result can be observed in Fig. 6. The simulated annealing method has been able to recon-
struct nearly completely the coefficients of the electronic wave function, compare Fig. 6b with
Fig. 6a.

5 Criticism, Variants and Power of the Simulated Annealing
Method

There are some objections against the method: At first sight it may seem that the method is
an application of statistical theorems without making sure that their presumptions are fulfilled
when interpreting the cost function as an energy. However, even if the cost function has few
properties in common with a genuine energy, the method will still work as a recipe to get away
from high-valued local minima of the cost function. In this sense the A and N; are parameters
depending on the problem at hand.

The transition of the configuration p — n is much more accessible to criticism. In our example
a new configuration was obtained by just changing one F'(k;). This is rather arbitrary. Why
not something else? There is a controversy in the literature about the best replacement of one
configuration by another one, in particular if the possible values are not discrete. The downhill
simplex method is recommended by some authors [5]. We think that the choice depends on the
system, and in our example a primitive procedure is successful. Really advantageous is the fact
that no deep knowledge about the true solution is required. This feature remains true for more
complicated systems.

Although the simulated annealing method is not caught in local minima with a depth of about
AE < 1/ there is no guarantee that the system ends in the global minimum. There are
different variants to circumvent this problem.

1) The simplest variant consists in doing nothing - a very good procedure if the system has
- apart from the global minimum - many other minima, which are representative as well
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Fig. 6: Exit plane wave function of NiyMo [4]. Each image comprises 4 X 4 unit cells. The
images in the top row show the amplitude, those in the bottom row the phase of the wave
function. a) Generating wave function which was used to simulate the model images of Fig. 5.
b) Wave function reconstructed from the model images by means of the simulated annealing
algorithm. c) Wave function reconstructed by means of the genetic algorithm.

and whose cost function is not much higher. This is the case for the problem of designing
complex integrated circuits, for which this method was first applied [26], the spin glass
problem [8] and the problem of the traveling salesman [5].

ii) In the second variant the final configuration is taken as the initial configuration and the
procedure is restarted (again with small (3). This variant had been successful in as differ-

ent topics as optimizing time-tables and computing protein configurations'® [27, 28, 30].

iii) In the third variant one starts with an ensemble of different configurations instead of just
one and selects the best one at the end.

Variant iii) is a precursor of an algorithm that will be explained next.

6 Minimizing a System with the Genetic Algorithm

We explain the method of the genetic algorithm by applying it to the cost function of the electron
microscope [4] as well:

19Even more generalized procedures are discussed in [29].
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1.: We generate an ensemble which is called population in this context. The configuration
{F(k;)} of all its N, 4 members m/(i) is arranged as a vector, e.g. for m(i;) and m(iz):

m(iy) = (FW(ky), F(ky), ..., FP(k, ), ..., FW(ky)) (20)
m(iy) = (FU(ky), F)(ky), ..., F (k. ), ..., F%(ky))

In the folklore of the genetic algorithm [31] the vectors are called chromosomes and their
components are called genes.

2.: Each member of the population is rated using the cost function Eq. (17).

3.: mutation of genes: One randomly selected member is copied and one randomly selected
gen (component) of the copy is changed randomly. The modified copy is rated too.

4.: crossover: The best rated member, say m(i;) and another member, say m/(iy), chosen
randomly, are selected. After determining an integer 1 < [. < N randomly two offsprings
are generated choosing for the first the genes of m(i;) up to . and from [. on the genes
of m(is). It is done vice versa for the second offspring. The offsprings are rated.

5.: Three members are removed from the ensemble except for the latest offsprings. These
members are either those with the lowest ratings or determined by a random number
generator from those with bad ratings.

6.: Step 3 to 5 are repeated till the cost function is low enough.

The result can be observed in Fig. 6. The genetic algorithm method has been able to reconstruct
the coefficients of the electronic wave function nearly completely, cf. Fig. 6¢ with Fig. 6a.

7 Criticism, Variants and Power of the Genetic Algorithm

This method claims to reflect some important ingredients of evolution theory. And since this led
to such an admirable outcome as homo sapiens [32] the genetic algorithm with its analogies to
evolution can - that is the hope - be applied to optimization problems with analogous admirable
results.

Taking a closer look on the method one can state the following: Without the crossover (step 4)
the method is nothing but a variant of simulated annealing: One starts with an ensemble and
tries new configurations (mutations) as in the simulated annealing method. Instead of applying
the Metropolis criterion the new configurations are rated within the samples and need not be
discarded as long as they are within the energy spread A F of the ensemble. In this way the en-
semble can pass local minima. When approaching the minimum of the cost function A F of the
ensemble shrinks. This corresponds to an increase of (3 in the simulated annealing formalism.
Therefore it is no surprise that the reconstruction of the wave function has the same quality as
that obtained from simulated annealing, cf. Fig. 6b and Fig. 6c¢.

What is really different is the crossover. Its advantage is 1) getting to radically different states
of the system in so far as these can be obtained by mutations with an exponentially small prob-
ability only, ii) the possibility to preserve cluster characteristics of the parent members. Its
disadvantage is 1) the recipe for generating these crossovers is rather arbitrary. In a higher-
dimensional system the genuine clusters are not one dimensional and therefore the chromo-
somes should be higher dimensional as well. In this way the method would get properties of
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cluster methods. ii) The recipes are in general not simple. This can be seen already in the trav-
eling salesman problem. A simple recipe for the crossover as was presented here leads at once
to routes touching some cities twice, others not at all.

In conclusion one can state that the genetic algorithm is a variant of the simulated annealing
method plus allowing further configurations that keep some properties of the so far best solu-
tions and at the same time are not easily obtained by repeatedly changing configurations in the
simulated annealing method.

Really advantageous is the fact that - leaving aside the crossover procedure - no idea about the
true solution is required. The efficiency of crossovers can be enhanced if the recipe for the
crossover is adapted to properties of the system.

8 Ground States of Molecules as an NP Complete Problem,
Simulated Annealing and Molecular Dynamics

There can be no doubt that the ground state energy problem of molecules is an NP complete
problem [6]: If for simplicity the interaction between atoms is approximated by a Lennard-
Jones potential . )

Vi (r) :ﬁ_ﬁa (21)
then it can be shown [33, 34] that the number of local minima, /V,,;,, of a system with NV, atoms
grows exponentially fast and is roughly estimated by

Nonin = exp(0.36 N, + 0.03N, 3) (this is an extrapolation). 22)
That means

N, =13, : Npin ~ 1000,
N, =100, : Ny ~ 1010,

The actual complicated form of the ground state energy, computed in the density functional
formalism, is shown in Fig. 7 for the O3 molecule.

Because of the many local minima steepest descent and related methods will fail, and simulated
annealing and genetic algorithm methods have their day. However, there is a difficulty men-
tioned in the introduction: The positions of the ions change continuously, suggesting a variant
of simulated annealing. In this situation a promising variant of simulated annealing has been
suggested which applies a kind of molecular dynamics [23]. The idea is the following: The
ground state energy is a function of the ionic positions R;,

E,=E,Ry..Ry,). (23)
This is the cost function to be used now as a potential energy of the ions. Added to it is an

(artificial) kinetic energy term

K = —P? (24)
: m
=1
where m is a fictitious mass and P; the (artificial) momentum of ion ¢. Thus we obtain the
fictitious Hamiltonian

N,
1

H:Z%PRJFEQ(RM...,RN&). (25)
=1
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Fig. 7: Energy surfaces of states of the ozone molecule, O3 [22]

Now we can follow fictitious trajectories of this artificial system. We have for the averaged

kinetic energy, (K), the relation:
1
(K) x —. (26)
B
This gives a connection between inverse temperature 5 and mean kinetic energy. Furthermore
the artificial hamiltonian is a constant of motion and thus [, is not. Instead F, fluctuates by an

amount AFE,

(AE;) x (K) % (27)
along a trajectory in the phase space of the ions. Reducing the kinetic energy (e.g. by adding
a dissipative term) leads to a decrease of AFE, and corresponds to reducing the temperature.
Beginning with a promising configuration of the ions and setting their velocities to values in
accordance with high temperature one can hope to detect the global minimum of the cost func-
tion ;. Note the important point here: Only the ground state energy appears in this procedure.
Therefore density functional theory is applicable in the standard way to obtain a good approxi-
mation for F,. Taking excited states into account would be much harder.

This scheme connects molecular dynamics [23] with simulated annealing.

In spite of the similarity of this scheme with a real life annealing technique in which molecules
are heated and then slowly cooled down the simulated annealing procedure differs in two ways,
1) for numerical reasons the decrease of the temperature 7' = % 1s 5 — 6 orders of magnitude
faster than in reality [35], i1) whereas in an experimental setup not only the ground state but the
exited states are important, in the calculation here only the ground state in its various ionic con-
figurations is taken into account. Therefore even in this situation the annealing is ‘simulated’.
Let us discuss two examples that show the power and the limitations of this variant of simulated
annealing.
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Fig. 8: Left: The cubic structure of the Py molecule was believed to be the ground state con-
Sfiguration although its energy is higher than that of two P, molecules. Right: The true ground
state obtained by a simulated annealing variant described in the text. The cubic structure cor-

responds to a local minimum.
1
DL
2
3

Fig. 9: Left: Ground state structure of the Py molecule. Right: Cooling down using the sim-
ulated annealing variant, described in the text, usually leads to a roof structure with higher
energy. The reason is the small basin of attraction of the ground state.

e For along time the cubic structure of the phosphorous Ps was assumed as the ground state
configuration because of its symmetry, cf. Fig. 8, in spite of the fact that the energy was
higher than twice the energy of the P, ground state energy. Under these circumstance
Py should have been metastable. Applying simulated annealing with an initial cubic
configuration the true ground state - having lower symmetry - emerged with an energy
less than that of two P, molecules [22].

e Phosphorous P, has a symmetric tetrahedral ground state. Starting at high temperature
with an ionic configuration not extremely close to the ground state configuration the sim-
ulated annealing method leads to a configuration having higher energy, cf. Fig. 9. This
example should caution the belief that simulated annealing will work automatically under
any circumstances [22].
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9 Conclusion

In probably any discipline of science problems occur involving a cost function £. Typically the
cost function arises if

e ground state energies or best configurations or minimum efforts have to be determined,
e the fitting of a non trivial function has to be achieved,

e an ill posed problem has to be transformed into one finding a minimum (a typical proce-
dure in tomography).

The best parameters or variables are the ones minimizing this cost function and one gets an
optimization problem of the kind described in this paper.
Typically two different difficulties arise in the optimizations:

a) the argument space of F is multidimensional
b) a number - even a huge number - of local minima can be present.

There are optimization problems in which local minima are unimportant, either because their
depth or the number of local minima or both are very small. This can occur in tomographic
problems [1], in optimization problems of neural networks [3] and partly in pattern reconstruct-
ion [4, 36] - examples that are presented in this paper. In all these cases a steepest descent
method or related ones as conjugate gradient, Gauss-Newton or Levenberg-Marquardt methods
etc. are appropriate for solving the optimization problem.

The situation changes drastically if in addition to difficulty a) we have a system where difficulty
b) is present. This happens in particular in systems which are NP complete [6] (i.e. the number
of local minima increases strongly, possibly even exponentially with the system size). Exam-
ples of this type are the traveling salesman problem, and the ground state of molecules [9], of
spin glasses [26], best protein configurations [28, 30] etc.. In all these systems application of
steepest descent and related methods will lead to a complete failure. Quite different methods
are required. In this paper the simulated annealing [19, 5] and genetic algorithm [31] methods
and some of their variants have been discussed taking as examples the reconstruction problem
of the electron microscope [4] and ground state configurations of molecules [22].

In spite of the very often great success of these methods - successful if the appropriate variant
has been found - there are cases in which even these methods fail. This occurs if the basin
of attraction of the global minimum is very small. An example is the ground state of P,. Its
tetrahedral structure has very low energy but a very small basin of attraction. It is very difficult
in such a situation to detect the global minimum just by applying simulated annealing or genetic
algorithm methods [9, 22].
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Appendix

A Modified Steepest Descent Methods and Regularization

Quite often the cost function has the special structure
Loy
E(x) = §f f (28)

with .

£ = =5 W = UI(x), -, (U — UR () (29)
In particular in tomography there is the problem of either fewer equations than unknown param-
eters x; or the problem of ill conditioning. In both cases the solution becomes unstable. This

can already be seen from a simple example:
T+ 2o =1, ey =n, el + |n| < 1. (30)

If € and 7 vanish exactly, then there is only one equation and two unknown quantities. Then the
solution is by no means unique. The much more dangerous situation is given if € # 0 and  # 0
- this situation occurs e.g. in the presence of noise. Then there is a unique solution, but x5 may
be anything - and may be huge in spite of the fact that € and 7 are small. Such an instability of
the solution can be removed by adding a quadratic expression to £

. 1
E—-E=E+ §a2X+B+BX. (31)

If a and B are chosen appropriately the solution becomes stable and unique. The additional
term is called regularization [17] term, it acts as a filter and depending on the problem the filter
has to be chosen such that the interesting solution remains untouched. Setting

fr = (f",x"B"), (32)

we get the structure of Eq. (28) back:
PO U
E = §f+f : (33)

Therefore we will assume that the cost function is given by Eq. (28) and regularization - if
necessary - has already been built in.
The global minimum of £ in Eq. (28) has the property

If| = 0or [f] < 1. (34)

Then we obtain close to the global minimum'!

E(xq + dx) = (f*(x0) + dxT A" (f(x0) + Adx) + O(|dz|*), (35)

""Throughout this appendix we assume that x is a real quantity. Otherwise the always real function E could not
be differentiated with respect to x. However, if x is complex, E can be written as F(x1, X2) with x; = x and
X9 = x*. Applying this trick F becomes differentiable with respect to x; and x2. We can then expand and set
dxy = dx7 at the end. Thus the modifications for complex x are trivial and will not be discussed here.
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with
_of

= 5
This result suggests a minimization of |f(xq) + Adx)

A

|? leading to the equation

At Adx = —ATf(xq). (36)

We know that A+ A is positive definite!?. Therefore this equation has always a solution. And
it can be obtained by applying the conjugate gradient method because this converges with cer-
tainty for positive definite matrices. In the Gauss-Newton method x, + dx is taken as the next
step of the iteration. This is not too risky since A* A is the second derivative of E at E = 0. In
the Levenberg-Marquardt method Eq. (36) is replaced by

(AT A+ uZ)dx = —A*f(xq), p> 0. (37)

The justification for this is that the right hand side of the equation is just —V E and therefore
this procedure mixes steepest descent with Gauss-Newton. There are various recipes how g,
and, in the next iteration step, Xg — X + £dX, £ should be chosen. But this is beyond the scope
of this paper and the interested reader is referred to the literature.

12 Any matrix .A* A has no negative eigenvalues, because of regularization this matrix is positive definite.
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