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1 Introduction

Time-dependent density-functional theory (TDDFT) extends the basic ideas of static density-
functional theory to the more general situation of systems subject to the influence of time-
dependent external fields. It relies on the electron density n(r, t) instead of the many-body
wave function Ψ(r1, . . . , rN ; t) and constitutes an efficient method to determine the dynamics
of a quantum-mechanical system. The advantage over a direct solution of the time-dependent
Schrödinger equation lies in the reduced computational complexity, because in addition to the
time variable t the density depends only on a single coordinate vector r, while the wave function
depends on the positions r1, . . . , rN of all electrons, where N may be a very large number. As
in static density-functional theory, the standard way to obtain n(r, t) is with the help of an
auxiliary system of noninteracting electrons. These so-called Kohn-Sham electrons move in a
time-dependent local effective potential, whose exact functional form is unknown and must be
approximated in practical implementations. The final equations can then easily be solved by
numerical techniques even for systems with a large number of atoms.
The scheme is perfectly general and can be employed to describe essentially any time-dependent
phenomenon, including nonlinear processes like the ionisation of atoms or molecules in strong
laser fields. If the time-dependent potential is weak, on the other hand, linear-response theory
is sufficient to study the dynamics of a system. In particular, this is often the case in condensed-
matter physics, where irradiation with light or particle beams is the most important experimen-
tal technique to probe the electronic structure of a material. Electron energy-loss spectroscopy
(EELS) and optical absorption are typical examples that can be treated within linear-response
theory. The resulting spectra contain direct information about the excited states of the electron
system. As the investigation of excited states constitutes the principal application of TDDFT
in condensed-matter physics, it is also at the centre of this chapter. It should be noted that the
method can only be used to study neutral excitations where the number of particles remains con-
stant, such as charge oscillations (plasmons) in metals or bound electron-hole pairs (excitons)
in semiconductors. The latter form if electrons are excited from the valence into the conduction
band without sufficient kinetic energy to overcome the attractive Coulomb potential of the hole
left behind. TDDFT is thus complementary to the GW approximation in many-body perturba-
tion theory, which is related to photoemission spectroscopy and describes processes in which
the particle number in the sample changes due to the ejection or injection of electrons.
This chapter is organised as follows. Section 2 introduces the theoretical framework of TDDFT.
In line with the general focus on condensed-matter physics, special emphasis is placed on the
linear-response regime and its connection to the electronic excitation spectrum. Section 3 then
discusses selected applications to solids, namely the theoretical treatment of electron energy-
loss spectroscopy and optical absorption. As the accuracy of the calculations is, above all,
limited by the employed exchange-correlation functional, the performance of common approx-
imations in reproducing the experimental spectra receives particular attention. Finally, Section
4 summarises the central points of this chapter.

2 Theoretical Foundations

As the quantum-mechanical treatment of stationary and time-dependent systems differs in many
aspects, it is not straightforward to generalise the mathematical framework of static density-
functional theory. For example, the total energy, which plays a central role in the original
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Hohenberg-Kohn theorem [1], is not a conserved quantity in the presence of time-dependent
external fields, and there is hence no variational principle for it on the basis of the density that
can be exploited. For this reason, we must start anew and develop the theoretical foundations
of TDDFT from scratch.

2.1 The Runge-Gross Theorem
The Runge-Gross theorem [2] is the equivalent of the Hohenberg-Kohn theorem for time-
dependent systems and asserts the one-to-one correspondence between the external potential
and the density, albeit with an important restriction. In contrast to the static Schrödinger equa-
tion, which is a second-order differential equation and constitutes a mathematical boundary-
value problem whose possible eigenstates are determined by normalisation constraints, the
time-dependent Schrödinger equation

i~
∂

∂t
Ψ(r1, . . . , rN ; t) = H(t)Ψ(r1, . . . , rN ; t) (1)

is of first order and a prototype example of an initial-value problem; its solution always requires
the knowledge of the wave function Ψ(r1, . . . , rN ; t0) at an initial time t0. The integration of
Eq. (1) then describes the complete evolution of the system, but observables always depend on
the initial state. For this reason, the Runge-Gross theorem only holds for a fixed initial state.
Of course, for a given external potential Vext(r, t) it is always possible, in principle, to solve the
time-dependent Schrödinger equation with the Hamiltonian

H(t) =
N∑

k=1

(
− ~

2

2m
∇2

k + Vext(rk, t)

)
+

1

2

∑

k 6=l

v(rk − rl) , (2)

where v(r − r′) = e2/|r − r′| denotes the Coulomb interaction. From the many-body wave
function, the density is obtained according to

n(r, t) = N

∫
|Ψ(r, r2, . . . , rN ; t)|2 d3r2 . . . d3rN . (3)

What we have to prove, in order to demonstrate the one-to-one correspondence, is that if two
potentials Vext(r, t) and V ′

ext(r, t) differ by more than a purely time-dependent function, then
the associated densities n(r, t) and n′(r, t) are always distinct. The addition of a purely time-
dependent function is exempt because it only changes the phase of the wave function but not
the density. In the following we assume that the two systems evolve from physically equivalent
wave functions Ψ(r1, . . . , rN ; t0) and Ψ′(r1, . . . , rN ; t0), i.e., wave functions that differ at most
by a constant phase factor at an initial time t0. Of course, this implies n(r, t0) = n′(r, t0).
Furthermore, we only admit potentials that vary smoothly in time and can be expanded into
Taylor series

Vext(r, t) =
∞∑

k=0

ck(r)

k!
(t− t0)

k with ck(r) =
∂k

∂tk
Vext(r, t)

∣∣∣∣
t=t0

(4)

and analogously for V ′
ext(r, t). If the two potentials differ by more than a purely time-dependent

function, then at least one of the coefficients uk(r) = ck(r)− c′k(r) must not be a mere constant
but a spatially varying function.
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The proof of the Runge-Gross theorem employs the current density

j(r, t) =
N

2m

∫
Ψ∗(r, r2, . . . , rN ; t) [−i~∇Ψ(r, r2, . . . , rN ; t)] d3r2 . . . d3rN (5)

− N

2m

∫
[−i~∇Ψ∗(r, r2, . . . , rN ; t)] Ψ(r, r2, . . . , rN ; t) d3r2 . . . d3rN ,

which is related to the density through the continuity equation

∂

∂t
n(r, t) = −∇ · j(r, t) . (6)

This identity expresses the conservation of the total particle number in a differential form: the
change in the number of electrons within a certain volume equals the flux through its surface. In
the first step, we show that the current densities j(r, t) and j′(r, t) induced by the two potentials
differ. To this effect we examine the time derivative

∂

∂t
[j(r, t)− j′(r, t)]t=t0

= − 1

m
n(r, t0)∇ [Vext(r, t0)− V ′

ext(r, t0)] = − 1

m
n(r, t0)∇u0(r) ,

(7)
which follows from the definition (5) together with the known behaviour of the wave function
(1) and its complex conjugate. If u0(r) is not a constant, then the right-hand side is nonzero,
and consequently the derivatives of the current densities at t0 must be different. Otherwise we
take an appropriate higher time derivative

∂k+1

∂tk+1
[j(r, t)− j′(r, t)]t=t0

= − 1

m
n(r, t0)∇uk(r) (8)

with a nonconstant uk(r) to establish that at least one term in the Taylor expansions of j(r, t)
and j′(r, t) differs. This implies that the current densities themselves deviate for t > t0.
In the second step we prove that the corresponding densities also differ. For this purpose we
take the (k+1)st time derivative of the continuity equation (6) and again examine the difference

∂k+2

∂tk+2
[n(r, t)− n′(r, t)]t=t0

= −∇· ∂k+1

∂tk+1
[j(r, t)− j′(r, t)]t=t0

=
1

m
∇· [n(r, t0)∇uk(r)] (9)

between the two systems. The quantity on the right-hand side of this equation is nonzero. This
implies that the (k+2)nd terms in the Taylor expansions of n(r, t) and n′(r, t) around t0 differ.
As a consequence, the densities generated by the two distinct potentials Vext(r, t) and V ′

ext(r, t)
themselves must deviate for t > t0. This concludes the proof of the Runge-Gross theorem.
As we required the wave functions Ψ(r1, . . . , rN ; t0) and Ψ′(r1, . . . , rN ; t0) to be equivalent, the
Runge-Gross theorem applies only to densities evolving from the same initial state. In fact, it
is possible to construct systems with different initial states evolving in different time-dependent
potentials whose densities nevertheless coincide exactly at all times [3]. From a theoretical point
of view, the restriction to a fixed initial wave function has profound consequences. In particular,
in contrast to the stationary case, physical observables are not just functionals of the density but
also depend on the initial state. All examples discussed in this chapter, however, refer to systems
that are in stationary equilibrium at the outset. The Hohenberg-Kohn theorem can be applied in
this case and ensures that the ground-state wave function before the onset of the time-dependent
perturbation is uniquely determined by the static density (up to an irrelevant phase factor). There
is hence no explicit initial-state dependence in this scenario, and all observables are indeed pure
functionals of the density alone.
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2.2 The Time-Dependent Kohn-Sham Equations
Although the Runge-Gross theorem asserts that all observables are uniquely determined by the
density, it makes no statement how this central quantity can actually be calculated. To overcome
the analogous problem in static density-functional theory, Kohn and Sham [4] suggested to use
an auxiliary system of noninteracting electrons moving in an effective local potential, which
is designed in such a way that the densities of the auxiliary Kohn-Sham system and the real
interacting electrons coincide. This idea can be generalised to the time-dependent case, where
the Kohn-Sham electrons obey [2]

i~
∂

∂t
ϕk(r, t) =

(
− ~

2

2m
∇2 + Veff(r, t)

)
ϕk(r, t) (10)

and the density is given by

n(r, t) =
∞∑

k=1

fk |ϕk(r, t)|2 , (11)

where fk denotes the occupation numbers in the ground state. The important question whether
one can always find a local potential Veff(r, t) with the property that the orbitals obtained from
the Kohn-Sham equations (10) reproduce the given density of an interacting electron system
has been answered affirmative: if such a potential exists for the original stationary state, i.e.,
if the initial static ground-state density is “noninteracting V -representable”, then this remains
true after the onset of an arbitrary time-dependent perturbation [5]. Furthermore, since the
Runge-Gross theorem applies equally to noninteracting systems, the effective potential is then
determined uniquely up to an irrelevant purely time-dependent function.
We have thus established the existence of an effective potential, but we must still find an explicit
expression for use in practical calculations. As in static density-functional theory, we start with
the separation

Veff(r, t) = Vext(r, t) + VH(r, t) + Vxc(r, t) , (12)

where the first term is the external potential, the second is the Hartree potential

VH(r, t) =

∫
e2

|r− r′|n(r′, t) d3r′ (13)

accounting for the electrostatic interaction between the electrons and the third term incorpo-
rates all remaining exchange and correlation effects. In the stationary case one exploits the
variational principle for the total-energy functional and determines the orbitals of the Kohn-
Sham electrons in such a way that the energy is minimised. All potential terms are then well
defined as functional derivatives of the corresponding energy contributions with respect to the
density. In systems driven by time-dependent external fields the total energy is not a conserved
quantity, however, and there is hence no minimisation principle for it. As an alternative one can
use the quantum-mechanical action

A[Φ] =

∫ t1

t0

dt

∫
Φ∗(r1, . . . , rN ; t)

(
i~

∂

∂t
−H(t)

)
Φ(r1, . . . , rN ; t) d3r1 . . . d3rN . (14)

The action has the property that its functional derivative with respect to Φ∗(r1, . . . , rN ; t) van-
ishes at the true many-body wave function, i.e., the solution of the Schrödinger equation

δA[Φ]

δΦ∗(r1, . . . , rN ; t)

∣∣∣∣
Φ(r1,...,rN ;t)=Ψ(r1,...,rN ;t)

=

(
i~

∂

∂t
−H(t)

)
Ψ(r1, . . . , rN ; t) = 0 . (15)
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Therefore, it is possible to solve the time-dependent problem by searching for the stationary
point of the action. In contrast to the energy in the static case, there is no minimisation principle,
however, as the stationary point is not necessarily a minimum. Furthermore, the value of the
action itself does not provide any relevant additional information, since A[Ψ] = 0.
By virtue of the Runge-Gross theorem, we may consider the action as a functional of the density.
The obvious definition of A[n] is to evaluate Eq. (14) at the wave function Φ([n]; r1, . . . , rN ; t)
associated with n(r, t). In analogy to the total energy in static density-functional theory, the
action may be decomposed as

A[n] = TKS[n]−
∫ t1

t0

dt

∫
Vext(r, t)n(r, t) d3r − AH[n]− Axc[n] , (16)

where TKS[n] denotes the kinetic contribution of the Kohn-Sham system

TKS[n] =
∞∑

k=1

fk

∫ t1

t0

dt

∫
ϕ∗k(r, t)

(
i~

∂

∂t
+
~2

2m
∇2

)
ϕk(r, t) d3r . (17)

The third term on the right-hand side is linked to the Hartree potential and given explicitly by

AH[n] =
1

2

∫ t1

t0

dt

∫
n(r, t)

e2

|r− r′|n(r′, t) d3r d3r′ . (18)

Its functional derivative with respect to the density yields VH(r, t) = δAH[n]/δn(r, t). The
final term Axc[n] incorporates all remaining exchange and correlation contributions. One would
expect that the time-dependent exchange-correlation potential is likewise obtained as

Vxc(r, t) =
δAxc[n]

δn(r, t)
. (19)

Unfortunately, it is not so straightforward. The problem becomes evident if we examine the
second functional derivative

δVxc(r, t)

δn(r′, t′)
=

δ2Axc[n]

δn(r, t) δn(r′, t′)
. (20)

Whereas the expression on the right-hand side is symmetric in (r, t) and (r′, t′), the exchange-
correlation potential can only be influenced by the density at earlier times. Therefore, causal-
ity dictates that the left-hand side must vanish for t < t′ but not for t > t′. The symmetry
and causality requirements contradict each other and cannot be satisfied simultaneously. We
are hence forced to conclude that the action is not a differentiable functional of the density.
This problem can be resolved within the Keldysh formalism for nonequilibrium dynamics, in
which the physical time t(τ) is parametrised by an underlying parameter τ called pseudotime
[6]. Defining the action on the pseudotime contour instead of the real time axis guarantees the
proper symmetry of the second functional derivative in (r, τ) and (r′, τ ′), while the exchange-
correlation potential is obtained in analogy to Eq. (19) by restoring the physical time argument
after performing the functional derivative with respect to n(r, τ). It is not surprising that due to
its mathematical complexity, this formal approach has resonated rather little with actual practi-
tioners of TDDFT. In fact, the design of specific approximations for the exchange-correlation
potential in time-dependent situations is still at a very early stage. Most calculations take a prag-
matic point of view and simply use one of the established functionals of static density-functional
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theory. The most popular choice is the adiabatic local-density approximation (ALDA), which
replaces the exchange-correlation potential at the coordinates r and t by that of the homoge-
neous electron gas with the same local density n(r, t). It is readily expressed in terms of the
exchange-correlation energy density εhom

xc (n) of the homogeneous electron gas according to

V ALDA
xc (r, t) =

d

dn

[
nεhom

xc (n)
]
n=n(r,t)

. (21)

The latter is known from quantum Monte-Carlo calculations [7] and available in parametrised
form [8]. The ALDA is a rather drastic approximation that ignores the nonlocal dependence of
Vxc(r, t) on the density elsewhere in space as well as the memory of the density distribution at
earlier times. In addition, it inherits all the well known deficiencies of the stationary LDA, such
as the incorrect exponential decay in front of surfaces, which suppresses the existence of bound
image states. Nevertheless, there are few alternatives for practical calculations.

2.3 Excited States
Although TDDFT was originally developed to describe dynamic phenomena in time-dependent
potentials, one of its principal areas of application today is the analysis of electronic excitations.
This may at first seem surprising, because in popular perception density-functional theory is
strongly associated with ground-state properties only. The information about the excited states
is contained in the linear density-response function

χ(r, r′; t− t′) =
δn(r, t)

δVext(r′, t′)

∣∣∣∣
Vext(r′,t′)=V

(0)
ext (r′)

. (22)

Before discussing how this quantity can be accessed within TDDFT, here we first examine its
connection with the electronic excitation spectrum. We consider the following situation: The
system is initially at rest in a static potential V

(0)
ext (r). The corresponding ground-state density is

labeled n(0)(r). At the time t0 an additional time-dependent perturbation V
(1)
ext (r, t) is switched

on, so that the total external potential becomes Vext(r, t) = V
(0)
ext (r)+V

(1)
ext (r, t). If the potential is

sufficiently well behaved, then the induced change in the electron distribution can be expanded
by orders of V

(1)
ext (r, t) according to n(r, t) = n(0)(r) + n(1)(r, t) + . . ., where the first-order

correction is just given by

n(1)(r, t) =

∫ ∞

−∞
dt′

∫
d3r′ χ(r, r′; t− t′)V (1)

ext (r′, t′) (23)

in terms of the linear density-response function. Causality requires χ(r, r′; t− t′) = 0 for t < t′,
of course, because the density cannot be influenced by later variations of the potential.
The eigenstates of the original unperturbed Hamiltonian with the potential V

(0)
ext (r) are labeled

by Ψj(r1, . . . , rN ; t) = Ψj(r1, . . . , rN) exp(−iEjt/~), where Ej denotes the corresponding en-
ergy eigenvalues. After the onset of the time-dependent perturbation, we expand the wave func-
tion Ψ(r1, . . . , rN ; t) that evolves from the ground state Ψ(0)(r1, . . . , rN ; t) = Ψ0(r1, . . . , rN ; t)

by orders of V
(1)
ext (r, t). The first-order correction is

Ψ(1)(r1, . . . , rN ; t) = − i

~

∞∑
j=0

Ψj(r1, . . . , rN ; t) (24)

×
∫ ∞

−∞
dt′

∫
Ψ∗

j(r
′
1, . . . , r

′
N ; t′)

N∑

k=1

V
(1)
ext (r′k, t

′)Ψ0(r
′
1, . . . , r

′
N ; t′)Θ(t− t′) d3r′1 . . . d3r′N ,
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as can easily be verified by inserting the series into the Schrödinger equation (1) and comparing
the linear terms on both sides of the equal sign. The Heaviside step function Θ(t − t′), which
equals one for t > t′ and zero for t < t′, ensures the causality requirement. The corresponding
change in the density is

n(1)(r, t) = N

∫
Ψ(1)∗(r, r2, . . . , rN ; t)Ψ(0)(r, r2, . . . , rN ; t) d3r2 . . . d3rN (25)

+N

∫
Ψ(0)∗(r, r2, . . . , rN ; t)Ψ(1)(r, r2, . . . , rN ; t) d3r2 . . . d3rN .

In order to simplify the notation, we introduce the overlap functions

nj(r) = N

∫
Ψ∗

0(r, r2, . . . , rN)Ψj(r, r2, . . . , rN) d3r2 . . . d3rN . (26)

After inserting everything into Eq. (25) we obtain

n(1)(r, t) =

∫ ∞

−∞
dt′

∫
d3r′

[
− i

~

∞∑
j=0

(
nj(r)n

∗
j(r

′)e−i(Ej−E0)(t−t′)/~ (27)

−n∗j(r)nj(r
′)ei(Ej−E0)(t−t′)/~

)
Θ(t− t′)

]
V

(1)
ext (r′, t′) .

If we compare this expression with Eq. (23), we eventually find that the term in square brackets
equals the linear density-response function in the time domain. A straightforward Fourier trans-
formation to frequency space is not possible, because the oscillating phase factors do not decay
asymptotically, and consequently the integral over the positive time axis is indeterminate. We
solve this problem by introducing an exponential damping term exp(−η(t − t′)/~) and taking
the limit η → 0+ after carrying out the integration. In this way we arrive at the final formula

χ(r, r′; ω) = lim
η→0+

∞∑
j=1

(
nj(r)n

∗
j(r

′)

~ω − (Ej − E0) + iη
− n∗j(r)nj(r

′)

~ω + (Ej − E0) + iη

)
. (28)

The ground state j = 0 does not contribute to the sum and has been omitted here. Note that
the two terms in the brackets cancel because n0(r) = n(0)(r) is real-valued in this case. The
important observation is that the poles of χ(r, r′; ω) correspond to the exact excitation energies
Ej − E0. Furthermore, all quantites on the right-hand side depend only on the Hamiltonian
of the unperturbed stationary system. By virtue of the Hohenberg-Kohn theorem, the linear
density-response function is hence a functional of the static ground-state density n(0)(r).

2.4 Linear-Response Theory
To calculate the linear density-response function in practice, we exploit the fact that the density
of the real system is identical to that of the noninteracting Kohn-Sham electrons. As the latter
move in the effective potential Veff(r′′, t′′), we apply the chain rule for functional derivatives

χ(r, r′; t− t′) =

∫ ∞

−∞
dt′′

∫
d3r′′

δn(r, t)

δVeff(r′′, t′′)
δVeff(r′′, t′′)
δVext(r′, t′)

. (29)

The first term on the right-hand side is the linear density-response function χKS(r, r
′′; t− t′′) of

the noninteracting Kohn-Sham system, defined in analogy to Eq. (22) but describing the change
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in the density to first order in the total effective potential rather than the external potential. It
can be derived following the same procedure as in the previous section and is given by

χKS(r, r
′′; ω) = lim

η→0+

∞∑

k=1

∞∑

l=1

(fk − fl)
ϕk

∗(r)ϕl(r)ϕk(r
′′)ϕl

∗(r′′)
~ω − (εl − εk) + iη

(30)

in frequency space. The energies εk in the denominator are the Kohn-Sham eigenvalues of the
unperturbed stationary wave functions ϕk(r). To evaluate the second term in Eq. (29) we use
the separation (12), which yields

δVeff(r′′, t′′)
δVext(r′, t′)

= δ(r′′ − r′)δ(t′′ − t′) +
δVH(r′′, t′′)
δVext(r′, t′)

+
δVxc(r

′′, t′′)
δVext(r′, t′)

. (31)

As both the Hartree potential and the exchange-correlation potential are given as functionals of
the density, we apply the chain rule once more and rewrite these two contributions as

δVH(r′′, t′′)
δVext(r′, t′)

+
δVxc(r

′′, t′′)
δVext(r′, t′)

=

∫ ∞

−∞
dt′′′

∫
d3r′′′

(
δVH(r′′, t′′)
δn(r′′′, t′′′)

+
δVxc(r

′′, t′′)
δn(r′′′, t′′′)

)
δn(r′′′, t′′′)
δVext(r′, t′)

.

(32)
The last term on the right-hand side is easily recognised as the linear density-response function
χ(r′′′, r′; t′′′ − t′). The functional derivative of the Hartree potential with respect to the density
follows directly from the definition (13) and simply equals the Coulomb potential

δVH(r′′, t′′)
δn(r′′′, t′′′)

=
e2

|r′′ − r′′′|δ(t
′′ − t′′′) . (33)

The final ingredient is the so-called exchange-correlation kernel

fxc(r
′′, r′′′; t′′ − t′′′) =

δVxc(r
′′, t′′)

δn(r′′′, t′′′)

∣∣∣∣
n(r′′′,t′′′)=n(0)(r′′′)

. (34)

After collecting all terms and Fourier transforming to frequency space, whereby convolutions
on the time axis turn into simple multiplications, we obtain the final integral equation [9]

χ(r, r′; ω) = χKS(r, r
′; ω) (35)

+

∫
d3r′′

∫
d3r′′′ χKS(r, r

′′; ω)

(
e2

|r′′ − r′′′| + fxc(r
′′, r′′′; ω)

)
χ(r′′′, r′; ω) .

Practical implementations of TDDFT solve this integral equation routinely by projecting all
quantities onto a suitable set of orthonormal basis functions, thus turning it into a matrix equa-
tion χ(ω) = χKS(ω) + χKS(ω)[v + fxc(ω)]χ(ω) that is more suitable for a numerical treatment.
The linear density-response function in this representation is then obtained by matrix inversion
and given in closed form by χ(ω) = {1− χKS(ω)[v + fxc(ω)]}−1χKS(ω).

2.5 The Exchange-Correlation Kernel
The central ingredient for the calculation of the linear density-response function according
to Eq. (35) is the exchange-correlation kernel fxc(r, r

′; ω), formally defined as the functional
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derivative of the exchange-correlation potential with respect to the density. Any explicit for-
mula for the potential can hence, in principle, be used to derive a matching approximation for
the kernel. The most common expression, the adiabatic local-density approximation [10]

fALDA
xc (r, r′; t− t′) =

δV ALDA
xc (r, t)

δn(r′, t′)
= δ(r− r′)δ(t− t′)

d2

dn2

[
nεhom

xc (n)
]
n=n(0)(r)

, (36)

is indeed obtained in this way. Although it is based on a numerically exact parametrisation of the
exchange-correlation energy density εhom

xc (n) for the homogeneous electron gas with constant
density n, it is important to realise that the ALDA actually constitutes a very poor representation
of the kernel even for homogeneous systems. In contrast to the true exchange-correlation kernel
fhom

xc (|r − r′|, t − t′) of the homogeneous electron gas, it is local both in the space and time
coordinates, thus ignoring essential physical features like the nonlocal dependence on the global
density distribution or the memory of the density at former times. In fact, in reciprocal space
the ALDA corresponds only to the long-wavelength limit fALDA

xc (q, ω) = limq→0 fhom
xc (q, 0) at

ω = 0. The static exchange-correlation potential in bulk solids, on the other hand, is typically
modeled quite well by the LDA; in the case of the homogeneous electron gas it yields the correct
constant potential. To ensure an accurate overall description, the potential and kernel are hence
often treated independently, and separate approximations are made for both quantities.
Unfortunately, very little is known about the properties of the true exchange-correlation kernel.
First of all, causality requires fxc(r, r

′; t − t′) = 0 for t < t′. A few straightforward symme-
try relations can be inferred from the inversion of the integral equation (35). As the density
is a real-valued quantity, the linear density-response function and hence the kernel must also
be real in the time domain, which implies fxc(r, r

′; ω) = f ∗xc(r, r
′;−ω) after Fourier transfor-

mation to the frequency axis. Besides, the linear density-response function is symmetric in
its two spatial arguments if the unperturbed stationary system exhibits time-reversal symmetry,
so that fxc(r, r

′; ω) = fxc(r
′, r; ω) in the absence of magnetic fields. Some additional con-

straints can be obtained from general considerations. For example, the generic high-frequency
behaviour fxc(r, r

′; ω) = fxc(r, r
′;∞) + O(1/ω2) follows from the known asymptotic proper-

ties of χ(r, r′; ω) and χKS(r, r
′; ω). In general, however, further progress can only be made if a

specific system is considered. For the homogeneous electron gas, in particular, a large number
of exact sum rules and asymptotic limits have been derived. In combination with an explicit
evaluation of the leading correlation terms, which reveal the basic shape of fhom

xc (q, ω), these
can be exploited to construct a highly accurate expression for the dynamic exchange-correlation
kernel [11]. The static kernel at ω = 0 can alternatively be calculated by quantum Monte-Carlo
techniques [12].
Although parametrisations of fhom

xc (|r − r′|, t − t′) for a wide range of densities are readily
available, it is difficult to employ these in calculations for real materials, because it is unclear
how to choose the density parameter uniquely in inhomogeneous systems where, in general,
n(0)(r) 6= n(0)(r′). Nevertheless, for the homogeneous electron gas this makes it possible to de-
termine the excitation spectrum with high precision and to identify the important features that
simpler approximations for the kernel must retain. As an illustration, Fig. 1 shows the excitation
energies of the homogeneous electron gas obtained from the poles of the linear density-response
function χ(q, ω) = χKS(q, ω)/{1− χKS(q, ω)[v(q) + fxc(q, ω)]} with v(q) = 4πe2/q2 and dif-
ferent approximations for the exchange-correlation kernel [13]. The density n = 0.0252 Å

−3

equals that of sodium. The grey-shaded region indicates the continuum of electron-hole pair
excitations, which correspond to the singularities ~ω = εk′ − εk of the numerator χKS(q, ω),
where εk and εk′ denotes the eigenvalue of an occupied and an unoccupied Kohn-Sham state,
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Fig. 1: Plasmon dispersion Ωq for the homogeneous electron gas, calculated with six different
approximations for the exchange-correlation kernel. The real and imaginary parts are shown
separately. The grey-shaded region indicates the electron-hole pair continuum, where the plas-
mons are strongly damped. Taken from Ref. [13].

respectively, and q = k′ − k. In addition, there is a distinct plasmon branch Ωq, which de-
scribes collective charge oscillations of the electron system and corresponds to the zeroes of the
denominator, i.e., the solutions of

1− χKS (q, Ωq/~) [v(q) + fxc (q, Ωq/~)] = 0 . (37)

We focus on the latter, because the results directly reflect the quality of the kernel. The axes in
the figure are scaled in units of the Fermi wave vector kF =

3
√

3π2n = 0.907 Å
−1

and the Fermi
energy εF = ~2k2

F/2m = 3.13 eV. The plasmon branch starts at the classical plasma frequency
Ω0 =

√
4πne2/m = 5.89 eV. For small wave vectors energy and momentum conservation

do not allow a decay into electron-hole pairs. The plasmons hence have a long lifetime, but
inside the electron-hole pair continuum they are strongly damped. In this region the solutions
of Eq. (37) become complex numbers Ωq = Ω′

q − iΩ′′
q with Ω′′

q > 0. Mathematically, the sum
over a few effective spectral features with complex energies in Eq. (28) is equivalent to the
integration over a continuum of excited states with real energies and infinitesimal imaginary
parts. In the time domain the imaginary part Ω′′

q gives rise to an additional exponential damping
term exp(−Ω′′

q(t − t′)/~), which can be interpreted as a finite lifetime ~/Ω′′
q . The imaginary

part Ω′′
q of the plasmon energies is shown separately in the figure.

As the parametrisation of the dynamic exchange-correlation kernel by Richardson and Ashcroft
(RA) [11] is believed to be very close to the exact function, it can be taken as a reference to
assess the performance of more simplified schemes. The comparison with different common
approximations allows us to draw the following conclusions.

1. The parametrisation of the static exchange-correlation kernel by Corradini, Del Sole,
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Onida and Palummo (CDOP) [14], based on numerically exact Monte-Carlo data [12],
retains the full spatial nonlocality but neglects the frequency dependence. The dispersion
differs little from the results obtained with the dynamic RA kernel. This suggests that the
frequency dependence is, in fact, not crucial for the calculation of excited states.

2. The ALDA further ignores the spatial nonlocality. The dispersion agrees well with the
reference results in the limit of small wave vectors, where the ALDA exhibits the correct
asymptotic behaviour, but shows an increasing discrepancy at larger wave vectors, which
indicates that the spatial nonlocality of the kernel is an important feature.

3. This point is further stressed by the poor performance of the parametrisations by Peter-
silka, Gossmann and Gross (PGG) [9] and by Burke, Petersilka and Gross (BPG) [15].
Both kernels were specifically designed for few-electron systems in molecular physics
and do not incorporate the correct asymptotic behaviour of the homogeneous electron
gas. Consequently, the calculated curves show a strong deviation from the true plasmon
dispersion even for small wave vectors.

4. Finally, the random-phase approximation (RPA) neglects dynamic exchange-correlation
effects altogether by setting fRPA

xc (r, r′; t − t′) = 0. Compared to this simplest possible
treatment, the ALDA constitutes a small but definite improvement at all wave vectors.

Although based on data for the homogeneous electron gas, these conclusions remain generally
valid for inhomogeneous systems. In applications of TDDFT to real materials the ALDA can
often be expected to yield excitation spectra with sufficient accuracy for practical purposes; if
significant deviations from experimental measurements are observed, then it is usually because
of the oversimplified wave-vector dependence. One example where a more careful treatment of
the spatial nonlocality is necessary to obtain reliable results is the study of optical absorption in
semiconductors, which is discussed at the end of the following section.

3 Applications in Theoretical Spectroscopy
In this section we discuss the theoretical simulation of two spectroscopic techniques, electron
energy-loss spectroscopy and optical absorption. In both cases the measured spectra can be
related directly to the linear density-response function.

3.1 Electron Energy-Loss Spectroscopy
Electron energy-loss spectroscopy (EELS) is a well-established and very useful tool to study
electronic excitations in solids. In the experiment a beam of electrons with initial wave vector
ki and kinetic energy εi = ~2k2

i /2m impinges on a sample and loses energy through inelastic
scattering processes by exciting electron-hole pairs, plasmons or other collective modes. De-
pending on the setup, the impinging particles either travel through the material or scatter from
it. In the first case they mainly probe the electronic structure of the bulk, in the second they
are sensitive to surface characteristics. A detector positioned at angles θ and φ relative to the
original beam direction measures the final kinetic energy εf = ~2k2

f /2m of the electrons, which
also yields the wave vector kf = kf(sin θ cos φ, sin θ sin φ, cos θ). The energy loss ~ω = εi − εf

quantifies the energy transferred from the incident electron to the system. The differential cross
section per solid angle dΩ = sin θ dθ dφ and energy d(~ω) for the scattering of an electron
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Fig. 2: Comparison of the diagonal elements Im χGG′(q, ω) with G = G′ calculated within
the ALDA (dot-dashed lines) to experimental EELS spectra (solid lines) for silver. The wave
vectors are given in units of 2π/a with the lattice constant a = 4.09 Å. Taken from Ref. [17].

beam from a many-body target can be calculated within first-order time-dependent perturbation
theory, the so-called first Born approximation, and is given by [16]

d2σ

dΩ d(~ω)
=

m2

(2π)2~4
v(ki − kf)

2kf

ki

S(ki − kf , ω) , (38)

where v(ki − kf) = 4πe2/|ki − kf |2 is again the Fourier transform of the Coulomb potential.
Most factors on the right-hand side are controlled by the explicit experimental setup and do not
depend on the sample. The only material-specific term is the dynamic structure factor

S(ki − kf , ω) = − 1

π
Im χGG(q, ω) , (39)

where the transferred wave vector ki−kf = q+G is decomposed in such a way that q lies inside
the first Brillouin zone and G is a reciprocal lattice vector. Therefore, EELS allows a direct
experimental measurement of the diagonal elements of the linear density-response function

χGG′(q, ω) =

∫
e−i(q+G)·rχ(r, r′; ω)ei(q+G′)·r′ d3r d3r′ (40)

in reciprocal space and gives access to the information about excited states contained in it.
The imaginary part of the linear density-response function for silver obtained within the ALDA
[17] is shown in Fig. 2 and compared to experimental EELS spectra. The implementation
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Fig. 3: Comparison of Im ε−1
00 (q, ω) in the limit q → 0 calculated within the ALDA (dotted

line) and RPA (solid line) to experimental EELS data (circles) for silicon. Taken from Ref. [18].

is based on the plane-wave pseudopotential method with an energy cutoff of 130 Ry for the
expansion of the Kohn-Sham wave functions and 90 bands in the sums over eigenstates in Eq.
(30), including 4s and 4p semi-core states. This incorporates transitions up to 150 eV above the
Fermi energy. The data are shown as a function of the energy ~ω for four different wave vectors
q + G given in units of 2π/a, where a = 4.09 Å is the experimental lattice constant of silver.
The theoretical results are in good overall agreement with the measured spectra and reproduce
the characteristic profiles for the different wave vectors correctly. The remaining discrepancy,
especially at high energy loss, may signal a failure of the ALDA but is more likely due to the
occurrence of multiple-scattering events not captured by the first Born approximation (38).
As another example, Fig. 3 shows results for silicon in the limit q → 0 obtained in a similar
way [18], this time expressed in terms of the inverse microscopic dielectric function

ε−1(r, r′; t− t′) = δ(r− r′)δ(t− t′) +

∫
v(r− r′′)χ(r′′, r′; t− t′) d3r′′ , (41)

which implies Im ε−1
GG(q, ω) = v(q + G) Im χGG(q, ω) in reciprocal space. The broad peak

near 16.5 eV is a plasmon resonance. Both the RPA and the ALDA curves are very close to the
experimental data, which indicates that dynamic exchange-correlation effects only play a minor
role in this case. The situation is thus akin to that of plasmons in the homogeneous electron gas
(see Fig. 1), where the difference, in fact, vanishes exactly in the long-wavelength limit as both
dispersion curves approach the classical plasma frequency.

3.2 Optical Absorption
Optical absorption is a different kind of spectroscopy in which solids are irradiated with light
rather than particle beams. The absorption strength at a given frequency ω is in practice deter-
mined by measuring the transmission or reflection of the incident light. The quantity probed in
this way is the imaginary part Im εM(ω) of the macroscopic dielectric function. In contrast to
EELS, there is no q-dependence in this case, because the momentum of the photons is negligi-
ble compared to that of the electrons. The macroscopic dielectric function is related to the head
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Fig. 4: Optical absorption spectrum Im εM(ω) of silicon calculated within the RPA (dotted line),
ALDA (dot-dashed line), TDDFT with a long-range kernel (solid line) and the Bethe-Salpeter
equation of many-body perturbation theory (long-dashed line), compared to experimental data
(circles). Taken from Ref. [19].

of the inverse microscopic dielectric matrix by

εM(ω) = lim
q→0

1

ε−1
00 (q, ω)

. (42)

If the microscopic dielectric matrix is diagonal in the reciprocal lattice vectors, then Eq. (42)
reduces to εM(ω) = limq→0 ε00(q, ω), and the macroscopic dielectric function simply equals
the spatial average of the microscopic function. This is the case in the homogeneous electron
gas. For all other materials the matrix εGG′(q, ω) is nondiagonal, however, which means that
not only the head but also all other matrix elements contribute to εM(ω) through the inversion.
Their combined influence is known as local-field effects and arises in inhomogeneous systems
because external perturbations induce fluctuations on the atomic scale, which themselves gen-
erate additional internal microscopic fields that must be taken into account.
The optical absorption spectrum of silicon in Fig. 4 shows the typical characteristics of a semi-
conductor. In the infrared regime the material is transparent, because the energy of the photons
is not sufficient to excite electrons across the fundamental band gap. At higher frequencies
the experimental spectrum exhibits two pronounced peaks. The first is a sharp exciton reso-
nance and describes the formation of bound electron-hole pairs. The second, broader feature
corresponds to interband transitions from the valence into the conduction band. The theoretical
results for εM(ω) were obtained by evaluating Eq. (42) with the microscopic dielectric function
(41) and using different exchange-correlation kernels for the linear density-response function
[19]. The RPA and ALDA kernels again yield very similar results. Although the entire spec-
trum is shifted to lower energies, the second peak is clearly discernible and has approximately
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the correct weight and line shape. This is not surprising, as the interband transitions are already
included in χKS

GG′(q, ω). The displacement towards lower energies reflects the underestimation
of the fundamental band gap within density-functional theory. The first peak, on the other hand,
is poorly reproduced, because the formation of excitons arises from intricate correlation effects
that are not adequately described by the ALDA kernel.
Why does the ALDA yield such a poor optical absorption spectrum while the electron energy-
loss curve in Fig. 3 is almost perfect? After all, both quantities are derived from the same linear
density-response function. In order to understand this apparent contradiction, it is important to
realise that the macroscopic dielectric function (42) can be rewritten as [20]

εM(ω) = 1− lim
q→0

v(q)χ̄00(q, ω) (43)

in terms of a new response function χ̄GG′(q, ω). The latter satisfies an integral equation

χ̄GG′(q, ω) = χKS
GG′(q, ω)+

∑

G′′,G′′′
χKS

GG′′(q, ω) [v̄(q + G′′)δG′′G′′′ + fxc
G′′G′′′(q, ω)] χ̄G′′′G′(q, ω)

(44)
analogous to (35) but with the modified interaction

v̄(q + G) =





0 if G = 0 ,

v(q + G) =
4πe2

|q + G|2 otherwise .
(45)

In contrast to the normal Coulomb interaction, v̄(q + G) does not diverge as q + G → 0 but
drops to zero, which in turn implies that v̄(r − r′) is short-ranged in real space. It is precisely
this different behaviour at small wave vectors that is responsible for the observed features.
The EELS spectrum −Im ε−1

00 (q, ω) = −v(q) Im χ00(q, ω) is calculated from the full linear
density-reponse function (35). For small q the Coulomb potential diverges and dominates over
the exchange-correlation kernel. The ALDA, in particular, tends to a finite value and thus has
a negligible influence in this limit, yielding almost the same results as the RPA. On the other
hand, the optical absorption spectrum Im εM(ω) = − limq→0 v(q) Im χ̄00(q, ω) includes the
modified response function (44) calculated without the singularity of the Coulomb potential.
Therefore, the exchange-correlation kernel dominates the spectral features in this case, and the
failure of the ALDA becomes apparent. The true kernel in semiconductors is actually divergent
at small wave vectors. This reflects the fact that screening is incomplete in materials with a
band gap. Instead, a polarisation charge forms on the surface and gives rise to an additional
long-range electric field. The ALDA cannot capture this effect, because it is based on a metallic
reference system, the homogeneous electron gas. As a remedy, Reining et al. [19] suggested to
use a divergent expression of the form −αe2/q2, which corresponds to a long-range function
−αe2/(4π|r − r′|) in real space, instead of the ALDA in such cases. The results in Fig. 4,
calculated with an empirical parameter α = 0.2, confirm that this long-range kernel indeed
improves the description of optical absorption spectra significantly. A survey of several other
semiconducting materials suggests that this empirical value is a typical magnitude for α [21].
An alternative method that also yields the correct spectral features is the Bethe-Salpeter equa-
tion of many-body perturbation theory, which involves the calculation of a two-particle Green
function for the correlated motion of electron-hole pairs [22]. The curve obtained in this way is
displayed in Fig. 4 for comparison with the TDDFT results. Many-body perturbation theory has
the appeal that the physical contents of approximations can be controlled in a very transparent
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way; in this example the electron-hole attraction is explicitly included in the two-particle Green
function to enable the description of excitons. On the other hand, the computational cost is
much higher than that of a standard TDDFT calculation.

4 Summary

Although most applications of TDDFT are still in the field of atomic and molecular systems, it
has long since also become an established method in condensed-matter physics. Its principal
use here is the investigation of excited states, which can be obtained directly from the linear
density-response function. As two typical examples, we discussed the theoretical simulation of
electron energy-loss spectroscopy (EELS) and optical absorption. The results put a spotlight
both on the success and the deficiencies of current implementations.
As TDDFT constitutes an exact mathematical formalism, the linear density-response function
should, in principle, contain information about the complete excitation spectrum, independent
of the physical nature of the excited states. Quantitative or even qualitative inaccuracies can
only be due to approximations that are, of course, always necessary in practical implementa-
tions. Besides numerical convergence parameters, approximations must be chosen for the static
exchange-correlation potential and the exchange-correlation kernel. Based on studies of finite
systems, it is frequently claimed that the former is the more crucial quantity [15]. The reason
is that common approximations like the LDA or generalised gradient approximations (GGA)
wrongly predict a rapid exponential fall of the potential instead of a slow algebraic decay at
large distances, with a negative effect on the description of unoccupied orbitals that may extend
far into the vacuum. At the Kohn-Sham level these schemes hence provide a poor starting point
for the study of molecular transition energies, while the local ALDA kernel performs well for
small systems. In periodic solids, on the other hand, the asymptotic behaviour of the potential is
of no relevance, and the LDA often gives a good qualitative picture of the electronic structure.
At the same time, as illustrated by the examples in this chapter, the nonlocality of the kernel
may become an important issue in extended systems with long-range correlation effects.
As the development of specific exchange-correlation functionals for time-dependent is still at
an early stage, the only nontrivial kernel that is widely used in practical calculations is the
ALDA. Although it is a local approximation, the calculated EELS spectra are typically in good
agreement with experimental measurements, because long-range effects are dominated by the
Coulomb potential and the kernel merely provides minor corrections. The excitations probed
by this technique, especially plasmons, are hence obtained accurately. On the other hand, long-
range exchange-correlation effects are crucial for the simulation of optical absorption spectra,
and the ALDA consequently yields poor results in this case. In particular, it is unable to describe
excitons in semiconductors. This failure initiated a search for better functionals, and some
preliminary progress has already been made. The long-range kernel proposed by Reining et
al. [19] succeeds in reproducing the exciton resonance in the optical absorption spectrum but
relies on an empirical parameter to achieve agreement with the experimental data. In the future,
parameter-free approaches will likely be based on a systematic evaluation by orders of the
Coulomb potential. The leading term of first order, the exact exchange kernel, already exhibits
the correct long-range behaviour [23], but its evaluation is currently still too expensive for
routine calculations. Another direction of active research is the extension of TDDFT to treat the
interaction of matter with time-dependent magnetic fields, which opens the way to investigate
spin waves (magnons) and other characteristic excitations in magnetic systems [24].
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