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1 Introduction
With a school on computational aspects of condensed matter physics, it is appropriate to put the
emphasis on methodology. However, not all presentations may predominantly cover numerical
or algorithmic approaches, because in some cases it is necessary to first introduce physical
concepts that not everybody might be familiar with. This is such a contribution.
The main questions in the field of pattern formation can be phrased in a relatively simple man-
ner. Why do patterns arise spontaneously from a homogeneous environment (or at least an
environment less structured than the pattern)? How do they organize themselves? In particular,
how is one alternative chosen out of several, often many, possible ones? Since we are physicists,
we are interested in measurable, quantitative aspects of conspicuous features of the pattern un-
der scrutiny. We may then ask, how the length scale of a pattern is selected – or its velocity, if
it is moving.
First, we ought to have some general idea what kind of patterns we are talking about. Clearly,
the atoms of a crystal form a nice and regular pattern at the microscopic scale. This kind of
structure occurs in thermodynamic equilibrium because the ordered state minimizes the free
energy of the system, reflecting a compromise between energetic and entropic forces. These
microscopic patterns are well understood, we have good intuition about them, and they are not
the subject to be discussed here.
Rather, the focus shall be on patterns that arise in a somewhat counterintuitive manner, appear-
ing to defy the second law of thermodynamics by producing order in a less ordered environment,
and doing so spontaneously, i.e., without the intervention of a planning entity. Since the second
law is not really violated, entropy must be exported by the pattern, which means it has to be
kept far from equilibrium by some driving mechanism. We have thus identified one important
ingredient for macroscopic pattern formation, a nonequilibrium situation leading to dissipation.1

A second important ingredient is nonlinearity of the governing equations. Macroscopic sys-
tems are usually described in terms of continuous variables. The dynamical description of an
extended system requires at least the time and one variable for spatial extension, meaning that
the basic equations are partial differential equations. Now consider a simple linear partial dif-
ferential equation, such as the wave equation:

∂2u

∂t2
− c2∂2u

∂x2
= 0 , (1)

where u is the amplitude of some excitation and c the speed of the waves. A plane wave ansatz

u = uk exp{i(kx− ωt)} (2)

solves this equation, provided the dispersion relation

ω2 = c2k2 (3)

is satisfied. That is, we can find solutions at arbitrary wavelength 2π/k. The superposition
principle guarantees that any sum of these solutions is a solution again, which is the reason why
the general solution to (1) may be obtained by expanding the field u in a Fourier series. But
this means that no particular wavelength can be preferred by the equation.2 Since having one

1There are exceptions to this rule. Ferrofluids form macroscopic equilibrium structures in magnetic fields.
Solitons are dynamical structures not driven by dissipation.

2Such a preference could of course be brought about by boundary conditions. We would however not regard
patterns as self-organized, if they are determined this way by the geometry of the system – Chladni’s sound figures
may serve as a case in point.
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or several preferred length scales is the signature of a pattern, we cannot expect self-organized
structures to be describable by equations satisfying the superposition principle. Hence, models
for pattern forming systems have to be nonlinear (systems of) equations.
Nature abounds with phenomena of self-organization resulting from nonlinear dynamics. While
this may be visible most strikingly in biology, many examples can be pointed out from other
disciplines such as physics, chemistry, meteorology, ecology, cosmology, to name but a few.
Physical systems have the advantage that often their basic nonlinear equations are well known,
so a detailed theoretical investigation may start from a sound modeling basis, whereas experi-
ments may focus on precise quantitative questions. A number of paradigmatic setups have been
devised to bring out the characteristic phenomena. The best-studied of these are hydrodynamic
systems, for example the Rayleigh-Bénard and the Taylor-Couette experiments, electrohydro-
dynamic convection or else parametrically excited surface waves. Aspects of hydrodynamic
systems are discussed in the lecture by W. Zimmermann.
Furthermore, self-organization and pattern formation are found, besides many more or less
obvious examples from biology (such as the patterns in coats of animals such as zebras and
leopards), in chemical reaction diffusion systems, with structures ranging from spiral waves [1]
to Turing patterns [2, 3], in convective flame fronts [4], producing cellular patterns, in nonlinear
optics [5], in electrical discharges within plasmas and semiconductors [6, 7], and in solidifi-
cation and viscous fingering. The last two phenomena will be discussed in more detail in the
following. They share the characteristic feature that their dynamics is essentially affected by
the presence of an interface, either between a solid and a fluid or between two immiscible flu-
ids. How problems involving complex interfaces are treated numerically using the phase-field
method is explained in the lecture by B. Nestler presenting, in particular, applications to solidi-
fication.
In the continuing effort to understand these phenomena, a few general ideas have been devel-
oped. The analogy, on a mean-field level, between phase transitions and nonequilibrium tran-
sitions from one ordered pattern (including the homogeneus structureless state) to another was
apparently first pointed out in laser physics [8]. As with phase transitions, one can often identify
a symmetry that is broken during the transformation of the structure. Of course, nonequilibrium
systems show a much larger variety of behaviours than equilibrium systems. Nonequilibrium
transitions are intimately connected with instabilities that destroy one structure to clear the way
for a new one. Close to the threshold, where a mode becomes unstable, its growth is very slow.
This leads to a separation of time scales allowing adiabatic elimination of fast variables, en-
abling a description in terms of few relevant variables serving as order parameters. Sometimes
this reduction to amplitude equations is restricted to such a small regime about the critical point
that it is next to useless for practical purposes. Then one has to have recourse to semianalytical
(phase equation) or numerical approaches [9].
The concepts developed in the physical description of dynamics far from equilibrium have found
applications in other sciences. On the other hand, physics has taken over some of the vocabulary
of these disciplines. Most notable is the use of Darwin’s notions [10] of competition and selec-
tion in the discussion of nonequilibrium systems. In a laser, all possible modes compete for the
pumping power but only a few (or just one) are ordinarily selected, i.e., they stay “alive”, feed-
ing themselves from the power input. In solidification, different possible modes of structural
organization may compete for the incoming flux of material. If one of them grows faster than
its competitors, it will be selected, because it will simply outgrow them. More subtle selection
problems are, e.g., the question of the selection of length scales and of the growth velocity for
given morphologies.
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Since there is such a huge variety of pattern-forming systems, an introductory lecture cannot
treat all of them. I will therefore focus on pattern formation via motion of an interface, mostly
because solidification systems are those I know best, but also because they provide an extremely
good motivation for the phase-field method, which is one of the most versatile numerical ap-
proaches to interface dynamics.

2 Interfacial instabilities
If you ask a random person to describe solidification of a crystal, most probably the growth
of a simple regular shape consisting of highly symmetric polyhedra will be depicted. A salt
(NaCl) crystal, when grown from solution, essentially is a cube, sometimes consists of several
ones. Now consider a snowflake, normally a single crystal, too. Figure 1 displays a hand-drawn
example. Evidently, this object does display the regularity of the underlying crystal structure as
well, but nonetheless there is a profound difference when comparing with the simple shape of a
salt crystal.

Fig. 1: Drawing of a snowflake, after a photograph by Furukawa [11].

The snowflake has a property that a salt cube has not – complexity. One realizes this when trying
to give an accurate verbal description of a shape such as the one displayed in Fig. 1. Its six main
arms have a characteristic structure, resembling that of a tree, hence the name dendrites for these
crystals.3 The symmetry is only approximate, not exact, and it does not entirely determine the
shape. In fact, it is proverbial knowledge that no two snowflakes are alike. Apparently, it is
this interplay between symmetry and complexity that makes us feel snowflakes are esthetically
pleasing objects.
Scientific interest in dendritic growth is not only driven by the fundamental considerations out-
lined above, but also by its technological relevance. The microstructure of most cast alloys is
dendritic, and it is essentially the size of the dendritic patterns that determines material proper-
ties such as strength and ductility. Minor improvements in the control of the microstructure can
result in major reductions of production costs.

3After the Greek τ ó δένδρoν, meaning the tree.
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2.1 Mullins-Sekerka instability
Snowflakes grow in an environment of undercooled vapour. It is relatively easy to understand
why this must lead to a complex shape, if we assume the growth to be controlled mostly by
the transport of latent heat. During solidification, the latent heat produced must be transported
away from the surface of the solid and through the vapour – otherwise the solid would heat up
until growth stops. Then simple shapes become unstable. Roughly speaking, this is because
the crystal can get rid of heat more efficiently having a large surface than having a small one.
Simple shapes have smaller surfaces than complex ones of the same volume.
Figure 2 depicts, in the left panel, a solid exhibiting a planar interface in contact with its under-
cooled vapour (or melt). The dashed lines represent the isotherms in the fluid phase. Assume
then that there is a fluctuation of the interface shape leading to a protrusion of the solid into
the fluid. Ahead of point A, the isotherms will be compressed a little which leads to an in-
crease in the magnitude of the temperature gradient. Since the heat current j is proportional
to the temperature gradient (j = −χth∇T , with thermal conductivity χth) this means that la-
tent heat is more rapidly transported into the fluid from point A than from point B. Therefore,
crystallization will accelerate at A, the perturbation grows, we have an instability.

Fig. 2: Illustration of the Mullins-Sekerka instability.

This instability, named after Mullins and Sekerka who were the first to give its quantitative
description [12], would eventually lead to a complete break-up of the structure into ever finer
parts, were it not for stabilizing counter effects.
Surface tension provides such an effect, because it influences the melting temperature of the
solid. In thermal equilibrium, the temperature of the interface is

T (κ) = Tm

(
1− γκ

L

)
, (4)

where Tm is the bulk melting temperature, γ the surface tension, here assumed isotropic, L
the latent heat per unit volume, and κ the curvature of the interface in a two-dimensional (2D)
system and the sum of the two principal curvatures in a 3D one. κ is counted positive for a
locally convex solid.
This so-called Gibbs-Thomson relation has been taken into account in drawing Fig. 2. In the
right panel of the figure, the temperature at A (where κ > 0) is below that at B (where κ < 0).
The interface no longer is an isotherm but is cut by isotherms. In fact, if the isotherms were
not allowed to cross the interface, the (absolute value of the) temperature gradient would have
to be larger than it is in reality. This demonstrates, that surface tension, leading to a smaller
temperature gradient, acts stabilizing indeed.
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2.2 Saffman-Taylor instability
In viscous fingering experiments, an inviscid fluid displaces a viscous one. All the action takes
place between two closely spaced plates. A setup that leads to spectacular patterns consists
of circular plates with the inviscid fluid, usually air, injected at the center. Figure 3 shows an
experimental example.

Fig. 3: Viscous fingering in a circular geometry. The illumination was chosen such that the less
viscous fluid appears dark, whereas the other one makes up the bright background.

In a long rectangular so-called Hele-Shaw cell, patterns become less spectacular but are more
readily analysed. With ordinary (i.e., Newtonian) fluids, a single finger emerges approaching a
definite width that is usually close to one half of the cell width, compare Fig. 4.

Fig. 4: Saffmann-Taylor finger, from the original work [13].

In order to understand the origin of the complexity of a pattern such as the one in Fig. 3, let us
consider an originally planar interface between the two fluids in a rectangular geometry (Fig. 5).
The displacing fluid to the left has very low viscosity with the consequence that its pressure
is essentially constant. In the displaced fluid on the right, the pressure decreases towards its
far-field value; the dashed lines are isobars. It is then important to know that in the narrow
gap between the two plates the fluids move like liquids in a porous medium. This motion is
described by Darcy’s law stating simply that the velocity is proportional to the negative pressure
gradient.
But then we can make an argument that corresponds exactly to the one given for crystal growth
above, with the role of the heat current replaced by that of the pressure gradient. A small
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less viscous
fluid
(air)

more viscous
fluid

Fig. 5: Origin of the Saffmann-Taylor instability.

protrusion of the interface will lead to an increase in the pressure gradient and hence have a
tendency to grow faster, driven by the additional gradient. Surface tension is stabilizing again:
instead of the Gibbs-Thomson relation we have the capillary overpressure, decreasing the pres-
sure and with it the pressure gradient ahead of a convexely curved interface. The system bears
strong similarities with the crystal growth situation and it is in fact easy to visualize Fig. 3 as a
snowflake from which crystalline anisotropy has been removed.

3 Mathematical models

3.1 Continuum model for solidification

For simplicity, we consider a pure substance growing into its undercooled melt, assume that
the thermal diffusion constant is the same in both phases (symmetric model), restrict ourselves
to two spatial dimensions and neglect convective flows in the fluid phase. The first assumption
merely serves to fix the language – we will view temperature as the diffusing quantity. The same
model is also valid for chemical diffusion in two-component alloys [14], albeit the assumption
of similar diffusion coefficients in both phases would then not be realistic.4 Thermal diffusivities
in solids and their melts, on the other hand, are normally of the same order of magnitude,
differing usually by a factor of two or so.5 In neglecting convection, we intend by no means
to imply that convection is unimportant in practice - in fact it does play a crucial role in the
casting of alloys. However, it is not necessary for the creation of dendritic patterns. Therefore,
when attempting to understand this process, it is legitimate to leave flows out of the model
in a first approach. Moreover, experimentalist have managed to eliminate convection almost
completely in setups using model substances such as the plastic crystal succinonitrile [15, 16],
thus obtaining dendritic structures that should correspond to the theoretical description. This
situation usually is referred to as diffusion-limited growth.
Transport in the bulk is then described by the diffusion equation for the temperature field, which

4In that case, the one-sided model is more useful, in which chemical diffusion in the solid is neglected. Then
only the liquid domain needs to be described in detail.

5The assumption of equal thermal diffusivities would be a bad approximation for a solid in contact with its
vapour. This is one of several reasons, why we will not try to model snowflakes directly but rather consider a
solid-liquid system.
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we normalize as: u(x, t) = [T (x, t)− T∞] /(Lc−1
p ). This is the deviation of the local nondi-

mensional temperature at point x from the imposed temperature at infinity, T∞; cp is the heat
capacity per unit volume. Explicitly,

∂u

∂t
= D∇2 u , (5)

with thermal diffusivity D.
Local heat conservation at the interface implies Lvn = −cpD (∂T/∂n|` − ∂T/∂n|s), where
vn is the normal velocity of the advancing interface and the subscripts `, s denote the liquid
and solid sides of the advancing interface, respectively. This continuity equation is often called
Stefan condition. Its left-hand side describes the latent heat generated per time unit by the
growth of the solid, the right-hand side is the difference of heat fluxes into the liquid and out of
the solid. Rewritten in terms of the normalized temperature field, this becomes

vn = −D

(
∂u

∂n

∣∣∣∣
`

− ∂u

∂n

∣∣∣∣
s

)
. (6)

Furthermore, we have a boundary condition from the Gibbs-Thomson relation which reads

u|` = u|s = ∆− dκ . (7)

Herein, ∆ is the nondimensional undercooling ∆ = (Tm − T∞)/(L c−1
p ) and d is the so-called

capillary length, given by

d = [γ(ϑ) + γ′′(ϑ)]
Tm

L2/cp

. (8)

The curvature κ at an interface point x = (x, ζ(x, t)) may be calculated according to κ(x, t) =

−ζxx(x, t)/ (1 + ζx(x, t)2)
3/2. Equation (7) is a generalization, in 2D, of eq. (4) to the case

of anisotropic surface tension [17]. ϑ is the angle between the interface normal and a fixed
direction.
To complete the description, we need boundary conditions at infinity. We simply require, for
|x| → ∞,

u(x, t) →
{

0 in the liquid
∆ in the solid

. (9)

Note that d is the only quantity with the dimension of a length that enters our equations. There-
fore, d must determine the length scale of any pattern forming under the dynamics described.
At this point, some readers might complain. What is written here seems to just be a linear equa-
tion of motion [Eq. (5)] plus boundary conditions [Eqs. (6) through (9)], while the introduction
emphasized that nonlinearity is necessary for pattern formation. But appearences are deceiving.
A system of equations is linear only if the equation for each of its variables is linear. In fact, the
problem to be solved comprises two variables, namely the diffusion field and the position of the
interface. The equation of motion determining the latter is Eq. (6). If we denote the interface
position by xi, then vn = n · dxi/dt. This is an equation only for the normal component of the
interface velocity, but more is not needed – the tangential component is indeterminate. Mov-
ing interface points around along the interface, that is tangentially, obviously does not change
the interface itself.6 We shall see below that the equation for the interface position is strongly
nonlinear, rendering the total problem nonlinear.

6A definite tangential velocity may be be ascribed only to the endpoints of an interface – if there are any.
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If we take into account that we have to solve for two quantities, the temperature field in the two-
dimensional bulk and the interface position in terms of a local displacement variable, defined
on a curve, then equation counting comes out just right. We have one equation of motion
for each of these two fields, these are Eqs. (5) and (6), and we have a boundary condition
for the diffusion field on each of the external and internal boundaries of the system, these are
Eqs. (7) and (9). If the interface position were prescribed, then Eq. (6) would constitute a second
boundary condition for the diffusion equation, which is one too many, rendering the problem
overdetermined. But the boundary is free to move, and eq. (6) is just what we need to calculate
its motion, once the diffusion equation has been solved in the two domains. This kind of task
is called a moving boundary problem and belongs to the mathematically notoriously difficult
problems.
Nevertheless, the fact that the bulk equations of motion of the model are linear is beneficial.
It allows us to recast them into the form of boundary integral expressions by use of Green’s
functions. One can then derive a closed integral equation for the interface position. Such a
representation is very useful both in numerical and analytic work.
It is advantageous to consider diffusion in a frame of reference moving at constant velocity V .
Defining the direction of motion to be the z direction, we have

L̂x,t u(x, t) ≡
(
− ∂

∂t
+ D∇2 + V

∂

∂z

)
u(x, t) = 0 . (10)

A Green’s function of the differential operator L̂x,t is a function G(x, t;x′, t′) satisfying the
inhomogeneous equation L̂x,tG(x, t;x′, t′) = −δ(x− x′)δ(t− t′) and the adjoint equation

L̂+
x′,t′ G(x, t;x′, t′) =

(
∂

∂t′
+ D∇′2 − V

∂

∂z′

)
G(x, t;x′, t′) = −δ(x− x′)δ(t− t′) . (11)

Note first that L̂ is not self-adjoint. The two equations are different. This is one reason for
the mathematical difficulty of the problem – there are no variational techniques available to
produce a simpler formulation. Second, these equations determine G(x, t;x′, t′) only up to a
solution of the corresponding homogeneous equation, and we can use any Green’s function of
our operator. This makes life easier, since it is not too difficult to find a particular Green’s
function not required to satisfy complicated boundary conditions. In our case, an appropriate
function is given by

G(x, t;x′, t′) =
Θ(t− t′)

4πD(t− t′)de/2
exp

{
− [x− x′ − v(t− t′)]2

4D(t− t′)

}
, (12)

where the Heaviside function Θ(t − t′) ensures causality, v = V ez, and de is the (Euclidean)
dimension of space (i.e., de = 2 or de = 3). To obtain integral equations, one multiplies
eq. (10) (rewritten in primed coordinates) by G(x, t;x′, t′), eq. (11) by u(x′, t′), integrates over
the liquid and solid domains, respectively, and utilizes Green’s theorem to reduce expressions
to boundary integrals. For an explicit description see Refs. [18, 19]. Here we skip all details
and just give the final result for the symmetric model

u(x, t) = ∆− d(ϑ)κ =

t∫

−∞

dt′
∫

Γsl

dΓ′
[
V +

∂

∂t′
ζ(x′, t′)

]
n′z G(x, t;x′, t′) , (13)
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where Γsl is the integration contour (along the interface) and n′z the z component of the normal
vector on it. This equation has a very simple interpretation: because the diffusivity is the same
in both phases here, the moving interface affects the diffusion field only by acting as a source
of latent heat. On account of eq. (6), the strength of this source is just vn(x′, t′) = (V +∂t′ζ)n′z.
The total field is then simply obtained through integration of the source strength multiplied by
the propagator G(x, t;x′, t′) on the entire interface.
Equation (13) is an integrodifferential equation for the interface position alone. The field u
has been eliminated by expressing it and its normal derivative on the boundary with the help
of the Gibbs-Thomson and the Stefan conditions. The integral equation is quite obviously
nonlinear, since the quantity ζ(x, t), for which it is to be solved occurs in the argument of the
Green’s function. Moreover, even the curvature term on the left-hand side is nonlinear in ζ .
The equation is also nonlocal both in time and space, because the integrand contains the time
argument t′ ≤ t and spatial arguments from anywhere in the domain considered.
Often, it is appropriate to assume the quasistationary approximation to hold, meaning that in the
frame moving at the average velocity of the interface ∂tζ(x, t) is a slowly varying quantity. This
is true for small undercoolings, when interface shape changes are much slower than diffusion
in the bulk. One may then replace ∂t′ζ(x, t′) in the integrand by ∂tζ(x, t), interchange the time
and space integrations in Eq. (13) and carry out the time integral of the Green’s function, which
gives

t∫

−∞

dt′ G(x, t;x′, t′) =
2

(4πD)de/2
e−

v(x−x′)
2D

( |x− x′|
|v|

)2−de

K1−de/2

( |v|
2D

|x− x′|
)

, (14)

with K1−de/2 denoting the modified Bessel function of order 1− de/2 [20]. In two dimensions,
this is Macdonald’s function K0.
When this is inserted in Eq. (13), we have an equation for the interface position containing
only quantities defined on the interface, at a single time. Hence, the integral equation is given
on a one-dimensional domain (the interface), whereas the original partial differential equation
with boundary conditions on a moving boundary was defined on a two-dimensional domain.
Numerically, this reduction of dimensionality normally means a recuction of computational
costs. A strategy to solve for the interface position consists in a discretisation of the integral
and propagation of the interface in time according to the value of ∂tζ(x, t) obtained after in-
version of the matrix corresponding to the steady-state Green’s function. The set of techniques
enabling the reduction of an n-dimensional linear partial differential equation to a problem on
the (n − 1)-dimensional domain boundary run under the name of boundary integral methods,
their numerical exploitation leads to boundary element methods, and it was with this approach
that the first quantitative simulations of two-dimensional dendritic growth [14] were performed.

3.2 Modeling viscous fingering

In the Saffman-Taylor problem, we consider a cell of small thickness b. As a consequence, the
Reynolds number of the arising flow, Re = ρUb/µ, where ρ is the density, U the flow speed,
and µ the dynamic viscosity, will be small for both fluids. Then the appropriate equation of
motion relating pressure p and flow velocity U is the Stokes equation

∇p = µ∇2U . (15)
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It follows that if one of the two fluids has negligible viscosity, its pressure will remain constant
in space. In this case of “infinite viscosity contrast”, we may restrict the model to the domain
occupied by the fluid with the larger viscosity, a situation that is akin to the one-sided model of
solidification discussed above.
Averaging the velocity profile over the thickness of the cell (assuming Poiseuille flow), one can
show that the resulting two-dimensional profile satisfys Darcy’s law

Ū = − b2

12µ
∇p . (16)

From now on, we will omit the bar indicating the average along the third dimension and consider
only two-dimensional velocities. Using the incompressibility condition ∇ ·U = 0, we obtain
from Eq. (16) that the pressure satisfies the Laplace equation

∇2p = 0 . (17)

At the interface between the two fluids, we have a kinematic condition requiring impenetrability
(as well as the absence of holes) which means that the interface normal velocity must be equal
to the normal velocity of the fluids. Together with Darcy’s law this gives

vn = − b2

12µ
∇p · n = − b2

12µ

∂p

∂n
, (18)

the analogue of the Stefan condition.
Finally, we have Laplace’s law for the overpressure at a curved interface between two liquids

p = p0 − γκ , (19)

where p0 is the constant pressure of the driving fluid (e.g. air) and γ the interface tension, which
is orientation independent for a pair of ordinary fluids.7

Comparing Eqs. (17) to (19) with Eqs. (5) through (9), we note strong similarities. If we con-
sider the one-sided model of crystal growth, obtained from the discussed equations by dropping
all the terms referring to the solid, we note, in the isotropic limit, complete agreement with the
boundary equations of the Saffman-Taylor problem. The remaining difference then is that we
have the diffusion equation in crystal growth and the Laplace equation in viscous fingering. This
also implies the necessity to modify the boundary condition for the field quantity (the pressure)
at infinity, which therefore has not been written out here. After performing the quasistation-
ary approximation in the moving frame, which is equivalent to dropping the time derivative
in Eq. (10), the similarity of the two systems can be put more precisely. The Saffman-Taylor
problem corresponds to the limit of vanishing average velocity V of the (isotropic variant of)
the crystal growth problem, if the latter is restricted to a channel geometry.

4 Stability of stationary solutions
From now on, we will focus on the crystal growth problem. Results for viscous fingering will
be mentioned in passing but their explicit derivation is beyond the scope of this article.

7When the experiment is done with liquid crystals, there is orientation dependence just as in the crystal growth
case. In that situation, viscous fingering patterns can display dendritic morphologies.
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4.1 Planar interface
The simplest solution of our model equations one can think of is a plane moving at constant
velocity, together with an appropriate spatial profile of the diffusion field. In the moving frame,
this is a stationary solution. Heat conservation implies that such a solution is possible only if
the undercooling ∆ = 1. It takes the form

ζ(x) ≡ 0 ,

u0(z) =

{
e−V z/D if z ≥ 0 (liquid)
1 if z < 0 (solid)

. (20)

For ∆ < 1, the behaviour of a solution that is required to be planar obtains from a so-called
similarity solution of the model equations [21]. Such a solution often describes generic asymp-
totic behaviour, regardless of the initial conditions. Assuming that the diffusion field depends
only on a certain combination of its arguments, u(x, z, t) = U(z/z0(t)) ≡ U(w), we have

U ′′(w) +
z0ż0

D
wU ′(w) = 0 . (21)

For this to be an equation in the variable w alone, we must have z0ż0 = const . or

z0ż0

D
≡ 2P =⇒ z0(t) ∝ (4DPt)1/2 (22)

and U(w) ∝ ∫∞
w

dw′ exp
(−Pw′2). The interface sits at z = z0, i.e., w = 1, where we have to

impose U(w) = ∆ which together with the continuity equation leads to

∆ =
√

πP eP erfc(
√

P ) . (23)

Herein, erfc(x) is the complementary error function [20]. Physically, this solution describes an
interface that slows down (we have ż0 ∼ t−1/2), because an increasing layer of warm liquid
builds up in front of the solid. Not all the latent heat liberated is consumed by heating up the
undercooled liquid to the melting temperature, at which it solidifies. The excess heat produces
the ever-growing layer of warm liquid. Only when ∆ = 1 is the undercooling large enough
to remove all the latent heat generated and can the interface move at constant velocity. Again
there is a layer of warm liquid ahead of the interface [see Eq. (20)], but its thickness remains
constant.
A decelerating interface will normally not be seen in experiment if there exists another structure
that can grow at constant velocity, because the latter will eventually be faster – it will outgrow
the slower morphology, provided it can be “nucleated” at some time by a small perturbation.

4.2 Linear stability analysis of the planar solidification front
The planar front solution (20) does not set any length scale. This is natural, because the only
term containing a length scale, the product dκ, drops from the equations for a planar front.
To be sure, it is possible to define a length from (20), this is the so-called diffusion length
` = 2D/V . However, there is nothing that determines V . The planar front can move at any
velocity. Moreover, the discussion of Sec. 2 suggests that simple interface shapes will not be
stable ordinarily. One way to get a first idea about typical sizes to be expected of possibly
developing patterns is to do a linear stability analysis.
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We start by considering a sufficiently small perturbation of solution (20):

ζ = εζ1e
iqx+ωt ,

u = u0(z) + εu1(z)eiqx+ωt . (24)

The model equations are to be solved approximately in the presence of this perturbation, and
“sufficiently small” then means that we may restrict ourselves to taking it into account only
to linear order. Obviously, we may write an ansatz with just a single mode exp(iqx), as any
arbitrary perturbation can be expanded in a Fourier series or integral and the linearity of the
equations to be examined guarantees that a superposition of solution modes provides a solution
as well.
With the wavenumber q of the mode prescribed, the goal of the analysis is to determine the
growth rate ω. If the real part of the obtained growth rate is positive, the perturbation will grow,
hence the state will be unstable; on the other hand, a negative real part signals stability with
respect to perturbations of that wavenumber.
Inserting the ansatz (24) into the diffusion equation (10) we get an ordinary differential equation
in z, [

d2

dz2 +
2

`

d

dz
−

(
q2 +

ω

D

)]
u1 = 0 (25)

which may be solved to obtain the general form of u1:

u1(z) =

{
α

(1)
` exp(−γ

(1)
` z) (liquid)

α
(1)
s exp(−γ

(1)
s z) (solid)

. (26)

The exponents γ
(1)
` and γ

(1)
s are solutions of quadratic equations. They are uniquely determined

by the requirements <(γ
(1)
` ) > 0 and <(γ

(1)
s ) < 0, ensuring that the boundary conditions (9)

are satisfied when z is sent to ±∞. Providing we define square roots to have non-negative real
parts, their values are given by

γ
(1)
` =

1

`
+

√
1

`2
+ q2 +

ω

D
, (27)

γ(1)
s =

1

`
−

√
1

`2
+ q2 +

ω

D
, (28)

as long as the – unknown – growth rate ω does not acquire a large negative real part. Since the
aim of the analysis is to identify regions, where the real part of ω changes sign, the forms (28)
are the appropriate ones for further investigation.8

At this stage, the prefactors α
(1)
` and α

(1)
s of the exponentials are as yet undetermined. Equations

for them follow from the Gibbs-Thomson relation (7), yielding the temperature boundary con-
dition for both the liquid and solid sides of the interface. Care has to be taken that the evaluation
of this condition is done at the interface, which leads to first-order contributions both from u1

and, via an expansion about z = 0, from u0:

u(x, ζ(x, t), t) = u0(ζ) + εu1(ζ)eiqx+ωt +O(ε2)

= u0(0) + ε

[
∂u0

∂z

∣∣∣
z=0

ζ1 + u1(0)

]
eiqx+ωt +O(ε2) . (29)

8In practice, one often introduces the quasistationary approximation at this point already, meaning that ω is set
equal to zero in the square roots. Then the signs have to be chosen as indicated in all of parameter space.
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Using the approximation κ = −∂xxζ , correct to second order in ε, the resulting values obtained
for the amplitudes are [d0 = d(0)]

α
(1)
` = ζ1

(
2

`
− d0q

2

)
, α(1)

s = −d0q
2ζ1 . (30)

Finally, we exploit the continuity equation (6) which is conveniently rewritten as

V + ζ̇

D
=

∂u`

∂z
− ∂us

∂z
− ∂ζ

∂x

(
∂u`

∂x
− ∂us

∂x

)
, (31)

where u` = u|` und us = u|s, and we have used the decomposition nz = 1/
√

1 + (∂xζ)2,
nx = −∂xζ nz of the interface normal vector. Evaluating the formula at the two-phase interface
ζ(x, t), we finally obtain the sought-for dispersion relation

ω

D
+

(
2d0q

2 − 2

`

) √
1

`2
+ q2 +

ω

D
+

2

`2
= 0 . (32)

In this implicit form, the equation is not very transparent. Therefore, let us introduce some
approximations that are justified in usual experimental situations. First, we assume the quasis-
tationary approximation to hold. This means that we can neglect the time derivative in Eq. (10)
or equivalently the ω/D term in Eq. (25). As a result, the square root expression in Eq. (32)
becomes independent of ω. Then (32) already constitutes an explicit equation for the growth
rate. Furthermore, experimental conditions are usually such that the approximations q` À 1
(meaning that the average interface velocity V is small) and d0`q

2 ¿ 1 (meaning that the cap-
illary length d0 is small) are well justified. This allows us to replace the square root by |q| and
to neglect summands 1/` ¿ |q|, which finally leads to the simple form

ω = V |q| (1− d0`q
2
)

. (33)

This function is positive and linear in q for small q, and it becomes negative and cubic for large
q. The maximum of ω(q), the fastest-growing mode, is given by qf = (1/3d0`)

1/2. Hence,
the wavelength ρMS corresponding to the fastest-growing mode, the so-called Mullins-Sekerka
length, behaves as (d0`)

1/2. Typical capillary lengths are in the Å range, typical diffusion
lengths in the cm range. Therefore, ρMS is in the µm range and thus much larger than the
capillary length.
It is a reasonable first guess that the length scales of patterns such as a snowflake are comparable
with this wavelength. This is based on the idea that with random initial conditions (created by
thermal and other noises) all modes will be present with some small amplitude. In the initial
phase of growth, described by the linear approximation used here, the fastest-growing mode
will then dominate others simply because its amplitude grows to larger values more quickly. It
should be noted that this is not what is ordinarily meant by selection of a wavelength, because
the observation of this wavelength is in fact dependent on the initial condition. Suppose we
managed to prepare a system such that a band about the fastest-growing wavelength would be
missing in the original state. In such a system, a different wavelength would dominate initial
growth. True wavelength selection is a process that leads to a definite length scale independent
of initial conditions.
Doing a similar linear stability analysis for the Saffman-Taylor model, we would obtain, without
any approximation,

ω = V |q|
(

1− b2γ

12µV
q2

)
, (34)
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which is essentially the same dispersion relation.
A characteristic feature of both instabilities is that positive growth rates appear for sufficiently
small wave numbers, i.e., sufficiently large wavelengths. This kind of instability is called long-
wave instability. The planar interface is unstable under the smallest driving force, if only the
system size is large enough for an unstable mode to show up.9 Figure 6 displays, on the left
panel, a schematic representation of this kind of dispersion relation.
As mentioned above, in the solidification of an alloy, the same formalism applies with the
temperature field replaced by a concentration field. The instability is then not driven by the
thermal undercooling in the literal sense but by chemical nonequilibrium, leading to the so-
called constitutional undercooling. A detailed discussion can be found in [22]. Suffice it to
say here that by applying a temperature gradient, the average orientation of the interface can be
fixed, which leads to suppression of the instability of long-wave modes.

qf q

ω

cq

ω

q

Fig. 6: Dispersion relations. Left: Long-wave instability with fastest-growing mode qf . Right:
Instability with critical wavenumber qc.

In fact, the planar interface can be made completely stable by keeping a control parameter that is
proportional to the ratio V/G of the average interface velocity10 V and the temperature gradient
G below a critical value. Then the dispersion relation looks like the lowest curve on the right-
hand panel of Fig. 6. As V/G is increased to a critical value, a single mode becomes marginally
stable at the critical wavenumber qc, and with even larger control parameter, a finite band of
wavenumbers (and wavelengths) becomes unstable; this is the top curve in Fig. 6, right panel.

4.3 Weakly nonlinear analysis

Linear stability analysis can give us an indication, when a basic (usually stationary) state be-
comes unstable and what are the characteristic wavelengths to be expected from the instability.
It cannot tell us anything about the long-time dynamical state of the system after it has gone
unstable. For linear stability analysis predicts exponential growth of unstable modes and does
not contain any mechanism that would describe saturation effects and the relaxation to a new
structure. To obtain such a behaviour, one has to consider nonlinearities.
When the dispersion relation follows the general features of the right-hand side of Fig. 6, it
is often possible to derive a useful approximate equation describing the new ordered state, as

9At small enough pressure difference, the Saffman-Taylor instability will not develop, unless the Hele-Shaw
cell is wide enough.

10In this setup, V can be prescribed by pulling the specimen inside the temperature field towards colder temper-
atures.
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long as the control parameter is only slightly above the instability threshold. Then the disper-
sion relation can be expanded about its maximum value, ω = ε − a(q − qc)

2, ε being a small
positive quantity. It is easy to see that the band of unstable wavenumbers has an extension of
O(ε1/2). This suggests the introduction of slow time and length scales, T = εt (because the
maximum of ω is proportional to ε) and X = ε1/2x (because the band of wave numbers, corre-
sponding to modulations of the wavelength, scales with ε1/2). Decomposing the basic field as
ζ = A(X, T ) exp(iqcx), one can derive an amplitude equation for the slowly varying quantity
A(X, T ). How to perform such an amplitude expansion systematically is described in some
detail in the appendices of [23], a standard reference on pattern formation.
The generic form of the amplitude equation, but not the values of its coefficients, can be gathered
from symmetry considerations. It is clear from linear stability analysis that its basic structure
must be: ∂tA = εA+a∂xxA+ higher order terms. Translation of the system by ∆x means mul-
tiplication with a phase factor exp(iqc∆x), hence translational invariance of the basic equations
leads to the requirement that the amplitude equation be invariant with respect to a multiplication
of the complex amplitude A by a phase factor. Since A will be small near the instability thresh-
old, the dominant higher order terms are those that correspond to small powers of A. But A2 is
excluded due to translational invariance. The first allowed term is |A|2A. Hence the equation
takes the form

∂T A = A + a∂XXA− b|A|2A . (35)

This is the famous Ginzburg-Landau equation. If the coefficient b is positive, this equation gives
a correct description of the weakly nonlinear regime, including periodic steady states.11

For long-wave instabilities, the Ginzburg-Landau equation is not normally useful. This may
even be guessed by straightforward inspection. Neither a snowflake nor a Saffman-Taylor finger
can be considered a small-amplitude deviation from a planar interface. We are dealing with the
strongly nonlinear regime, and this means that generic analytical tools do not lead very far.
Rather, analytic approaches must be taylored for the problem at hand, and in the end further
insight may be gained only by numerical attacks.

5 Nonlinear dynamics – dendrites and fingers

5.1 Ivantsov solution
As we saw before, there are no stationary planar solutions, if the nondimensional undercooling
∆ < 1. However, there do exist other constant-velocity solutions; they were derived in 1947
by Ivantsov [24]. He neglected surface tension effects, an apparently innocent step, given the
smallness of the capillary length. In two dimensions, the found solutions are parabolas, given
by

ζ = V t− 1

2ρtip

x2 . (36)

Defining the Péclet number P as the ratio of the tip radius and the diffusion length, P =
ρtipV/2D = ρtip/`, one finds that a condition for the existence of this solution is precisely
given by Eq. (23). Unfortunately, this condition is not only necessary but also sufficient, i.e.,
the undercooling determines the product of ρtip and V but neither of these quantities is fixed

11Otherwise there is no saturation of the amplitude and one would have to go to higher order, but it is not
guaranteed that the description will become quantitatively correct at any order, since amplitudes may become too
large for a polynomial approximation of nonlinearities to apply.
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separately, contrary to the experimental situation where the tip radius and velocity of a dendrite
are well-defined once the undercooling is prescribed.
Ivantsov also obtained paraboloids of revolution as three-dimensional solutions, and experi-
ments on dendritic growth from the melt produce structures which may, if only close to their
tip, indeed be described by paraboloidal shapes, see Fig. 7.

Fig. 7: Succinonitrile dendrite growing into undercooled melt. Courtesy M. Glicksman.

But three-dimensional solutions have the same indeterminacy of growth quantities as two-
dimensional ones, so we are faced with a selection problem: while an Ivantsov paraboloid may
qualify as an (approximate) needle crystal solution, only to be “decorated” by sidebranches to
become a dendrite, we have to explain how a unique solution is selected among the infinitely
many possibilities.
The answer to this puzzle must be provided by surface tension. In fact, a linear stability analysis
of Ivantsov solutions reveals their unconditional instability due to the absence of surface tension.

5.2 Selection theory

Obviously, something dramatic must happen when we take surface tension into account, if this
is to exclude an infinity of possible solutions. How can a small perturbation such as the capillary
length affect solutions so strongly? This problem is at the heart of the selection problem and
it was not solved until 1986 [18, 25, 26]. The key observation is that the curvature term in (7)
is a singular perturbation [27]. Contrary to regular perturbations, singular ones can change the
character of solutions entirely and are thus not negligible in general, even if they are formally
small. As an example, consider the simple second-order differential equation εy′′ + y = 0.
For ε = 0, there is a single solution y(x) ≡ 0; for ε 6= 0, we have a two-parameter family
y(x) = A cos(x/

√
ε) + B sin(x/

√
ε), definitely not obtainable from the “unperturbed solution”

via a perturbation series. The perturbation is singular, because the small term contains the
highest derivative. To understand this, it is sufficient to remember that the number of linearly
independent solutions of a homogeneous linear differential equation depends on the highest
derivative appearing – which is different for ε = 0 and ε 6= 0.
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In order to solve this problem in the case at hand, one proceeds as follows. First, the integral
equation (13) is specialized to the stationary case which eliminates the time variable. The re-
maining equation for ζ(x) is considered a problem with certain analyticity properties in all of
the complex plane. It then turns out that the contribution of the capillary term is small every-
where except in a small neighbourhood of a pair of singularities. The problem can thus be split
in two. Far from the singularities, for the outer solution, the capillary term is treated as a small
perturbation; close to them, the variation of all the nonsingular terms is negligible which reduces
the integral equation to a local inner problem (an ordinary complex differential equation). One
then has two solutions in different domains of the complex plane that are to describe a globally
valid approximation to the true solution. Thus the approximate solutions must be matched to
each other in the regions where they overlap, by a technique called asymptotic matching [28].
A basic requirement on the solution is that it has vanishing slope at the tip of the needle crystal,
otherwise reflection symmetry about x = 0 would imply nonanalytic behaviour. As it turns
out, the outer solution has a regular perturbation expansion (in powers of the capillary length)
satisfying this requirement at all orders. Matching of the inner solution then demands that even
exponentially small terms that ordinarily would be negligible have to be suppressed exactly at
this point, because they cannot be argued to be balanced by terms from the regular expansion,
which all happen to vanish. Because the inner equation is a second-order nonlinear differen-
tial equation, we have two integration constants at our disposal for the matching with the outer
solution. Two parameters have to be adjusted to keep the inner solution from diverging expo-
nentially (for large distances from the singularity). But then no degree of freedom is left to make
the inner solution vanish at x = 0, and explicit calculation shows it to be different from zero
there. This establishes that no solution to the problem exists. From infinitely many solutions
without surface tension, we have moved to none with surface tension!
The way out is to realize that surface tension of crystals is anisotropic. Usually, a model expres-
sion of the form

d(ϑ) = d0[1− εm cos(mϑ)] (37)

is assumed, with m = 4. Then we have an additional parameter, ε4, that can be tuned to satisfy
our third matching condition. As a consequence, we are now back to an infinite but discrete
family of solutions, of which only one, the solution with the largest velocity, turns out to be
linearly stable. Expressed in terms of a nondimensional growth rate σ, often called the stability
parameter, the condition for solvability of the integral equation becomes, in the limit of small
anisotropy ε4,

σ ≡ d0V

2DP 2
=

ε
7/4
4

λn

, n = 0, 1, 2, . . . , (38)

where λn is the eigenvalue of a nonlinear problem. In fact, this solves the selection problem:
taking the smallest eigenvalue λ0, we have expressions for σ and for P , which determine both
V and ρtip.
The prediction V ∼ P 2 (∼ ∆4 for small undercooling) arising from (38) is well confirmed
experimentally, even for dendrites with sidebranches. So sidebranches seem to play a rather
passive role, hardly affecting the results of solvability theory. In fact, WKB techniques devel-
oped within it can be used to compute both wavelengths and amplitudes of noice-induced side
branches [29, 30].
In 2D, the needle crystal solution has a shape that is very close to that of an Ivantsov parabola
but with unique velocity and tip radius. In three dimensions, the situation is much more compli-
cated because surface tension anisotropy leads to strong deviations of the needle crystal solution
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from the Ivantsov paraboloid. An expansion about the latter is possible only in the vicinity of
the dendrite tip, where solvability theory leads to selection of the entire shape including its de-
pendence on the azimuthal angle [31]. The remaining problem of the dendrite tail was solved by
Brener [32]. He realized that at the liquid-solid interface the term ∂zzu of the diffusion equation
(10) becomes negligible and the stationary case reduces to a diffusion equation in 2D, if z is
regarded as time. This shows immediately that a unique matching of the tail to the tip is possi-
ble. Moreover, from analytic and numerical work [33], the solution to the time dependent 2D
problem is known. One obtains intermediate asymptotics for the cross-section of the dendrite
(parallel to the xy plane) which is a cross-shaped structure with arm lengths ∼ |z|3/5 and arm
widths ∼ |z|2/5. It may be added that on the basis of these analytic results, side branching of
real dendrites becomes explicable as a consequence of thermal noise.
For Saffman-Taylor fingers, a similar selection problem arises. A continuous family of exact
analytic solutions can be given for the hydrodynamic problem (17) – (19), providing the in-
terface tension term γκ in Eq. (19) is neglected [13]. It describes fingers of different widths
moving at different velocities. Inclusion of the surface tension term then leads to a solution of
the selection problem, this time even with isotropic surface tension [34]. The selected width of
the Saffman-Taylor finger is larger than (and for typical experimental conditions close to) half
the channel width.
A needle crystal in a channel has geometric restrictions similar to those of a Saffman-Taylor
finger. It turns out that in this situation the walls provide enough anisotropy to allow stationary
finger solutions even with isotropic surface tension – if only ∆ > 1

2
. Solvability theory was

worked out for this case by Brener, Geı̌likman and Temkin [35]. They find that as a function
of the channel width the selected velocity goes through a maximum where it behaves as V ∼
(D/d0)(∆ − 1

2
)7/2. If surface tension is made slightly anisotropic, the solution for the crystal

finger approaches that for the free dendrite at large channel widths, its velocity increasing with
the width [36]. The Saffman-Taylor finger belongs to a different solution branch: its velocity
decreases with increasing channel width.

6 Doublons and more complex patterns

As we have seen, the selection problem of dendritic growth (and of viscous fingering) was
mathematically reduced to an existence problem first - a continuum of solutions was broken
down to a discrete set. Only then could a stability criterion be invoked to choose the single
stable state among the discrete solutions. This pretty abstract way of understanding selection
seems to result from restricting considerations to stationary solutions of the problem.
To understand things in somewhat more physical terms, it is useful to imagine a dynamical state
and to ask what would become of an initially parabolic crystal, if surface tension were isotropic.
In such a crystal, the tip would be the coldest point of the interface, since the curvature of a
needle crystal with parabolic shape (or a shape sufficiently close to parabolic) is maximum at the
tip. Therefore, this interface point would experience a smaller driving temperature gradient than
the points in its immediate neighbourhood, rendering it vulnerable to a tip-splitting instability.
As soon as we have surface tension anisotropy, the tip will not be the coldest point anymore,
as the prefactor d(ϑ) of the curvature is smallest in the growth direction. This has a stabilizing
effect on the tip, making steady-state near-parabolic solutions possible.
From this reflection, we infer that isotropic surface tension does not necessarily preclude steady-
state solutions with shapes that are far from parabolic. States such as these have been indeed
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discovered by numerical simulations [37, 38], using finite-difference codes and boundary ele-
ment methods. Consisting of two asymmetric fingers, separated by a channel, they were called
doublons. A more recent simulation of a structure containing several doublons is shown in
Fig. 8.

Fig. 8: Phase-field simulation of doublons [39]. Different curves correspond to the interface
position at equidistant time steps. Parameters: ∆ = 0.8, ε4 = 0.01.

Doublons escape the tip-splitting instability by having no tip on the symmetry axis. The points
of highest curvature are, due to the asymmetry of the single fingers, shifted from their tips
to points closer to the inside of the channel separating the fingers. So even with isotropic
surface tension the coldest points, tending to lag behind their immediate neighbourhood are
safely moved away from the finger tips, allowing stable growth in principle.
The growth mode of doublons is peculiar. Two fingers stabilize each other instead of compet-
ing, as one might suspect at first sight, knowing the Mullins-Sekerka instability. In the absence
of surface tension anisotropy or with weak anisotropy, a perturbation that puts one of the fingers
ahead of the other, will on the one hand tend to assist its growth, because it will move its tip into
a region of lower temperature, but on the other hand it will also tend to inhibit growth, because
the increased tip curvature lowers the equilibrium temperature due to the Gibbs-Thomson con-
dition. For large enough undercooling, the relative effect of the displacement will be small, as
the structure is moving fast anyway, and then the stabilizing surface tension effect should win,
which is what seems to happen in the cooperative growth of the fingers of a doublon.
The selection theory for doublons has been worked out [40], albeit at a lower level of rigor than
that for dendrites. The resulting expressions for the selected growth velocity and tip radius (of
a parabolic envelope) read

V ∼ D

d0

∆9 , ρtip ∼ d0∆
−7 . (39)

The existence of a second basic structure besides the dendrite naturally leads to the question
which one of the two will prevail under which conditions. Furthermore, one may consider the
question of the long-time dynamics of structures. The side branches of a dendrite may evolve
into new dendrites, giving rise to a space-filling dendritic structure.
More generally, a growing circular nucleus will, due to the Mullins-Sekerka instability, develop
protrusions and troughs, once it exceeds a certain size. Initially, the dimensions of these features
will be on the order of the Mullins-Sekerka length ρMS . In the course of time, they will develop
into fingers which grow larger and wider. If the undercooling is low and/or the anisotropy high,
they will evolve into dendrites producing side branches. If the undercooling is large and/or
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the anisotropy low, they will undergo repeated tip splitting processes. But as soon as a deep
channel has formed between two fingers, they can survive as a doublon. The ensuing pattern has
been termed (compact) seaweed structure [41, 42]. An example for an experimental seaweed
structure, obtained in a liquid-crystal experiment is shown in Fig. 9.

Fig. 9: Growth of the columnar hexagonal crystal hexaoctyloxytriphenylene. Phase boundary
redrawn after a photograph (courtesy of P. Oswald) [43].

One may then draw a kinetic phase diagram or morphology diagram indicating which struc-
tures are to be expected in which part of parameter space. Here, we have only two relevant
parameters, the surface tension anisotropy ε(= ε4) and the undercooling ∆, so the diagram can
be conveniently represented in two dimensions. The decision between different morphologies
coexisting in a region of parameter space is made by consideration of their velocity: the faster
one wins.
The current theoretical status is summarized by Fig. 10. There are four kinds of morphologies,
of which we have already discussed the compact dendritic structure (CD) and the compact
seaweed (CS).
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Fig. 10: Morphology diagram for diffusion-limited growth, displaying the regions of predom-
inance of compact dendrites (CD), compact seaweed (CS), fractal dendrites (FD), and fractal
seaweed (FS).

The dendritic structure in principle exists in the whole parameter plane indicated. But whenever
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doublons exist, and they do so below a certain value of the anisotropy for given undercooling,
they seem to be faster than dendrites, so the seaweed structure, the building blocks of which are
doublons, should dominate. Behind all of this, there is the hypothesis, rather well confirmed in
experiments with dendrites, that structures grow as fast as their basic building blocks. At very
low anisotropies and undercoolings, thermal noise affects the structures strongly and destroys
their compactness, rendering them fractal in a certain range of length scales.
Therefore, we have a fractal dendritic (FD) and a fractal seaweed (FS) structure, with different
scaling laws for characteristic length scales and velocities, deduced in Ref. [42]. In the deriva-
tion, another velocity selection mechanism is invoked, going back to Uwaha and Saito [44].
This is selection via the fractal dimension. Unfortunately, space limitations do not permit a
discussion of this interesting mechanism here. An impression what a fractal seaweed looks like
can be gathered from Fig. 3.
The transition between the FD and FS structures is just a crossover, whereas that between the
CD and CS patterns has the characteristics of a first-order phase transition.

7 Summary and outlook
Theoretical knowledge about diffusion-limited growth of a nucleus of one phase in another in
two dimensions is summarized in the morphology diagram given in Fig. 10. The basic ideas en-
tering this description are selection theory and scaling arguments. Three selection mechanisms
are operative, selection by anisotropy of surface tension (leading to dendrites), selection by sur-
face tension alone (leading to doublons) and selection by fractal dimension in combination with
noise. Of the diverse selection theories the one elaborated to the deepest level of detail is still
the solvability theory for dendritic growth; it is also the only one, where results have been fully
extended to three dimensions.12

In 3D, Doublons should become triplons, i.e., three-finger structures, but there is no analytic
theory available for these yet. Neither is there a morphology diagram analogous to Fig. 10
(with quantitative relationships) in the three-dimensional case.
Another extension besides going to three dimensions would be to include further relevant trans-
port mechanisms such as convection. If convection is added, we may expect the transition lines
between dendritic and seaweed structures to change with flow conditions. In fact, the diagram
should become three-dimensional, with a parameter describing flow strength added.
Selection theory for dendritic growth in the presence of flow is rudimentary, to say the least.
There is a theory, based on the solvability approach, by Bouissou and Pelcé [45] which however
seems to be contradicted by experiments [46].
On the other hand, there are already a number of simulations of dendritic growth including
convection. A promising approach seems to be be to combine the phase-field method (lecture
B. Nestler) with a lattice-Boltzmann algorithm (lecture M. Ripoll). Fig. 11 shows a seaweed
structure simulated this way [39]. A shear flow moving cold fluid into the system from the left
has been imposed, with undercooling and surface tension anisotropy the same as in Fig. 8. The
upward-growing doublon bends into the incoming flow. Dendrites do not do quite the same
thing [39].
These numerical methods may then be used to measure the selected values of growth velocity,
tip radius, and hence the stability parameter σ, in order to guide selection theory. An interesting

12For Saffman-Taylor fingers, the three-dimensional version of the problem refers to an entirely different physi-
cal situation. In 3D, Darcy’s law holds only in a porous medium.
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Fig. 11: Doublon exposed to shear flow. ∆ = 0.8, ε4 = 0.01, Prandtl number Pr = ν/D = 1.78
(ν = µ/ρ). Fluid velocity imposed at the top of the box in the x direction: U0 = 0.0987D/d0.

result, obtained from the simulation of a dendrite in a flow imposed antiparallel to its growth di-
rection, is shown in Fig. 12: different data points correspond to different values of undercooling,
Prandtl number and imposed flow velocity at fixed surface tension anisotropy. They all fall on
the same curve, displaying the measured stability parameter σ (defined in Eq. (38)) versus the
Péclet number. This shows that no matter how we choose, say, the combination of undercooling
and imposed flow velocity to obtain a certain value for the Péclet number, we should get the
same growth velocity and tip radius of the dendrite. A selection theory including convection
should be able to reproduce this feature.

∆ = 0.80, Pr = 5
∆ = 0.75, Pr = 5

∆ = 0.65, Pr = 0.83
∆ = 0.65, Pr = 1.66
∆ = 0.45, Pr = 0.83
∆ = 0.45, Pr = 1.66
∆ = 0.40, Pr = 0.83
∆ = 0.55, Pr = 0.83

∆ = 0.45, Pr = 5
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σ

2.221.81.61.41.210.80.60.40.20

0.18

0.16
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Fig. 12: Selection for dendrites in flow. The anisotropy is ε4 = 0.05 for all points, the under-
cooling varies between ∆ = 0.45 and ∆ = 0.80, the Prandtl number between Pr = 0.83 and
Pr = 5.00. Data points with the same symbol correspond to fixed ∆, Pr, but varying imposed
flow velocity.
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