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1 Introduction

Mesoscopically large particles (e.g., colloidal particles, proteins or polymers) suspended in a
low-molecular-weight fluid like water experience many random kicks from the fluid molecules.
When observed with a coarse-grained time resolution where the fast motion of the fluid molecules
is not resolved, these random kicks result in an erratic Brownian motion of the mesoparticles.
Due to the many collisions with the fluid molecules, and the strong fluid friction experienced
through the large surface, the distribution of momenta of the particles reaches Maxwellian equi-
librium long before their positions have changed appreciably. In fact, when studying physical
phenomena like particle diffusion, suspension rheology and microstructural behavior one is
concerned only with the slow time evolution of the particle configuration.

Fig. 1: Left: colloidal sphere bombarded by fast solvent molecules. Right: random walk trajec-
tory of a colloidal particle.

The Brownian Dynamics (BD) simulation technique is a mesoscale method which takes ad-
vantage of the fact that there is a large separation of time scales between the rapid momentum
relaxation and the much slower positional changes of the Brownian particles. At the core of
this technique is a coupled set of many-particle Langevin equations describing the evolution of
the particle positions, with the momenta integrated out of the description. In these stochastic
differential equations, the influence of the collisions by solvent molecules is represented on a
coarse-grained level by stochastic forces or velocities and by hydrodynamic drag forces. In
addition, the particles are subject to solvent-averaged direct interaction forces. The Langevin
equations are solved numerically by a forward integration scheme with discrete time-steps to
generate representative particle trajectories. In this scheme the stochastic forces are simulated
by random numbers. Thus, in BD simulations, an ensemble of stochastic trajectories is gener-
ated. By averaging over trajectories created after an equilibration run, one can calculate equi-
librium statistical averages like radial distribution functions, as well as general time correlation
functions, for example mean-square displacements, van Hove functions, and dynamic viscosi-
ties. Accordingly, the BD simulation method can be considered to be between the Monte Carlo
and Molecular Dynamics methods, sharing the element of randomness with the first, and the
continuity (albeit with strong irregularity) of trajectories in configuration space with the latter.

In the Brownian Dynamics methodology the fluid is described macroscopically as a contin-
uum which, on the coarse-grained level where configurational changes take place, obeys the
linearized and stationary Navier-Stokes equation. This equation is commonly referred to as the
creeping flow or Stokes equation, and it describes incompressible lamellar flow at low Reynold’s
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numbers. The penalty incurred for treating the solvent macroscopically is that, in addition to
the direct inter-particle forces, one needs to account for the so-called hydrodynamic interac-
tions (HI) acting between Brownian particles. This long-range type of dynamic interaction is
transmitted by complicated fluid flow patterns created by the moving particles. In concentrated
dispersions, HI cause a non-pairwise additive coupling of the particle drift velocities as well as a
coupling of the Brownian stochastic forces appearing in the Langevin equations. This coupling
gives rise to significant computational difficulties in the case of BD simulations where HI are
included.

In this lecture, I will first explain the essentials of the BD simulation technique in the so-called
free-draining approximation where HI are totally ignored (section 3). The complications arising
from the inclusion of HI will be discussed in section 4 on various levels of approximation. A
few applications will be discussed for systems without HI and with HI effects included. Section
5 contains a summary, and a short overview on recent developments in the field of Brownian
Dynamics.

2 Single-particle Langevin equations and time scales

We start our discussion of Brownian Dynamics simulations by considering the most simple case
of a single mesoscale particle immersed in a fluid of small molecules. The motion of this particle
will be explored on two levels of description, firstly on a time scale where its inertia is resolved,
and secondly on a coarser scale where its diffusive random excursions become apparent. The
present section introduces salient concepts like Langevin equations and time scale separation.
These concepts are needed in sections 3 and 4 where dispersions of interacting particles are
discussed.

2.1 Velocity Langevin equation

Consider a spherical particle of mass m and radius 5 nm < a < 1 pum, suspended in an unbound
and quiescent solvent of much smaller molecules with a linear size of a few Angstrgms. Such
a large colloidal particle is subject to incessant collisions with the solvent molecules, each col-
lision lasting of the order of 7, (with 7, ~ 1073 s for water). Whereas the momentum of the
particle is scarcely changed during a single collision, the particle executes a slow erratic motion
when observed on a coarse-grained time scale much larger than 7 (cf. Fig. 1).

Let r(t) be the position vector of the particle at time ¢. For a time resolution of At > 7,
the equation of motion for the translational velocity v(¢) = () is given by the single-particle
Langevin equation [1]

mi(t) = —Goi(t) + F(t). (1)

The sphere experiences through the solvent molecules impacts an average friction force —(yr,
and a fluctuating stochastic force F*(¢). On the coarse-grained level where Eq. (1) applies,
the solvent behaves like a continuum. Consequently the friction coefficient, ¢y, of a sphere can
be approximated by its Stokes value, (y = 67npa, where 7 is the shear viscosity of the sus-
pending fluid. The random force describes the accumulative effect of many solvent molecules’
collisions which are statistically independent for times large compared to 7. According to the
central limit theorem of probability theory, a sum of many independent random variables with
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finite second moments of their probability distributions converges towards a Gaussian random
variable (see [2] for a more precise statement of this theorem). Therefore, we can describe
F*(t) as a Gaussian-distributed fluctuating quantity whose statistical properties are completely
determined by its first moment and its covariance matrix. Specifically

(F°(t)) = 0, )
and the covariance matrix is given in polyadic tensor notation by
(F*()F*(t)) = 1060(t —t'). 3)

Here, (...) is an average over the solvent collisions, I measures the strength of the fluctuating
force, and 1 is the 3 X 3 unit matrix expressing spatial isotropy and the fact that the three
Cartesian components F*(t), with a € {x,y, 2}, are mutually uncorrelated. The delta function
indicates that the random forces are uncorrelated on the time scale of the particle motion, i.e.,
the forces are an example of Gaussian white noise. According to Wick’s theorem for Gaussian
random variables (see [2]), all multi-time correlation functions of a force component F' = [}
with even time points can be pairwise factorized as (n = 2,3, ...)

(F(t)---Fltan)) = > (F(ti)F(tiy)) - (Flti, ) F(t,)) )

P
= Fn Z 5<t11 - t'LQ) T 5<ti2n71 - ti2n) :
P

The sum extends over those out of the (2n)!/(2"n!) pairwise factorizations P of {1, ..., 2n} that
lead to different expressions. All correlations functions with odd time-points are zero.

The random force in the Langevin equation is described as a time-dependent random variable
(i.e. a stochastic process) defined only by its statistical properties. These statistical properties
relate to an ensemble of independent Brownian particles each of which is a realization of a dif-
fusion process. The statistical averages (- - -) are interpreted here as averages over this ensemble
of systems. Time integration of Eq. (1) for a given realization of F*(¢) leads to

1 t
v(t) = voe V™ +—/ due /TR (y) 3)
m Jo

where v is the initial velocity. Averaging over a sub-ensemble of particles with equal initial
velocities gives

(v(t)) = voe ™, ©6)
for the mean velocity which decays towards zero as quantified by the characteristic momentum
relaxation time 75 = m/(y. Using typical values for aqueous suspensions of colloidal spheres,
e.g., a = 100 nm, particle mass density p, = 1 kg/m®, and shear viscosity of water with
no = 0.01 poise, one obtains 75 ~ 2.2 x 107 s, showing that 75 > 7, (cf . Fig. 2).
We can next determine the mean of the squared velocity using the delta correlation in Eq. (3),

3
2mQo

(v(t)?) = vie 2/ + (1—e /). (7)
Equipartition of the kinetic energy in equilibrium demands, for ¢ — oo, that vZ(oo) = 3kgT/m
which serves to determine " as

I = 2kgT¢. ()
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This relation comprises a fluctuation-dissipation theorem relating the strength of the fluctuating
force to the mean particle friction coefficient (and temperature 7°), thereby reflecting their com-
mon origin in the interaction between the mesoparticle and the solvent molecules.

So far we have considered the Brownian motion of a particle with given fixed initial velocity vy.
To describe a system in equilibrium we need to average over a Maxwellian distribution of initial
velocities. Multiplication of Eq. (6) by v, and subsequent averaging over solvent collisions and
initial velocities gives

kgT

Ou(t) = S(v(t) - v(0)yy = ——— exp{~t/7p} 9)

QU

for the velocity auto-correlation function, ¢, (), of an isolated Brownian sphere in d = 3 spatial
dimensions. According to Eq. (9), momenta lose their memory within a time interval of the
order of 75. Next, using that r(¢) — rg = f(f duv(u), one can easily show for a system in a
stationary state that ¢, (t) is related to the mean-square displacement (MSD) of a particle, W (),

by
WD) = 5 {lr0) =10, = [ dult=wa,(w). (10)

For convenience, we have absorbed the factor 1/(2d) into the definition of W (¢). Relation (10)
is valid also for non-dilute systems of interacting particles. The MSD of an isolated sphere
follows from substituting Eq. (9) into Eq. (10) as

%tz, T, L 1<K 7R,

(11)
Dot, t>>7'B,

W (t) = Dyt [1 — TTB (1— e—t/TB)} — {

where the single-particle diffusion coefficient Dy is related to the friction coefficient by the
Stokes-Einstein-(Sutherland) relation
kgT
Dy = 2= (12)
Co

Equation (11) interpolates between ballistic flight behavior with Maxwell-distributed initial ve-
locities for ¢ < 7p, and linear diffusive behavior for ¢ > 75. Using once more the particle
radius of @ = 100 nm, we find Dy = 2.2 x 10~'? m?/s for the diffusion coefficient.

2.2 Positional Langevin equation

As was seen, the MSD of an isolated particle grows linearly according to W (t) ~ Dyt for
all times t > 7p, i.e. for a coarse time resolution where the momentum relaxation is not
resolved. Consider for the time being a non-dilute suspension of interacting colloidal particles.
To observe an appreciable change of configuration, a particle should have diffused a distance
at least comparable to its own size. A characteristic time needed for a significant change in
configuration is thus given by the structural relaxation time

T = a*/Dy, (13)

with 7, = 4.7 x 1073 s for a = 100 nm, and 7, = 4.7 s for a = 1 micron. The crucial message
to note is that 7, > 75, i.e. there is a separation of time scales: The momentum of a colloidal
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particle has relaxed long before any appreciable change in particle configuration is observed. A
time resolution At >> 7 corresponds to a spatial resolution of Az > lg = \/Dy7p. A typical
value is [ ~ 107 3a, and this illustrates additionally that the particle has hardly moved during
TB.

The configurational evolution of mesoparticles observed with a time resolution At > 75 on
which the momenta are relaxed to Maxwellian equilibrium is commonly referred to as Brown-
ian Dynamics, or likewise, as diffusive or Smoluchowski dynamics. Experimentally, diffusion
of colloidal particles on the BD time scale can be probed conveniently using a variety of dy-
namic light scattering techniques [3].

10”7 10" 10° 10° 10°
Ly 1 1 /4 T 1 Vi 1 > t [sec]
2
}s Ty ® Ty : TpLs T, Ta /Dy
molecular structural relaxation time
view

quasi-inertia free (pure config.-space picture) :

- velocity relax. resolved
- unsteady solvent flow:
- retarded HI

- Many-particle Smoluchowski Eq.
- Positional Langevin Eq.
- Quasi-static creeping flow Eq.

R Bl

Fig. 2: Colloidal time scales: values are typical of colloidal spheres with radius a = 100 nm
suspended in water. The time resolution of dynamic light scattering is characterized by Tprs.

On the BD time and length scales, changes in the particle velocity, which take place during
t ~ 7p, are not resolved. Therefore, we may neglect the inertia-term mv(t) in Eq. (1) as
compared to the friction term. To see this explicitly, we estimate

(kgT/m)*"*  (mkgT)"?

ml|v(t)| ~m A7 < ™ = Qo (

kgT
m

1/2
) ~ Co|v(t)] - (14)

Therefore, we obtain the positional Langevin equation for the Brownian Dynamics of an iso-
lated particle,

r(t) = éFs(t) =v&(), (15)

valid for At > 75 and Az > [p. This evolution equation for the particle position expresses
a force-balance and implies quasi-inertia-free colloid motion for ¢ > 75. According to Egs.
(2)-(4), (8) and (12), vB(t) is a Gaussian-distributed and J-correlated random velocity, denoted
as the Brownian velocity. It is fully characterized by the first two moments

(vP(t)) =0, (VP(t)vE(t')) = 2Dg16(t —t'). (16)

From integrating Eq. (15) over a time interval At, we get the finite-difference equation

to+At
r(to+ At) —rg = / duv?(u) = /2DyAtn , 17
t

0
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where n is a vector of mutually statistically independent Gaussian random numbers {n,} of
zero mean and variance 1. Explicitly

(n) =0, (nn) = 1. (18)

and higher-order moments (n?™~1) = 0 and (n?™) = (2m — 1)!! with m € {2,3,...}.
Note from Eq. (17) that the random displacement during 7 is of O(7'/2) only. On dividing Eq.
(17) by At and trying to take the limit At — 0, it becomes clear that the Brownian velocity does
not exist in the sense of ordinary calculus. Strictly speaking, the stochastic trajectories generated
by the positional Langevin equation are only continuous, but not differentiable. A mathemati-
cally sound interpretation of a Langevin equation with white noise like Eq. (15) can be given
using the concept of a Wiener measure [2] related to the time integral over v (u)/ Dy'/?. How-
ever, it suffices here to interpret the Langevin equation in terms of its finite difference form in
Eq. (17). From the finite difference equation we infer that Ar®(t) = r(ty +t) — r(ty) is a

Gaussian random process with vanishing odd moments, and even moments determined as

<(ArB(t))2>O — 6Dyt , <(Ar3(t))2”>0 — O(t"). (19)

The conditional averages are performed over a sub-ensemble of particles of equal initial position

ro. The probability density function (pdf), P(Ar?,t), for a displacement Ar? during time ¢ is

thus

(Ar®)?
4 Dot

This conditional pdf is the solution of the single-particle diffusion equation (Smoluchowski

equation)

P(Ar? 1) = {4x Dot} ** exp{— b (20)

%P(Ar,t} _ DyV2P(Ar, 1), 1)

subject to the initial condition P(Ar, ¢ = 0) = §(Ar). The single-particle diffusion equation is
equivalent to the positional Langevin equation in a statistical sense: The former is a stochastic
differential equation for an ensemble of particle trajectories whereas the latter determines the
corresponding distribution function.

Before closing this section, I should point out that the velocity Langevin Eq. (1) does not
apply to colloidal particles for ¢ ~ 7p. In fact, it is valid only for times ¢ > 7, where solvent
inertia is negligible [4,5]. Here, 7, = a®ps/no = (9/2)(ps/p,)Tn characterizes the time scale
where solvent inertia matters. It is the time needed for a viscous shear wave, generated in
the solvent by a sudden acceleration of the particle, to diffuse away across a distance a. The
solvent mass density, ps, is close to the particle mass density p,. Otherwise the particle would
fall out. Therefore 7,, and 7 are of the same order of magnitude. Fort ~ 75 =~ 7,, the
fluid can not instantaneously follow changes in the particle velocity. This leads to an enlarged
persistence in the velocity autocorrelations, not adequately described by d-correlated random
forces. The memory in the particle velocities can be accounted for by means of a generalized
velocity Langevin equation with non-white (i.e., colored) random forces. Calculations based on
this equation have revealed, in contrast to Eq. (11), that the MSD approaches its limiting form
W (t) = Dqt algebraically slowly rather than exponentially fast, i.e.

2 /Ty\ /2
W(t) ~ Dot [1 - (?’7) ] , (22)
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fort > 7,. Such an algebraic long-time tail in ¥/ (¢) has been observed in dynamic light scatter-
ing experiments on colloids [6]. Although Eq. (1) does not describe dilute colloidal dispersions
for times t ~ Tp, it can be applied instead to aerosols like smoke particles in air, since in these
systems one finds p, < p, so that 7, < 7p.

Brownian Dynamics as described by positional Langevin equations is not plagued by solvent-
inertia, since it addresses positional changes for times ¢ > 75 and distances Az > [. On the
BD time scale the particles and the solvent move quasi-inertia-free, and this gives rise to a pure
configuration-space description. Fig. 2 provides a pictorial view of all colloidal time scales
discussed in this section.

3 Positional Langevin equations for interacting particles

In this section, I will explain the Brownian Dynamics simulation technique for interacting
mesoparticles in the free-draining approximation . In this approximation, only direct pair in-
teractions are considered, such as excluded volume, van der Waals and electrostatic forces, to
name a few possibilities. Solvent-mediated HI forces are neglected. This amounts to assuming
that each particle experiences a background fluid unperturbed by the presence of the other par-
ticles. Thus, the net mean effect of the fluid is simply to exert a friction force on each particle
independent of the location and velocity of the others. In real systems, the influence of HI on
the dynamics is negligible only at strong dilution. Nonetheless, there are cases where dynamic
properties of interest are largely determined by direct interactions. In addition, free-draining
BD simulations are needed to quantify the importance of HI through comparison with compu-
tationally more expensive BD calculations where HI are considered. Free-draining simulations
are also used to calculate static equilibrium properties, as these are independent of HI (cf. the
discussion below).

3.1 Brownian Dynamics finite difference scheme

So far we have considered very dilute suspensions in which the individual particles could be
considered as independent from each other. For non-dilute systems, interactions have to be
taken into account. For simplicity, we consider a suspension of N identical spherical particles
whose momentary centers are located at the points X = (ry, - ,r N)T as described by the 3/NV-
dimensional column vector X. The superscript denotes the operation of transposition. The par-
ticles are supposed to interact in a pairwise-additive way by an isotropic and solvent-averaged
pair potential u(r). We assume that u(r) is soft without jumps or singularities (Lennard-Jones-
type potentials for example). Particles with a genuine hard-body potential part, and a non-zero
likelihood for configurations with particles in contact, require a special treatment in BD simula-
tions. The discussion of hard-sphere-like systems will be postponed to subsection 3.4. For the
N-body potential energy function, we may write

O(X) = > ulry), (23)

1<j

with continuous deterministic forces F;(X) = —V,;®(X) acting on particles i € {1,.., N}.
In addition, we require that ®(X) is essentially constant across a distance /5 where a particle
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relaxes its momentum, so that [5|V,;®(X)| < |®(X)|. The solvent far away from the particles
is supposed to be at rest (quiescent suspension).

The positional Langevin equations for N interacting particles with HI disregarded is obtained
as a straightforward generalization of Eq. (15), namely

Bi(t) = v (X(t) + V(1) (24)
for: =1, ..., N, with the slowly varying deterministic drift velocities

v (X) = BDyFi(X), (25)
where 3 = 1/(kgT), and the rapidly fluctuating Brownian velocity parts vZ(t). Without Brow-
nian random velocities, Eq. (24) describes the overdamped motion of particles subject to deter-
ministic forces. These forces alone would relax the particle coordinates towards a configuration
X ™) where ®(X) attains a minimum. The Brownian velocities mimic the effect of solvent
collisions on the BD time scale. They prevent the particles from remaining at the minimum
configuration X ™ 5o that the configurational distribution at large times becomes an equilib-
rium one. This important point will be explained in more detail in subsection 3.2. As in the
single-particle case, each v (t) is a Gaussian and white random variable, characterized by

(vZ(t)) =0, (vZ(t)vP(t')) = 2Dg16;;6(t —t'). (26)

The Brownian velocities of different particles are statistically independent since hydrodynamic
coupling is disregarded. For an equilibrated system, we may interpret (...) as an average over
M > 1 microscopically identical copies of the system, or as an average over a single system
by following its /V-particle trajectory with M measurements taken at widely separated time in-
tervals.

The positional Langevin Eqgs. (24) can be derived starting from the momentum Langevin equa-
tions in the free-draining approximation, viz. [5,7]

mii(t) = —Coti(t) + Fi(X(t)) + Fi(t) . 27)

This set of coupled equations is an extension of Eq. (1) to non-hydrodynamically interacting
particles. The stochastic forces, F(¢), are Gaussian distributed and J-correlated in time, of
mean zero and with the covariance matrix given by

(F3(t)F3(t")) = 2kpT oo;;16(t —t'). (28)

In principle, the momentum Langevin equations should be applicable down to times ¢ ~ 75. In
its present form, however, it neither accounts for the non-instantaneous response of the solvent
to changes in the particle velocity, nor for the non-instantaneous (at times ¢ ~ 7,)) hydrodynamic
interactions present in real suspensions. The positional Langevin equations follow from aver-
aging Eq. (27) over a time-step 75 < At < 7, using Eq. (14). This time-averaging amounts
to the neglect of the particle acceleration term in the coarse-grained momentum Langevin equa-
tions, giving rise to the positional Langevin equations, with the Brownian velocities identified,
using Eq. (12), as vZ(t) = BDyF;(t).
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To obtain the finite-difference form of Eq. (24), we integrate over a small time-step (o, to + 7),
during which the initial configuration X, = X(#y) remains practically unchanged. This leads
to

ri(to +7) = ri(te) + vP (Xo)T +/2Dg T+ o(7) (29)

with an error of order o(7) made in using a finite time-step !. Eq. (29) is a straightforward gen-
eralization of Eq. (17) to interacting particles. It is a stochastic first-order forward integration
scheme, commonly referred to as Ermak’s scheme [8], for the simultaneous displacement,

AX(7) = X(to + 7) — X(to) . (30)

of N particles during a small time-step 7. All forces are calculated in the configuration at the
beginning of the time-step. The Gaussian random vector n has been introduced already in Eq.
(18): at each time-step, the components 7, of n are generated independently from a Gaussian
distribution of zero mean and variance one. As in the single-particle case, we may interpret
the positional Langevin equations in terms of its finite-difference form, to avoid mathematical
difficulties with the d-correlated noise.

The 3 N-variable stochastic process X (t) is a so-called Markov process whose future is entirely
determined by its presence. This can be seen from Eq. (29). The Markovian property is a
consequence of dealing with a noise of zero correlation time, and with Langevin equations of
first order in the time derivative. Eq. (29) implies further that X (7) — Xq for 7 — 0, i.e X(¢)
is a continuous process. However, due to the white noise contribution, the particle trajectories
are nowhere differentiable (with probability one). The continuity of X(¢) is expressed in the
moments derived from the finite-difference equation. From averaging over a sub-ensemble of
systems with equal initial configuration X, we obtain readily

(AX(7))y, = vP(Xo)7T + o(7) (31)
(AX(1)AX(7T))y = 2Dg71+o(1) (32)
(AX(7)..AX(71)), = o(7), (33)

where all higher-order polyadic products involving more than two AX(7) are small of order
o(7). A small time-step implies a small configurational change for the large and heavy Brownian
particles. In Eq. (32), 1 denotes the 3N x 3N unit matrix, and v’ = (v, .., v]?,)T is the 3N-
dimensional column vector of drift velocities.

3.2 Equivalence with many-particle diffusion equation

To gain information on the long-time behavior of the N-particle system described by the po-
sitional Langevin equations, we will explore the behavior of the pdf P(X,¢) for finding the
system in configuration X at time ¢. Our major task will be to derive an evolution equation for
the pdf.

From the moment relations (31-33) and the finite-difference equation, we note that during the
time-step 73 < T <K T,, each particle ¢ diffuses independently from the others in a constant
force field, F;(X,), determined by the configuration at the beginning of the time-step. Hence the

' A'is of order o(7) if lim, o A/T = 0; likewise A = O(7) when lim,_.q A/7 is finite and non-zero.
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short-time conditional pdf, W.(X, 7|X), for a configurational displacement X, — X during
T, factorizes in a product of single-particle Gaussian distribution functions with non-zero drift
velocities,

WX, 7|Xo) = {4wDor} N2 exp{—ﬁ [X — X, — 7vP(Xo)]*} (34)

[I‘i — Lo — TVZ-D(XO)F} :

N
= H {47TD07'}_3/2 exp{—

i=1

4D07’

Differentiation of this expression with respect to time shows that W, solves the diffusion equa-
tion,
0
9 We(X,7Xo) = _VD(XO) - VWX, 7[Xo) + DOVQWC(Xa 71Xo) , (35)
-
subject to the initial condition W,.(X, 0|Xy) = 6(X—Xj) =[], 6(r; —ri). We have introduced
here the 3 N-dimensional nabla operator V = (V, ..., V).

In general, X(t) is a Gaussian process only for times 7 < 7,. It inherits the Gaussian property
from the Brownian velocities provided the positional Langevin equations express a linear rela-
tionship. For non-linear drift velocities, X () is non-Gaussian distributed for times ¢ ~ 7,. Then
we must distinguish the exact transition pdf P.(X, t|X,) from its short-time approximation V...
To determine P.(X, t|Xy), we employ the fact that a Markov process is characterized fully by
the transition pdf and by an initial distribution P,,(Xg). The transition pdf of a continuous
Markov process must fulfill the Chapman-Kolmogorov equation [2,9]

P(X,t+7|Xo) = /dX’PC(X,ﬂX’) P,(X/, tX,) (XO toxn T X) (36)

for any 7 > 0. In writing Eq. (36), we use that a process described by the Langevin Eqgs. (24)
is homogeneous provided the drift velocities are not explicitly time dependent: The conditional
pdf, P.(X,t|Xo,tg) = P.(X,t — t9|Xy) of finding the system in X at time ¢, given that it was
in X, at an earlier time ¢y, depends then only on the time difference. In fact, the moments in
Eqgs. (31-33) do depend only on the time difference 7.

For 7 < 7,, the Chapman-Kolmogorov equation simplifies to

PX, 1+ 7|Xo) = / X! W,(X, 7[X) (X', t]X0) 4+ of7) (37)

with the implication that any pdf P(X,¢) can be constructed from an initial distribution P;,(X)
by repeated application of the short-time transition pdf [9]. Thus, the knowledge of W, is
sufficient to describe diffusion in multiple steps of 7. Explicitly (see Fig. 3)

n—1

P(Xt) = lim [] / AX s Wo(X, 7| X ) WXy, 7| X 1) Pin(Xo) (38)
i=1

with 7 = t/n. This path integral expression is the continuous analogue of a Markov chain used

in (biased) Monte Carlo simulations to generate representative particle configurations. The n-

fold product in Eq. (38) corresponds to an n-fold time-step forward integration in Eq. (29).
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Fig. 3: Possible configuration paths between the fixed endpoints Xy and X. For a Markovian
process, one needs to sum over all paths.

It can be seen here that P(X,t) remains positive, if it was initially positive. Moreover, since
W, is strictly positive for non-zero 7, any configuration X can be reached with non-vanishing
probability density P(X,t), for whatever initial distribution has been chosen.

Differentiation of Eq. (37) with respect to 7, and insertion of Eq. (35) followed by two partial
integrations, leads to the /NV-particle diffusion equation,

%PC(X,HXO) = —V - (vP(X)P.(X, t|X0)) + DoV Po(X, t|X) , (39)

with an explicit drift part invoking v”(X), and a diffusive part invoking Dy > 0. This is
our searched for evolution equation for the (configurational) pdf, valid for sufficiently smooth
density gradients so that [5|V,;P(X,t)| < 1. In colloid science, this evolution equation is
referred to as the generalized Smoluchowski equation (GSE) in the free-draining approximation
(cf. lecture B1 by J. Dhont). Introducing the Smoluchowski differential operator,

O(X) = DoV - [V — BF(X)) (40)
we can write the GSE more compactly as
0 ~
EPC(X,HXO) = O(X) P.(X,t|Xp) . (41)

Alternatively, the GSE may be expressed in form of a continuity equation,

P N
—P(X E - Ji(X ) = 42
5 ( ,t)—i—i:1VZ Ji(X, 1) 0, (42)
with probability currents
Ji(X,t) = =Dy [V, — F(X)] P(X,1). (43)

The GSE is stochastically equivalent to the coupled positional Langevin Eqgs. (24). It describes
a continuous Markov process where all higher-order moments are of o(7). For short times, it
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reduces to the evolution Eq. (35) for W.(X, 7|Xj). Using the explicit form of W, one easily
shows for the polyadic conditional moments defined by

(AX...AX),(7) = /dXPC(X,T]XO) (AX...AX) , (44)

with AX = X — X, that these are identical to the moments derived from the positional
Langevin equations.

General properties of the BD diffusion process for interacting particles are most easily explored
on the basis of the GSE. We first notice that the canonical distribution function,

Py(X) = exp{—B®(X}/Z with Z = /dXeXp{—ﬁq)(X)} (45)

is a stationary solution of the GSE, that is (’A)Peq = 0. In addition, all stationary probability
currents corresponding to I, are zero.

For the unbound suspension under consideration, we impose that ®(X) increases sufficiently
strongly for large r; at least asymptotically, so that the configurational integral 7 is finite. This
implies that P.,(X) — 0 and j;(X,¢) — 0 for |X| — oo, since ®(X) acts like a reflecting
barrier at infinity (natural boundary conditions, see [10]). It follows that probability is con-
served: for any positive-valued P,,(X) normalized to one, the solution P(X,t) of the GSE
with P(X,0) = P,,(X) remains positive and normalized for all subsequent times ¢ > 0. Using
an expansion of P (X, t) in terms of the left and right eigenfunctions of O(X ), one can show for
natural boundary conditions (and D, > 0) that every solution of the GSE tends to the unique
stationary solution F,,(X) in the course of time, irrespective of the initial distribution [1, 10]:

P(X,t — 00) = P.y(X). (46)

Eq. (46) holds true in particular for the conditional pdf, which is the fundamental solution of
the GSE for a given initial delta-distribution at X. Using Eq. (41), we may write the formal
solution for P. as

Po(X,t|X0) = exp{t O(X)}6(X — X,), (47)

which shows explicitly that the time-independence of @(X) is a consequence of the temporal
homogeneity of the process X(t).

3.3 Simulation details

So far we have explored the theoretical basis of the BD simulation method. We proceed to de-
scribe how an actual simulation is performed in the free-draining approximation. The BD sim-
ulation scheme has various concepts in common with Molecular Dynamics and Monte-Carlo
simulations [11]. For a more detailed account of these common concepts, we can thus refer to
lecture B3 of R.G. Winkler, and lecture B2 of G. Vliegenhart.

Let us focus on the Brownian Dynamics of a quiescent suspension of spherical particles inter-
acting by a given soft pair potential u (7). The suspension we wish to describe in the simulation
is supposed to be in an equilibrium fluid state.

Typical BD simulations in the free-draining approximation are performed for N = O(10? —
10%) particles placed in a cubic box of length L = (N/p)'/3, where p is the particle number
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density. In order to minimize effects originating from the small sample size, periodic boundary
conditions are applied, i.e. the basic simulation box is periodically replicated in all three spatial
directions. As a particle moves out of the simulation box, an image moves in at the opposite
side of the box to replace it. Due to the periodic boundary conditions, density fluctuations
of wavelengths larger than L are suppressed. However, the influence of the finite box size is
small for N > 100, provided the particles are in an isotropic fluid phase. A BD simulation
run usually starts with the centers of the particles placed regularly on a lattice. Quite often
a fcc lattice is used for the starting configuration. Then the particle number is N = 4m?,
where m is an integer, since the fcc unit cell consists of four particles. Alternatively, one may
start from a configuration obtained from a previous simulation with similar system parameters.
In a subsequent equilibration run, about 10* — 10° configurations (or BD time-steps 7) are
generated to allow the system to reach its equilibrium state. A BD time-step consists of the
simultaneous displacement of all N particles according to Ermak’s integration scheme in Eq.
(29). The actual number of time-steps needed for equilibration depends on the selected initial
configuration, particle density, temperature, softness of the potential et cetera. The melting of
the initial fcc lattice (cf. Fig. 4), and the approach towards equilibrium can be monitored by the
translational order parameter [11]

pla) = =y D cos(a ln—x) 48)

i<j
where q is a reciprocal fcc lattice vector (for instance, q = (2rd~!) (—1,1, —1) with the fcc

lattice constant d), and by the configurational energy per particle,

1 N
e= NkBTZuﬂri —1j)). (49)

1<j

A proper equilibration is ensured when steady mean values of e and p(q) have been reached, up
to small fluctuations of O(N~'/2). For a crystalline solid, p(q) is of the order of one whereas
(p(q)) = 0 in the fluid state. After equilibration, the actual sampling is done in a production
run where typically another few 10* — 10° time-steps are generated. Static equilibrium and
dynamic transport properties of interest can, in principle, be calculated from configurations
sampled during the production run.

The computationally most expensive parts in the free-draining simulation scheme are firstly the
calculation of the direct inter-particle forces and, secondly but less severely, the calculation of
the random displacements for each configuration. For a sufficiently short-range pair potential,
one can approximate u(r;; > r.) = 0, with a potential cutoff distance . which is significantly
smaller than L /2. Then a particle interacts at most with (N — 1) neighboring particles in the
central simulation cell or in the next-neighbor image cells, so that at most N (/N — 1) pair forces
need to be considered (minimum image convention, see Fig. 4). The force calculations are
speeded up using neighbor lists with so-called Verlet shells surrounding the potential-cutoff
sphere of each particle in the central simulation box, to reduce the force updating. For larger
systems with N > 1000, it is preferential to use a regular cell division of the central box with
linked lists [11]. With these tools, a O(V) scaling of the computation time can be reached,
in contrast to the lengthy O(N?) operations required in a *brute-force’ calculation. In systems
with long-range Coulomb interactions, each particle interacts in principle with all particles in
the central box and all images. The computational effort is thus of O(N?) already for the central
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Fig. 4: Left: periodic boundary conditions and minimum image convention cell with inscribed
potential-cutoff sphere (dashed circle). Right: melting of an initial fcc configuration (N = 32
particles at t=1257). Not shown are the trajectories of incoming image particles.

box. In this more demanding case one needs to resort to an Ewald summation technique for pe-
riodic systems, to sum an infinite number of pair interactions. With the most advanced variants
of this technique at hand, the summation can be scaled down to an O(N log V) calculation [12].

The random displacements in Eq. (29) require, at any time-step and for all three spatial di-
rections, the generation of a Gaussian-distributed random number n of zero mean and unit
variance. With standard quasi-random number generators for uniformly distributed numbers &
on the range (0, 1), the standard Box-Miiller method may be invoked to create Gaussian random
numbers [11, 13]. However, on the level of the first-order Ermak algorithm, it is not necessary
to use Gaussian-distributed random numbers [14, 15]. Only the first and second moments are
needed, which can be equally well obtained, and less expensively, using a random number R in
place of n, constructed from the uniformly distributed random number £ according to

R—\/ﬁ<§—%). (50)

One easily confirms that R has the same first two moments as 7, and that all odd moments of
its distribution are zero.

The basic time-step 7 in Ermak’s scheme should be chosen as large as possible for an efficient
sampling of configuration space, but small enough that the forces remain essentially constant.
Typical values are in the range 7/7, ~ 0.5 x 107 — 0.5 x 1072, In dense systems and in
systems with steeply repulsive pair interactions, smaller time-steps are required, whereas larger
time-steps may be used for less strongly correlated particles.

An important static property, which can be calculated in a BD simulation, is the radial distribu-
tion function g(r). This function gives the probability of finding a second particle a distance r
from a given one, relative to the probability expected for a completely random distribution at
the same density [5]. In other words, p(r) = pg(r) is the local density around a given particle,
as a function of the distance from that particle. For a homogeneous and isotropic fluid, g(r)
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may be calculated, for distances < r. and in three dimensions, from

AN;(r,r + Ar)
<NZ pAmr2Ar >M’ D

where the arithmetic average (...),, extends over A/ configurations selected from the BD pro-
duction run. The M configurations should be separated by the order of ten time-steps to be
statistically independent, with the memory on a previously selected configuration being lost.
This is important for dense systems where a configuration changes only little during an elemen-
tary time-step 7. For a given configuration, AN;(r,r + Ar) is the number of particles with
centers in a spherical shell of radius r and thickness Ar < r, with particle 7 in its center. With
the assumed pairwise additivity of the configurational energy, all equilibrium static properties
like the osmotic pressure and the colloidal internal energy, can be expressed in g(r) and no
higher-order distribution functions are required.

In real experiments, g(r) can be measured directly only in video microscopy experiments on
quasi-two-dimensional layers of large colloidal particles. In the bulk of suspensions, infor-
mation on ¢(r) is obtained only indirectly through static scattering experiments where in an
isotropic fluid phase the static structure factor,

S(a) = 1+ [dr(g(r) = 1) explia v (52)

is determined, which is essentially the Fourier transform of g(r). In a simulation, g(r) is ob-
tained only up to the cutoff distance .. Therefore, instead of attempting to obtain S(q) through
Fourier-inverting the simulated ¢(r), it is advisable to compute S(q) directly according to

S(q) =1+ %<Zcos (q-rij)> - (53)

i<j

To be compatible with the periodic boundary conditions, the scattering wavevector q of modulus
q is restricted to discrete values q = (27/L) (n, ny, n.), with q = 0 excluded, where L is the
size of the box and n,, n, and n, are integers. The statistics in calculating S(g) is improved for
an isotropic system by averaging over differently oriented wavevectors of equal magnitude q.
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Fig. 5: Left: BD simulation result for g(r) of charged colloidal proteins, using N = 500 and
860 particles. Right: corresponding simulated static structure factor. Redrawn from [16].
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Fig. 5 includes BD simulation results of ¢g(r) and S(q) typical for dense suspensions of charged
colloidal spheres. The spheres interact by an effective pair potential which is a sum of a hard-
core repulsion, and a soft and longer-range screened Coulomb potential part of the form [3],

ra 2 —RT
Bug(r) = LypZ? (11/{&) er . r>2a, (54)
with Bjerrum length L = €?/(ekgT), electrostatic screening parameter  and effective particle
charge Z in units of the elementary charge e. The system parameters have been selected to
describe qualitatively charged globular proteins (apoferritin) of diameter c = 13.8 nm dispersed
in water at room temperature (with Lg = 0.71 nm), for a quite large particle volume fraction
¢ = (4m/3)pa® of 0.33 [16]. The jump in g(r) at r = o is due to the hard-sphere potential
part which is not negligible for such a large volume fraction. How hard-body interactions are
included into BD simulations will be discussed in the following subsection.

The static equilibrium properties g(r) and S(q) are not affected by HI, in contrast to the mean-
square displacement W (t) defined in Eq. (10). From a BD production run, W (¢) may be
determined as (¢ must be a multiple of 7)

W(t) = <LN Z [r:(t +to) — l"z'(to)]2> : (55)

to

The angular brackets refer to an arithmetic average over a number of starting times ¢y. These
initial times are taken from the same long production run at well-separated time spacings (> 7,).
For a stationary system, W (¢) is independent of ¢,. Hence averaging over the initial times helps
to improve the signal-to-noise ratio of the MSD. Another dynamic property influenced by HI is
the dynamic structure factor S(g, t), defined by

S(q,t) = <% Z exp{iq - (ri(t+to) — rp(to))}> . (56)

lp=1 o

The dynamic structure factor is the time-dependent generalization of the static structure factor,
with S(g,t = 0) = S(q). It describes time auto-correlations in the q-th Fourier component of
local microscopic density fluctuations [3]. Free-draining simulation results for W (¢) and S(q, t)
will be discussed in the following subsection.

3.4 Simulation of particles with hard-body interaction

The Ermak integration scheme discussed above assumes a continuous deterministic force field
Fi(X) = =2 . Viu(ry). It becomes troubled when systems with significant hard-body in-
teraction parts are considered. The pair potential in these systems is the sum of a hard-core
part, uyc(r), of diameter o = 2a, and a longer-range soft part, ug(r). The soft part may be
attractive, zero or so weakly repulsive that there is a significant probability to find two or more
spheres in contact. The fact that two spheres can not interpenetrate is expressed by the zero
relative radial flux boundary conditions [17]

ry - [i(X 1) — (X, 0], —pr = 0, (57)

for two spheres i and [ in contact. Here, t;; = r;;/ry with ry; = r; —ry, is the unit vector pointing
from the center of sphere [ to the center of sphere 7, and j;(X, ) is the probability current as
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defined in Eq. (43). Since the relative radial flux is zero at contact, the particle trajectories of ¢
and [ must be reflected.

Note that genuine hard spheres are described by a GSE with all {F;} equal to zero, augmented
by the exact zero relative flux boundary conditions. Ermak’s algorithm (29) is per se not ap-
plicable to hard spheres since it requires finite and continuous forces. One possibility to deal
with singular hard-body interactions within Ermak’s scheme is to approximate u g (7) by a soft
potential of the form

u(r) = kgT (%)m , (58)
where m is a sufficiently large integer (cf. Fig. (6)). The soft-potential approximation for the
particular exponents m = 32 and 64 has been used in free-draining BD simulations of hard
spheres [18, 19]. In case of dense systems, however, large values of the inter-particle force are
produced which make it necessary to use very small time-steps. Otherwise, unrealistically large
displacements are obtained resulting in possible particle overlaps.

For dense systems, potential-free methods have been proposed to account for the zero-flux
boundary conditions. One frequently used method [20, 21] is to perform first a one-step dis-
placement of all N spheres according to Ermak’s scheme. The configuration is then checked
for overlapping particles. All overlapping pairs of spheres are symmetrically displaced along
their lines of center so that they are right in contact afterwards (cf. Fig. 6). Subsequently,
Ermak’s one time-step evolution is applied again. This simple approximate algorithm cannot
resolve all overlaps, unless computationally expensive small time-steps are used, since the over-
lap corrections are done in a pairwise fashion and may create new overlaps.

3 .

Bu(r)

64
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0.9 0.95 1 1.05 1.1
X=rlo

Fig. 6: Left: soft pair potential approximation, Eq. (58), for exponents m as indicated. Right:
potential-free algorithm to correct for sphere overlap.

A totally different method to generate the zero relative radial flux boundary conditions has been
proposed that uses a binary elastic collision correction to adjust the positions after an overlap
detection [22]. This correction scheme is similar in spirit to a Molecular Dynamics simulation of
hard spheres and eliminates all residual overlaps. It has been applied to explore the free-draining
dynamics of Brownian hard spheres, for concentrations even above the melting transition [23].
For a related method which has been suggested to cope with hard-body interactions, see also
[24].

Yet another tool to deal with hard spheres, and particles with steep short-range repulsions,
is the so-called smart Brownian Dynamics method [25-29]. This is actually a biased Monte
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Carlo method where trial moves of the particles are sampled according to Brownian Dynamics,
1.e. using the Ermak scheme. In smart BD, the trial moves are biased in the direction of the
acting force, that is in direction of probable moves. Thus, a higher acceptance rate may be
expected than for the uniform and unbiased stochastic moves made in the standard Metropolis
Monte Carlo scheme. The smart BD method is based on the following fact: for the dynamics
described by the GSE with zero radial flux boundary conditions on the particle surfaces, the
detailed balance relation

Pc(XjaT|Xi)Peq(Xi) = Pc(Xi77_|Xj)Peq(Xj) ) (59)

is obeyed by the exact transition pdf, F,, for all times 7 > 0. The physical content of this
microreversibility relation is that, in equilibrium, a transition from configurational state ¢ = X;
to state j = X; during 7, is equally probable as the inverse transition j — . Detailed balance
is a sufficient, but not necessary, condition on P, in Eq. (59) to be a stationary solution of the
GSE. This follows directly from integrating the detailed balance relation with respect to X;.
The validity of detailed balance ensures, for natural boundary conditions at infinity, that config-
urations created according to the GSE, or its associated positional Langevin equations, form a
Markov sequence which becomes equilibrium distributed after an equilibration period (cf. Eq.
(46)). A proof of the validity of detailed balance in Brownian Dynamics is most simply ob-
tained from Eq. (47), with the Smoluchowski operator O(X) expressed in terms of its left and
right eigenfunctions [5, 10].

Using the Ermak updating scheme amounts to replace FP,, in eq. (59), by its known short-time
approximation W;_,; = W.(X;, 7|X;). This replacement implies a strong violation of detailed
balance when the move ¢ — j results in particle overlap: the left-hand side of this relation is
positive since I¥;_,; > 0 even when an overlap configuration j is reached. In contrast, the right-
hand-side side is zero since P, (X;) = F,4(j) = 0 for an overlap configuration j. The transition
pdf W;_.; depends on the initial state ¢ through the initial drift vector. Hence it is non-symmetric
in ¢ and j. It is referred to as the stochastic matrix underlying the Markov sequence.

To repair detailed balance even for longer time-steps 7, where non-physical moves within the
Ermak scheme are likely, we replace WW;_,; by a corrected transition pdf, Wi_g, determined for

i # Jj by

Wi—>j ) if Peq(j) W]—)z Z Pe (Z> Wz—»g
Wi = P () (60)
eq\J . . .
Wj—»i . % R if Peq(j) W]—n < Peq(Z) VVZ_,J .

One can easily convince oneself that /I/Iz-j obeys detailed balance even in the case of particle
overlap. We can write ﬁ/fiﬂ- alternatively as WJZ-_)]- = Qi—; W;_,;, with the acceptance probabil-
ity given by

exp{~A2(j)} Wy
exp{—ﬂfb(i) Wi_>j
It is clear that );_.; = 1 for any move ¢ — j where the short-time transition pdf satisfies de-
tailed balance. The calculation of ();_.; does not require the knowledge of the high-dimensional
configurational integral Z.

In principle, it is not necessary to move all particles simultaneously from the N-particle state
i to the state j. Instead, one could equally well move the N particles consecutively using the

Qi—; = min |1, (61)



B4.20 G. Nigele

Ermak scheme. To comprehend this recall from the factorization of W,(X;, 7/X;) in Eq. (34)
that during a time-step 7, each particle moves independently from the others in the same ’static’
surrounding (i.e., initial configuration ¢). Hence it is legitimate to replace the N-particle short-
time transition pdf’s in Egs. (60) and (61) by the corresponding single-particle transition pdfs.

We are now in the position to formulate the structure chart of the smart BD algorithm for
trajectories generated according to W;;:

(a) Select a non-overlapping configuration Xy = (ry, ..., ' no)-

(b) Choose a random permutation of {1, ..., N} and keep it fixed until all particles have been
moved once.

(c) Sample a new position r; of particle 1 according to the Ermak scheme.

(d) Accept the tentative move with probability ();_.; by comparison with a random number &
sampled uniformly in (0,1). If £ < @Q;_;, the move is accepted. Otherwise, go back to
the old state r1g and count this state once more before a new move is attempted.

(e) Repeat steps (3-4) for all remaining particles 2, ..., N.

(f) Time is advanced after each particle has had a trial move.

According to Eq. (61), the crucial Monte Carlo decision (d) becomes particularly simple for
pure hard spheres [27]: a move is accepted if there is no resulting overlap, and rejected oth-
erwise. Note that the old state has to be counted again for a rejected move, since there is a
non-zero probability for a transition ¢ — ¢, and this has to be given appropriate weight.

By its very construction, the smart BD algorithm fulfills detailed balance under all conditions
so that the approach to thermal equilibrium is ensured. Hence correct equilibrium averages,
like Eq. (51) for g(r), are obtained after equilibration even when a large 7 has been selected.
However, if the generated trajectories are used not only to sample the configuration space effi-
ciently, but to calculate dynamic properties like the mean-square displacement, then the smart
BD algorithm becomes exact in the limit 7 — 0 only. This follows from @);_.; — 1 for 7 — 0,
as may be noted from Eqs. (34) and (61). In this limit, WW;_,; satisfies detailed balance and
every tentative configuration will be accepted. Then the smart BD and Ermak BD schemes are
truly the same. Smart BD, however, offers practical advantages over the Ermak procedure since
it allows for appreciable larger time-steps, where the basic BD procedure becomes unreliable
or even non-physical. The smart BD algorithm can be straightforwardly extended to systems of
hydrodynamically interacting particles [30].

Smart BD results for the mean-square displacement, W (¢), of hard spheres in the free-draining
approximation measured relative to the MSD, Dyt, of non-interacting spheres, and for the dy-
namic structure factor, S(q,t), at a fixed wavenumber ¢ = 9.8/0, are depicted in Fig. 7. At
short times, 75 < t < 7,, a probe particle does not yet experience the mean influence of
direct interactions with neighboring particles. Therefore, 1 (t) grows initially linear in time
according to W (t) = Dgt, with the short-time self-diffusion coefficient, Dg, equal to Dy in the
free-draining approximation. Unlike the direct interactions, the slowing influence of HI is felt
instantaneously, giving rise to Dg < D, when HI is included. At intermediate times ¢ ~ 7,,
the dynamic ’cage’ formed around the probe sphere by neighboring spheres becomes distorted
from its equilibrium spherical symmetry so that the probe particle is now additionally hindered
in its diffusion by direct interaction forces. The cage distortion leads to a sub-linear time depen-
dence of W (t) at times t ~ 7,. This sub-linear time regime is most clearly resolved by plotting
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the ratio W (t)/(Dot) versus time. At long times ¢ > 7,, the probe sphere has experienced
many independent interaction events with neighboring particles, which implies again a linear
time dependence according to W (t) = Dyt, quantified now by the long-time self-diffusion co-
efficient D. The long-time coefficient is smaller than Dg for any form of direct interaction.
Consequently, W (t)/(Dot) in the free-draining approximation decays from one for short times
towards the long-time ratio Dy /Dy. As can be noticed from Fig. 7, this ratio gets smaller for
increasing particle concentration.

The monotonic decay of the dynamic structure factor, S(q,t), shown in the right part of Fig.
7, from its initial value S(q) towards the final value zero, exemplifies a general rule stating
that any configurational one-time auto-correlation function is decaying strictly monotonically
in time when observed on the Brownian Dynamics time scale of ¢ > 75 [5]. For any given ¢,
the decay of S(q, t) becomes slower with increasing concentration.
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Fig. 7: Left: smart BD results for the mean-square displacement of hard spheres in free-
draining approximation (redrawn from [31]). Particle volume fractions ¢ as indicated. Right:
dynamic structure factor of hard spheres versus reduced time (redrawn from [32]).

4 Brownian Dynamics simulations with hydrodynamic inter-
actions

In the following we describe how the free-draining BD simulation scheme can be extended to
account for hydrodynamic interaction effects. HI are in general not pairwise-additive, they are
long-range, decaying like 1/ in the inter-particle distance r, and they diverge for certain types
of motion when particles approach each other very closely (lubrication effects). These three
properties make their numerical treatment difficult. As we will see, the implementation of HI
into the Ermak scheme requires in principle O(/N?) matrix inversions, and the computation of
correlated forces between different particles to satisfy the fluctuation-dissipation relation. The
computational bottleneck is thus the incorporation of HI, and not the force calculation as in
the free-draining limit. To date standard BD simulations with HI are therefore limited to small
systems of particle numbers 32 < N < 256.

There are mathematical subtleties related to the proper definition of Langevin equations with
HI included [1, 2, 33]. For this reason, we will derive the extension of Ermak’s finite difference
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scheme starting from the generalized Smoluchowski diffusion equation. The GSE equation for
the configurational pdf, P(X, ¢), is unequivocally defined even when HI is included.

4.1 Hydrodynamic interactions of spheres

On colloidal time scales ¢ > 7, ~ 7p, the motion of the solvent can be described by the
so-called creeping flow or Stokes equation [34,35],

~Vp(r) + nV?u(r) = 0, V-u(r) =0, (62)

where u(r) is the fluid velocity at point r, and p(r) is the pressure field (cf. lecture B1 of
J. Dhont). In addition, boundary conditions on the particle surfaces and at infinity must be
specified. Commonly, it is assumed that the solvent sticks perfectly to the particle surfaces.
Stick boundary conditions can be justified experimentally for colloidal particles where a > 30
nm [36]. For a quiescent suspension without externally imposed flow, u(r) vanishes at infinity.
Eq. (62) is the linearized and stationary form of the Navier-Stokes equation. Linearization is
justified since the Reynolds number, Re, in quiescent colloidal systems is very small. To give
an example, Re = apv/no ~ 5.4 x 1077 for spheres of radius 100 nm suspended in water at
room temperature and driven thermally by Brownian motion where vy, = (3kgT'/ m)l/ ®. For
a time resolution ¢ > ,, viscous shear waves and sound waves created by unsteady particle
motions have decayed away over distances where the particles are correlated 2. Therefore col-
loidal flow can be considered as quasi-incompressible and time-independent. Note that Eq. (62)
expresses a force-balance between pressure and viscous forces.

Consider now a quiescent and unbound suspension of N identical colloidal spheres in a New-
tonian fluid which are allowed to rotate freely (i.e. no external torques applied). Since the
creeping flow equation is linear and stationary, the translational velocity, v;, of a sphere 7 is
linearly and instantaneously related to the hydrodynamic forces, {F;’}, exerted on the surfaces
of the IV spheres through their friction with the surrounding fluid (cf. Fig. 8),

N
vi=—8Y Dy(X) F:. (63)
j=1

The tensors D;; are referred to as translational hydrodynamic diffusivity tensors or likewise,
after division by kg7, as translational hydrodynamic mobility tensors. These tensors are com-
plicated functions of all colloid positions. They form the elements of a symmetric and positive
definite 3N x 3N diffusivity matrix

Dll D12 .. DlN

D(X) _ ]:).21 ]:).22 .. D2N

(64)
Dy1 Dn2 .. Daw

The positivity of the matrix D is a consequence of the friction-dominated motion of colloidal

particles which gives rise to a steady irreversible dissipation of their kinetic energy into heat

At times t ~ T, a linear inertial term p;0u/0t must be added to the lhs of Eq. (62). This term gives rise to
the long-time tail noted in Eq. (22).
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according to [35]:

N N
Epn = Flovi=-3> F!-D;-Fl<0. (65)
=1

ij=1

Analytical calculations of the diffusivity tensors are difficult even in case of spheres, and have
been achieved fully only on a pairwise-additive level, mainly in form of expansions in the
inverse distance, a/r;;, between two spheres. Hereby one disregards the influence of other
spheres on the HI between a given pair of spheres, an approximation which is valid only for
large inter-particle spacings. The N-sphere diffusivity tensors can be written as the sum [5, 34]

D;;(X) = D¥(r;;) + AD;(X) , (66)
consisting of a far-field part, referred to as Rotne-Prager (RP) approximation [37]

3/ a PN 1/a\® ~
D} (ri;) = 0;3Do14(1 — 6;5) Dy {Z <—) [1+Ti;Ty] + 3 (—) 1 - 3rijrij]} , (67)

Tij Tij

which is the long-distance expansion of D;;(X) up to O(a/r;;)?, and a complicated near-field
part, ADZ-j(X), which accounts for all remaining contributions. Here, D is defined as in Eq.
(12), with ¢, = 6mnga for stick boundary conditions. The near-field part includes all higher-
order two-body as well as all many-body contributions, and it becomes increasingly important
with smaller particle separations. It also accounts for the hydrodynamic lubrication effect: the
relative hydrodynamic mobility of two spheres must vanish at contact, proportional to h =
(rij — 2a) for spheres ¢ and j in relative motion along their line of centers [35]. This singular
behavior arises since the solvent, which sticks to the particle surfaces, must be squeezed out
of the narrow gap (cf. Fig. 8). Lubrication effects are relevant for surface-to-surface distances
hja ~ 1072, However, for very small i ~ 10~® cm, the mean free path of solvent molecules
will be of the order of the nearest surface-to-surface distance so that some slip is introduced.
Therefore, the no-slip boundary condition between surface and solvent, and the continuum
picture of the solvent underlying Eq. (62) and lubrication theory, can not be exactly true for an
actual physical system.

L o / A

v,

Vi >V,

Fig. 8: Left: hydrodynamic interactions (HI) between colloidal spheres. Right: singular lubri-
cation forces in the narrow fluid gap between two approaching spheres close to contact.

The RP form of D;;(X) is a valid approximation for dilute systems consisting of particles which
repel each other strongly over larger distances, for example like-charged colloidal poly-ions.
This approximation is not applicable to hard spheres since two hard spheres are likely found in
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near contact. Two convenient features of the RP approximation are firstly, that it preserves the
positivity of the exact diffusivity matrix for all non-overlap configurations, and secondly, that
the diffusivity tensors are divergence-free in RP approximation,

\ZE Df;P(r,-j) =0. (68)

The first feature is a prerequisite to guarantee convergence to equilibrium of the BD scheme.
The second property amounts to a significant reduction in computation time. It should be em-
phasized, however, that in general D;; is not divergence-free since V, - AD;; # 0.

In BD simulations of polymer solutions, a polymer is often modelled as a linear chain consist-
ing of spherical beads of hydrodynamic radius a, linked together consecutively by some sort of
continuous spring-potential u(r) [38,39]. For numerical tractability, the HI between the beads
are commonly described in RP approximation. Moreover, to avoid the use of excluded volume
interactions with their troublesome implications (e.g., very small time-steps and non-negligible
near-field HI effects), one allows for some overlap of the beads. This requires a regular exten-
sion of DZP into the region r;; < 2a, which is non-singular at r;; = 0 and positive definite for
all bead configurations. Such an extension is provided by the Rotne-Prager-Yamakawa tensor,
D/"Y, defined as D" = D/ for r;; > 2a, and [37,40,41]

9r;s 3Tii e,
Df;?PY(rij) = DO{(l — L) 1+ % rl-jrij} if i #j and r;; < 2a . (69)

While this extension amounts to an inconsistent mix of direct and hydrodynamic interactions, it
preserves the positivity of D(X), and the validity of V; - ij*P ¥ = 0 even for overlapping chain
conformations.

4.2 Generalized Smoluchowski equation with HI

Our starting point to include HI into BD simulations is the generalization of the free-draining
Smoluchoski Eq. (39) to systems of hydrodynamically interacting spherical particles. In lecture
B1 by J. Dhont, the GSE including HI has been derived heuristically by means of a force balance
for each colloidal particle, valid for ¢ > 75 and small density gradients only, and an exact
continuity equation for the probability current. The GSE for the evolution of the configurational
pdf with HI reads explicitly [5,42]

0 ~

aP(x,t) = O(X)P(X,t), (70)

with the Smoluchowski operator
R N
O(X)=V-D(X)-[V-FX)] = Y V;-Dy(X)-[V; - BF;(X)] . (71)
ij=1
Without hydrodynamic interactions, the diffusion matrix reduces to

showing that Eq. (40) for @(X) is recovered in the free-draining limit. We recall that the ap-
plicability of the GSE is restricted to Brownian time and length scales, where both the particles
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and the solvent move quasi-inertia-free. The GSE can be recast in the form *

%P(X t) ==Y V- (vP(X)P(X, 1)) + > ViV, : Dy(X)P(X, 1) . (73)

i=1 ij=1
with a drift part invoking the particle drift velocities,

N
[8Dy(X) - F;(X) + V; - Dy(X)] (74)

Jj=1

and a diffusive part invoking the diffusivity matrix. This form of the GSE should be compared
to the corresponding free-draining expression in Eq. (39). Quite interestingly, the drift velocity
with HI includes an additional hydrodynamic drift term, > ; Vj - Dy, which is of importance
when near-field HI are strong. This term accounts for changes in the local hydrodynamic par-
ticle mobility during a random step. It drives the particles in regions of higher hydrodynamic
mobility, and is necessary to recover the canonical equilibrium in the course of time [43]. Phys-
ically, the hydrodynamic drift part acts similar to a radially repulsive force. In BD simulations
with HI (see below), it helps thus to prevent particle overlap during a random step.

It is confirmed by inspection that P,,(X) is a stationary solution of the GSE which satisfies
detailed balance. This implies that HI have no effect on static equilibrium properties, since I,
is independent of the D;;. The positive definiteness of D(X) combined with the natural bound-
ary conditions suffice to prove that any initially normalized and positive solution of the GSE,
P(X,t), remains normalized and positive, and tends to P,, for t — oo [1,10].

A Brownian Dynamics finite difference scheme for the Markov process X(¢) with HI can be
derived from the GSE, on assuming that the system has been prepared in a configuration X
at the initial time ¢, = 0. After a time-step 7 < 7,, the configuration has changed so little
that both D(X) and v”(X) have practically remained constant. The GSE reduces then to a
diffusion equation with constant coefficients,

0
or
where W, is the short-time form of the conditional pdf. This equation generalizes Eq. (35)

to systems with HI. The solution of Eq. (75), subject to the initial condition W.(X, 0|X,) =
(X — Xp), is given by

WX, 7|Xo) = —vP(Xg) - VIVL(X, 7|Xo) + D(Xy) : VVW.(X, 7|Xo), (75)

1
(det D(X,))"2

exp{—% [X — Xy — 7vP(Xo)]" - D(Xo) - [X — X — 7vP (X))}

W.(X,7|Xo) = {dmr} 32 (76)

as can be checked by substitution (cf. Eq. (34)). A direct proof is obtained through the change
of variables from X to Y,

X - rvP(Xe) = d(Xo) Y — o —d 7 (Xo)-

X 77)

Y’

3Here, ViV;: Dy P=V;- [Vj . (Dij P)]
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which transforms Eq. (75) into a standard Gaussian form which can be easily solved. Here, d is
the square-root matrix of the positive definite matrix D, defined by D = d - d”. We note from
Eq. (76) that, in common with the free-draining approximation, X (7) is Gaussian for short time
displacements. With HI, however, the particle positions are coupled even at small 7. Moreover,
one can show that non-Gaussian corrections to W, start to develop earlier with than without HI
when 7 is increased (see [33] for details).

4.3 Finite difference algorithms including HI

On noticing that P.(X, 7|X,) = W.(X, 7|X)+0(7), and that IV, describes a Gaussian process,
the conditional moments defined in Eq. (44) are straightforwardly calculated, using Eq. (76),
as

(AXi(r)), = vi(Xo)7T+0(7) (78)
<AX1<T> AX] (T)>0 = 2DZ] (X(]) T+ 0(7') 5 (79)

with all higher-order moments being small of o(7). The hydrodynamic coupling of the short-
time displacements between different particles and the symmetry of the diffusivity matrix is
made explicit in the covariance matrix in Eq. (79), which expresses a fluctuation-dissipation
relation.

Knowing Eq. (76) and its moment relations, we are in the position to formulate the finite-
difference equation including HI,

ri(to +7) = ri(ty) + vP(Xo)T + Vor d(Xp) -n+ o), (80)

which is stochastically equivalent to Eq. (70) in the limit 7 — 0. Eq. (80) is the extension of
Ermak’s first-order forward integration scheme to systems where HI is included. It is commonly
referred to as the Ermak-McCammon scheme [7]. Like in the free-draining limit, n is a Gaussian
random vector of independently distributed components of mean zero and variance one. These
components are most conveniently calculated, to first order in 7, using Eq. (50).

To obtain the random displacement part in Eq. (80) for given initial configuration X, requires,
in principle, to determine the positive definite 3N x 3N square-root matrix d(Xy). The matrix
d is not uniquely determined by its defining equation

D(Xo) = d(X,) - d"(Xo) . (81)

One may additionally demand that d is a symmetric matrix. This requires for its determination
to compute the eigenvalues of D, which are all necessarily positive. Alternatively and prefer-
entially, d may be chosen to be a lower triangular matrix. Then a lower-upper decomposition
of the diffusivity matrix is required which can be done using the standard Cholesky decomposi-
tion algorithm [11,44,45]. Both alternatives to determine d(Xg) amount to O(N?) operations
at each time-step. This is the reason why calculations of d form the bottleneck of BD simula-
tions including HI, leading to severe restrictions in the number of simulated particles. In fact
since only the product d - n is needed instead of d alone, actual calculations of the random
displacement can be speeded up to roughly an O(N?%%) operation, by means of a Chebyshev
polynomial approximation proposed originally by Fixman [46] (see also [38]).

A disadvantage of the one-step Ermak-McCammon scheme is that it requires, at each time-step,
the computationally expensive calculation of V - D(Xj), when the system is so dense that the
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Rotne-Prager approximation is not sufficient. It is possible to calculate the hydrodynamic drift
term analytically by means of a multipole expansion method [47], which is more accurate and
less expensive in terms of computer time and memory than a ’brute-force’ numerical differen-
tiation. Alternatively, one may use an elegant updating algorithm developed by Fixman. This
algorithm involves a midpoint evaluation, which avoids the explicit calculation of the diver-
gence of D, at the less severe expense of a two-step calculation for each time-step 7. Using
the abbreviation R*(7) = V27 n, Fixman’s algorithm [46] may be formulated as follows (see
also [48,49]):

(i) For a time-step 7 < 7, calculate first the midpoint configuration X*, using
. 1 -1
X' = Xo+ 5 D(Xo) - | F(Xo)7 + (d"(X0) R (T)] . (82)

Note that only one half of the force drift part and random displacement part is involved,
and that the hydrodynamic drift part is suppressed.

(i1) In a second step, calculate the actual configuration after the time-step 7 according to

1

X = X, +D(X*)- [ﬁF(X*)T+ (d” (X))~ -RS(T)] . (83)

The random force, (d” (X)) L.Re (7), has been kept constant over the full time-step, whereas
the small change in configuration is accounted for in the diffusivity matrix. To see that Fix-
man’s midpoint BD algorithm is equivalent to the Ermak-McCammon scheme to first order in
7, Taylor-expand F(X*) and D(X") to leading order in (X* — X)), using (i), and convince
yourself that the moment relations in Eqgs. (78) and (79) are recovered.

A remarkable consequence of accounting for near-field HI and lubrication in BD simulations is
that since the relative motion of two very nearby particles is almost completely suppressed due
to the stick boundary conditions, no non-hydrodynamic excluded volume forces are needed to
satisfy the zero relative radial flux boundary conditions. It is therefore possible to simulate hy-
drodynamically interacting hard spheres without excluded volume forces [50]. The probability
current in the continuity equation form, Eq. (42), of the GSE is generalized with HI to

N

Xt = =) Du(X)- [V, = BF(X)] P(X, 1) (84)
=1

N

= vP(X)P(X,t) =Y V- Du(X) P(X, 1) .
=1

Using this expression, the zero-relative-flux boundary condition for two isolated spheres 1 and

2 in contact is

Tyo - Diél(ru) - [Via — BF13] P(r12,t)|ry=0+ = 0. (85)

For hard spheres, F15 ~ &(rj3 — 0)rys is the singular force exerted on sphere 1 by sphere
2, and D™ = Dj; + Dy — Dy — Dy, is the relative diffusivity tensor. The hard-sphere
force drops out of the zero-flux condition since T15 - D}5 (r15) ~ (r12 — o), for r15 — o, and
(r —o)o(r — o) = 0. Consequently, the hard-sphere potential plays no dynamical role in BD
simulations of hard spheres with a full account of near-field HI [51].



B4.28 G. Nigele

Note here that the Brownian motion of colloidal hard spheres keeps them apart and well dis-
persed. Particles can get linked together by strong lubrication forces, eventually forming non-
compact aggregates, only when the suspension is subject to a very strong shearing motion which
totally dominates the Brownian random excursions described by the random displacement term
in the BD finite difference equation [50,52]. The motion of hydrodynamically interacting, and
typically quite large mesoparticles [53], in a regime where Brownian random displacements
can be neglected is referred to as Stokesian Dynamics, since the HI are described by the Stokes
equation. Contrary to Brownian Dynamics, where the particle motion is kept alive by the ther-
mal bombardment of solvent molecules, Stokesian Dynamics requires an external forcing, for
example in the form of an imposed shear flow caused by moving system boundaries, or strong
sedimentation forces, to keep the particles moving (see, e.g., [54]). Be alerted here against a
possible source of confusion: in part of the literature, and different from the present usage,
Stokesian Dynamics is referred to as a special form of Brownian Dynamics including random
motion, where many-body HI and lubrication effects have been accounted for. To avoid con-
fusion, sometimes the more explicit notion ’Stokesian Dynamics of Brownian suspensions’ is
used for a simulation scheme which accounts for Brownian random displacements in addition
to near-field HI (see, e.g., [S1]).

In BD studies of unbound suspensions, additional problems arise from the long-range nature
of HI, and from using periodic boundary conditions. Obviously, these problems are present
even when near-field HI is negligible or simply disregarded. A simple summation of the far-
field hydrodynamic interactions results in badly divergent expressions. However, these conver-
gence problems can be overcome using a regularizing hydrodynamic Ewald summation tech-
nique [55], adapted to an infinite periodic system [S6-58]. The hydrodynamic regularization
procedure is an additional expensive ingredient in a BD simulation study with HI.

H(a)

go

Fig. 9: BD simulation result with many-body HI for the H(q) of charged globular proteins
at volume fraction ¢ = 0.33. The simulation has been performed using N = 860 particles

(from [16]).

An important measure of the strength of HI with regard to particle diffusion is given by the
hydrodynamic function, H (q), defined and computable as [3]

H(q) = #0< S G Dy(X) - Gexplia- -]}, (86)
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with q = q/q. The function H (q) is non-negative and contains, through the diffusivity tensors
D,;, the influence of HI on the short-time collective diffusion of particles caused by local density
gradients. This explains why H(q) is referred to as the hydrodynamic function. Recall here that
the colloidal short-time regime is defined by 75 < t < 7,. Experimentally, H (¢) is determined
as a function of the wavenumber ¢ through a combination of static and dynamic scattering
experiments [3]. Without HI, H(¢q) = 1 so that any variation in H(q) is a hallmark of HL
The function H(q) has a direct physical meaning as the (reduced) mean particle sedimentation
velocity for a suspension subject to a weak periodic force field, collinear with the wavevector
q and oscillating like cos(q - r). The long-wavelength limit of H (q) is thus equal to the (short-
time) reduced sedimentation velocity of slightly non-buoyant particles forming a homogeneous
suspension.

Fig. 9 includes a BD simulation result for the hydrodynamic function of charged spherical pro-
teins. The radial distribution function of this system is shown in Fig. 5. The most important HI
contribution to H (¢) arises from the many-body near-field part AD,; since, as noticed from Fig.
5, g(r) is non-zero at contact. The near-field part is responsible for a value of the peak height
of H(q) smaller than one. In dilute charge-stabilized suspensions, where Rotne-Prager far-field
HI prevails, H(q) is characterized instead by a peak height larger than one [3]. Fig. 9 has
been obtained using a recently developed accelerated BD code where HI is fully accounted for.
This code allows to compute short-time dynamic properties using a large number of particles
(see [59] and the discussion in the final part of section 5).

1e : : : : : 1 . .
— simulation without HI |
® simulation with HI
0gl @ ® experiment , 0.8 O magnetic (HI1)
Wit . O Yukawa (HI)
& - . : 0.6 B magnetic (without HI)
Dyt 'S a @ Yukawa (without HI)
0.6 ®e. s =,
@
i *%ee. ] =
‘..
b TPy
Q.
04l aad)
0.2 ! | ! | ! |
0 0.02 0.04 0.06
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Fig. 10: Left: BD simulation of the reduced mean-square displacement for magnetic spheres of
areal number density p = 3.24 x 1072 um=2, moving along an air-water interface (from [60]).
Right: Long-time self-diffusion coefficient, Dy, versus maximum height, S(q.,), of the static
structure factor of quasi-two-dimensional systems (from [61]).

Unlike the system of Fig. 9, semi-dilute suspensions with strong and long-range particle re-
pulsions are dominated in their dynamics by the pairwise-additive far-field part of the HI.
Examples of such systems, which have been extensively studied in the past, are suspensions
of magnetic or charged colloidal spheres confined to two-dimensional translational motion. A
well-studied quasi-two-dimensional system of this sort consists of super-paramagnetic colloidal
spheres confined by gravity to motion along a planar water-air interface [60]. The spheres in
this system repel each other by forces described very accurately by the dipolar pair potential
u(r) = poM?/(4nr3), where M is the magnetic moment of a sphere induced by an external
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magnetic field directed perpendicular to the interface, and y is the vacuum magnetic constant.
An experimentally determined MSD for such a system is shown in the left part of Fig. 10,
in comparison with BD simulation results with far-field HI included and without HI. Time is
measured here in units of 79 = 1/(pDy), which is the time needed for a particle to diffuse
across an inter-particle distance, p~ /2, in the absence of any interactions. Contrary to the near-
field part of HI, which slows down self-diffusion, far-field HI causes a significant increase in
W (t). The hydrodynamic enhancement of self-diffusion caused by far-field HI is a generic
feature observed in all (semi-dilute) quasi-two-dimensional and three-dimensional suspensions
with long-range inter-particle repulsions [3]. As an aside, we note that the HI between spheres
moving along a liquid-gas interface differs from that in an unbound fluid. A derivation and dis-
cussion of the quasi-two-dimensional analog of the three-dimensional Rotne-Prager diffusivity
tensor for particles at a liquid-gas interface can be found in [62].

Quasi-two-dimensional suspensions of particles characterized by a single static length scale
show an interesting form of dynamic scaling depicted in the right part of Fig. 10, where BD
simulated results for the long-time self-diffusion coefficient, D, with and without far-field HI
are plotted as function of the peak height, S(g¢,,), of the static structure factor. Results are
shown both for super-paramagnetic and charged spheres, whereby the latter have been assumed
to interact by a Yukawa-like screened Coulomb potential similar to the one in Eq. (54). As
can be seen, Dy is determined essentially by S(g,,) alone, independent from the details of the
pair interaction. At a fluid-solid transition point, one observes that Dy /Dy ~ 0.085 which
corresponds to a structure factor peak height of S(g,,) ~ 5.5. These values are in quantitative
accord with empirically found static and dynamic criteria for the onset of freezing in two-
dimensional systems (for details see [61,63]).

5 Summary and Outlook

Brownian Dynamics simulations are a versatile and frequently applied tool to study diffusion,
rheology and microstructural properties of dispersions of mesoscaled particles, like colloids and
polymers, on time and length scales where configurational changes take place.

In this lecture, only systems of monodisperse spherical particles have been considered and, as
an additional restriction, only their translational motion. The Ermak-McCammon scheme of
hydrodynamically interacting spheres is easily extended to include the translational-rotational
motion of the particles [64]. Moreover, mixtures of colloidal spheres have been treated in BD
simulations both with [65] and without HI [66].

The effect of an ambient shear flow [40,44] can be implemented into the simulation scheme,
by adding an affine displacement to the rhs of Eq. (80) caused by the shearing motion, and
by adjusting the periodic boundary conditions appropriately [11,44]. The stationary pdf for
systems under steady shear is not given any more by the canonical distribution function, since
the average local environment of a particle is deformed away from spherical symmetry. BD
simulations of flexible linear aggregates formed by spheres which are interacting by far-field HI
only, are common practice nowadays. Such bead-spring-type models are used to explore generic
properties of dilute solutions of homopolymers and DNA [39], and short-chain polyelectrolytes
[67].

The HI between non-spherical rigid particles are very complicated, and not well understood to
date even in the most simple case of uniaxial rods. For this reason, the dynamics in colloidal
suspensions of rod-like neutral [68,69] and charged [70] particles has been investigated almost
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exclusively in free-draining BD simulations.

In free-draining simulations, up to a few thousand particles can be simulated, which greatly
helps to improve the statistics of computed properties. BD simulations with HI require a sub-
stantially larger numerical effort, so that the number of particles in three-dimensional simula-
tions is limited to at most a few hundred. Recently, a new implementation of the BD simu-
lation method with a full account of HI has been developed, in which the computational cost
is strongly reduced to an O(N In N) algorithm [59]. This acceleration of the BD algorithm
has been achieved using a grid-based scheme for the far-field HI part along with an Ewald
summation technique. The new scheme allows simulations of the order of 1000 particles. It
has been applied recently to study the dynamics in rather dense solutions of charged globular
proteins [16].

To describe the rheology of very dense suspensions of closely spaced hard spheres at and above
the volume fraction ¢ = 0.494 where the suspension starts to freeze into a solid, a so-called
lubrication approximation has been proposed, in which the diffusivity matrix is calculated using
the lubrication forces alone. Since the numerically expensive long-range part of the HI has been
ignored in this approximation, it is possible to simulate a few thousand particles [49].
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