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1 Introduction

As we have seen in chapter B1, classical statistical mechanics deals with the statistical descrip-
tion of many particle systems. In this chapter we briefly discuss the application of the Monte
Carlo simulation technique to some selected computational problems of classical statistical me-
chanics. In chapter A12 the quantum Monte Carlo technique is discussed while chapter B11
deals with some special algorithms that are applied to study protein folding.

The basic idea of the Monte Carlo method is that given a relatively small number of particles
(or spins), say 10? — 108, the interaction potentials between these particles, the boundary con-
ditions and the thermodynamic ensemble, expectation values of observables like for instance
the internal energy can be calculated. These observables are defined as multidimensional inte-
grals (over positions and velocities of all particles) and an estimate of the integrals is obtained
by averaging the values of a particular observable for a (finite) number of configurations. The
required sequence of configurations has to be generated with a probability density which is de-
fined by the specified thermodynamic ensemble. In Monte Carlo simulations this sequence of
configurations is stochastic, rather than the deterministic time evolution of configurations real-
ized in a molecular dynamics simulation. The numerical accuracy of the results depends on the
number of configurations involved in the averaging procedure (the more the better) while the
finite system size has to be taken into account when making predictions for a system of infinite
size, i.e. the thermodynamic limit.

The strength of computer simulation methods lies in the fact that we can make exact (within the
model, and within in limited computer time) predictions of bulk, interfacial or single molecule
properties once that the interactions are specified. This enables one to test theoretical models by
implementing them without further approximations in a computer code. Furthermore, computer
simulations can be used to study properties that are difficult or impossible to measure experi-
mentally like for instance the free energy or chemical potential of a system. Finally, simulations
allow for a systematic study of the role of different parameters in a model by simply switching
them on or off.

The Monte Carlo method has been successfully employed to many different kinds of problems
in physics including thermodynamics, structure and dynamics, since the first simulations were
employed by Metropolis et al in the early 1950’s [1]. Due to a constantly increasing capacity and
availability of computer power as well as a continuing development of specialized algorithms
the Monte Carlo method has become a major tool for physicists and chemists. For those who
are interested and want to read more, there are numerous books that deal with Monte Carlo
simulations among which [2—-6] and references therein. These books discuss the basics as well
as specialized techniques for simulating spin systems, polymers, phase equilibria, et cetera.

In this chapter we can by no means cover the whole field of Monte Carlo simulations. We will
restrict ourselves to the very basics and give only three examples of slightly more advanced
methods. This chapter is organized as follows. In the remainder of this section we will discuss
some of the particle interactions that are frequently used as well as some very general concepts
in computer simulations that are non-specific to the Monte Carlo method. In section 2 some
necessary elementary concepts of statistical mechanics are recapitulated. In section 3 the stan-
dard Monte Carlo method is introduced after which in section 4 a few selected more advanced
methods are discussed.
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1.1 Model systems and interaction potentials

In this section we introduce some commonly used interactions that are employed in coarse
grained descriptions of atomic, molecular and colloidal systems. Such coarse grained interac-
tions are useful for studying the generic physical properties of a broad class of materials or for
studying general physical trends rather than the properties of specific materials.

Interactions The simplest possible interaction between particles is given by the hard sphere
potential, which is zero everywhere, except for interparticle distances r smaller than the diam-
eter o of a particle,

u(r):{ oo forr <o 0

0 forr>o.

The hard sphere interaction, which is sketched in Fig. 1A, introduces in a simple manner ex-
cluded volume interactions between particles. One could think of particles that behave as a
group of billiard balls in two or three dimensions. This is a common picture when simulating
a liquid at densities and temperatures where further interactions can be neglected. Apart from
a model system for the liquid state [7], hard spheres have found an important application in
colloid science. It has been demonstrated that the hard sphere interaction gives rise to a fluid-
crystal phase transition around a volume fraction of 50% of hard spheres. This phase transition
was the subject of a lot of discussion in the early 1950’s and was for the first time discovered in
computer simulations [8]. In more recent times, this transition was observed experimentally in
dense colloidal suspensions [9] of sterically stabilized particles in a good solvent.
In order to reproduce the properties of atomic fluids, a slightly more realistic potential is re-
quired. Such a potential should be repulsive for short distances (atoms do not overlap com-
pletely), and attractive for larger ones. An example is the Lennard-Jones potential [10] which

is given by,
u(r) = de {(g)” _ (gﬂ @)

where ¢ is the depth of the attractive well, o the *diameter’ of the particles and r the center to
center distance between the particles. In Fig. 1B the Lennard-Jones potential is shown. The at-
tractive tail (~ %) originates from dispersion interactions (van der Waals interactions) between
the atoms. The algebraic dependence of the repulsive core (~ r~'2) has a historical rather than
a physical origin. It is a computationally convenient simplification for the exponential repulsion
two atoms experience upon approaching.

A complete overview of possible interactions is beyond the scope of this chapter. Just a glimpse
of what can be done is summarized in Fig. 2. Ideal polymers can be modeled by attaching
monomers in a string using for instance harmonic springs or a FENE-potential [11]. Excluded
volume interactions and/or charges on the chain are then easily incorporated to model more
realistic polymers or polyelectrolytes. By making multiple connections between monomers,
membranes can be modeled in a polymerized [12] as well as in a fluid state [13]. On a more
coarse-grained level one can modify the particle shape to obtain asymmetric particles like rods
[14] or discs [15] which can represent liquid crystal molecules, rod-like viruses (tobacco mosaic
virus, fd-virus), rod-like inorganic colloids (Boehmite) or plate-like colloids (Gibsite).

Interaction cut-off Long-ranged interactions like the Lennard-Jones potential are computa-
tionally expensive since the state of one particle involves interactions with all the other particles
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Fig. 1: The hard sphere interaction (A) contains a hard (infinitely repulsive) core while attrac-
tions between the particles are absent. The Lennard-Jones potential (B) models long-ranged
van der Waals attractions between atoms, on top of a ’soft’ repulsive core.
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Fig. 2: Sketch of some possible structures combining different interactions and particle shapes.

in the system. Therefore, the interactions are in practice cut off at some distance r. where the
potential has decayed to a small value. In other words, the potential is set to zero for » > 7.
In addition, it is convenient to shift the potential such that u(r.) = 0. It is important to realise
that thermodynamic properties of a system with a cut-off and shifted potential are in general
different from the original system. For instance, the critical temperature of a Lennard-Jones
fluid goes down from kpT'/e ~ 1.32 for the full potential to kT /e ~ 1.09 for a system with
r. = 2.5 ¢ and which is shifted [16]. This is a decrease of almost 20%.

Units Most of the parameters used in simulations have in principle arbitrary values. However,
these numbers should be related with values in real systems such that comparisons can be made.
The first step is to choose three independent parameters as a consistent set of units. In this
chapter, we have chosen one commonly used option which is to express length in units of o,

mass in units of m and energy in units of e. In this way, time is expressed as t/oy/m/e,
temperature as kgT'/¢, pressure as Po? /e, force as Fo /e and so on.
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Fig. 3: Periodic boundary conditions in two dimensions. Indicated are two particles i and j
that interact via their minimum distance.

1.2 Studying finite system sizes

Periodic boundary conditions and the minimum image convention An important aspect
of computer simulations are the boundary conditions. In general, one is interested in the bulk
behavior of a system and for these cases it is convenient to implement periodic boundary condi-
tions. This means that the central simulation cell has a finite size but that this cell is periodically
replicated in all directions. Particles that leave the box at one side, enter the box at the opposite
side. The number of particles in a simulation box is thus conserved. This is shown in Fig. 3.
In principle each particle in the central cell interacts with all other particles in the central cell
as well as with all the periodic images. In practice, for most systems, the interactions are suf-
ficiently short ranged that particles are interacting only with other particles within some cut-off
distance. For that case the minimum image convention is employed which selects for each pair
of particles the closest distance. Special care has to be taken with intrinsically long-ranged
interactions like electrostatic or dipolar interactions. These interactions, which decay slower
than 7~ with d the dimensionality of the system, lead to divergence of the energy and have to
be handled by special methods such as the Ewald summation technique [3, 5, 6, 17] (see also
Chapter B3 by R. G. Winkler).

Finite size effects The systems used in computer simulations always contain a finite number
of degrees of freedom. Typically, the number of particles or spins is between 10? and 10 in
contrast to ’real’ systems where we have order 10%? particles. The consequence of this is that the
thermodynamic limit is never reached and that we may expect strong dependence of properties
on the system size. This is intuitively easily to understand if we consider a system close to a
critical point. If a critical point is approached the correlation length increases and diverges right
at the critical point. This means that long ranged fluctuations become more and more important.
However, in a finite system of box length L the smallest wave vector that fits is 27/ L and thus
the spectrum is cut off. Therefore the expected critical exponents are not observed very close
to the critical point but instead mean field behavior is found [18]. Since we are in general
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interested in the properties of the ’infinite’ system it is important to have a way to extract these
properties from finite (and in most cases relatively small) systems. A thorough discussion of
finite size scaling methods is given in [6].

1.3 Random numbers and error estimation

Random numbers The Monte Carlo method strongly depends on the ability to generate a
large sequence of random numbers. Software generated random numbers are not truly random
since they are always produced by a deterministic procedure. One of such algorithms is of the
multiplicative type. A multiplier ¢ and initial ’seed’ X, are chosen after which numbers are
generated by,

X, = (e x X1 4+ ag)MOD N pax 3)

Random number generators of this type are not very good for Monte Carlo simulations since the
subsequent numbers are correlated and the period is rather small. An extensive discussion of
various types of random number generators as well methods to test random number generators
is given in [6, 19]. Popular generators for Monte Carlo are R250 [20] and Mersenne twister [21]
for which implementations in C, C** and Fortran (including parallel versions) are available on
the web.

Statistical errors In a computer simulation we cannot (in most cases at least) determine aver-
ages exactly since we can only perform the simulation for a finite time. Apart from the average
value of a quantity, it is useful to have some estimate of the variance or error in that quantity.
Suppose we have a large number n of samples of some fluctuating quantity A that we have mea-
sured in a simulation. Assume that the samples were taken after equilibration of the simulation
and with some interval. The expectation value (A) can be estimated using,

1 n
(4) =~ ; Aj. “)

An estimate of the variance of A (for independent A;’s) is given by,

1 n
o} (A) = - Z(Ai —(A4)? = (A7) —(4)". )
i=1
Whereas if the measurements A; are uncorrelated the variance of the mean is just,

a*((A)) = a*(A)/n (6)

n—1
L\ "
o2((A) = 12 142 (1——)— 7
=" |reaX (1- 1) 2
with,
Ve = Vi t=1i—j (8)
and

Yig = (Aid;) — (Ai) (4;) - )
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Fig. 4: Block transformation of magnetization data of a 2 dimensional Ising model [22]. After
about 6 blocking operations the variance remains constant.

and
Yo = (A?) — (A)? (10)

The term ~; /7o is just an autocorrelation function of the data set A;. If the samples A; are
uncorrelated all the terms v, with £ > 0 in Eq. (7) are zero and the variance is only determined
by vo. However, in most cases, the samples A; are correlated because it is impossible to know
the correlation time (and thus the appropriate sampling frequency) in advance. A detailed error
analysis would involve the calculation of ~; but fortunately there is a much more simple method
available based on so-called block averaging which was developed by Flyvbjerg and Petersen
[22]. Lets start with the original data set A;.....A,, of correlated data. This data set is now
transformed into a new one by the following transformation rule,

A; = (g1 + Ay) /2 (11)

which generates a data set half as large as the original one but with the same average. Its
variance is given by,

/

i 2
(A =3 (4~ () (12)
i=1
Interestingly, a repeated block transformation of the data leads to a decreasing correlation be-
tween the new data A; so that the block transformation drives 7; in Eq. (7) to zero. From the
moment that the data are truly decorrelated, the variance o%( A’) reaches a constant value which
is exactly the variance that we were looking for. In Fig. 4 we show an example of the standard
deviation of the magnetization measured in a 2 dimensional Ising model using Monte Carlo
simulation. After approximately 6 block transformations the standard deviation becomes con-
stant at 0.0012. This number of block transformation depends of course on the details of the

simulation.
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2 Statistical Mechanics

In this section we recapitulate some important concepts of statistical mechanics that we need
in Monte Carlo simulation. For a more detailed discussion we refer to Chapter B1 by J.K.G.
Dhont as well as to standard textbooks [23,24].

2.1 Thermodynamic averages and ensembles

Suppose we have a system of /N spherical particles in 3 dimensions where each of the particles
is characterized by its position r and momentum p. The Hamiltonian of the system is given by,

H=K@")+U[") (13)

with K the kinetic energy and U the potential energy. The state of the system is described
by a single 6 N-dimensional vector I'(p”", r"V), the phase-space vector. Since all particles are
moving according to Newtons equations of motion, I' will be a function of time and therefore
we write I'(¢). The observables in the system will have some dependence on I" so that we can
write for the time average of such an observable A(T"),
1 t
(A) = tlim n A(T(¢))dt’ (14)
& 0

The average (A) can be differently formulated if we consider the complete set of state points
I' which is also called the ensemble of state points. These state points are distributed in phase
space according to a probability distribution function that is determined by the thermodynamic
ensemble. If the time evolution of I'(¢) is such that all states are visited eventually irrespective
of the initial conditions, the system is ergodic and we can replace the time average from Eq. (14)
by an ensemble average,

(A) =D A(T)pens(T) (15)

where the sum runs over all states I" and p,,,s(I") is the probability density function for the en-
semble. This probability density function acts as a weight function in the averaging procedure.
Below we discuss briefly the probability density functions for some commonly used ensembles.

The canonical ensemble The canonical ensemble corresponds to a system with a constant
number of particles /N in a fixed volume V' at temperature 7" that can exchange energy with a
heat bath. The probability density function for the canonical ensemble equals,

o8 H(T)
$ e P HD
r

In the classical limit of a continuous distribution of energies the denominator of Eq. (16) trans-
forms into,

PNVT = (16)

1 — r
Q(N,V.T) = W/derNe 8 H(pN xV) a7

which is called the canonical partition sum. It is related to the Helmholtz free energy via,

F = —kgTlnQ(N,V,T) (18)
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from which all thermodynamic properties can be calculated by taking the appropriate deriva-
tives. The integrals over the momentum and position coordinates in Eq. (17) can be separated
after which the integral over the momentum coordinates can be carried out analytically giving,

1
QN,V,T) = N'A3N/drN 5 U(eN) (19)

with A = (h?/27mmkgT)'/? the thermal wavelength. The remaining integral over the positions
is called the configuration integral Z(N,V,T).
In the continuum limit, averages in the canonical ensemble are defined as,

JdrVA(xN) exp[-B U(x")]
Q(N,V,T)

By inspection of Eq. (20) we see that only states with a large Boltzmann factor exp|[—3 U(r")]
contribute significantly to the average (A).

(A) = (20)

The isothermal-isobaric ensemble The isothermal-isobaric ensemble is specified at constant
number of particles, pressure and temperature. In this ensemble the energy and volume of the
system are free to fluctuate. In the isothermal-isobaric ensemble the probability density function
is equal to,

e—B (H+PV)
PNPT = W (21)
with
Q(N,P,T) = N'h3N /dV / ArNpN =B (HFPV) (22)
which is related to the Gibbs free energy via,
G=—kgT'InQ(N,P,T) (23)
Averages in the /N PT-ensemble are defined as,
(A) = J AV [deN A(eN) exp{—p [U(N) + PV]} 24)

Q(N,P,T)

The grand canonical ensemble The grand canonical ensemble fixes the chemical potential
of the particles and in this ensemble the number of particles and the energy are allowed to
fluctuate. The probability density function is in this case,

e~ B (H=pN)

= 25
PR = GV T) )
with partition sum,
vy =S drVpN e 26
Q(M? 9 ) - Z N‘h3N r ( )
N=0"""

where £ is the imposed chemical potential. The thermodynamic potential corresponding to the
grand canonical ensemble is the so-called ¢-potential (after Kramers),

—PV = —kgTlQ(, V, T) 27)
Averages in the V1" ensemble are defined as,
Noo “Wipn [ drYAQN) exp[— B U(xN)]
Q(u, V. T)

(A) = (28)
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Fig. 5: Spins on a two-dimensional periodic cubic lattice. The central cell is shown in black,
parts of the periodic images are indicated in red.

2.2 Ising model

The Ising model is a lattice model for ferromagnets that was presented by Lenz in 1920 [25].
In the past 85 years, a humongous amount of research resources have been invested in the Ising
model and with that it has become really one of the Drosophila melanogasters of theoretical
physics. The model, and the fact that there are exact solutions for closely related models and
sub-classes of the model (changing lattice symmetry, dimensionality, external fields, interaction
range et cetera) has been proven invaluable to check different kinds of aspects of phase tran-
sitions and critical phenomena. In this section we briefly discuss some general features of the
Ising model. In a later stage we will use the Ising model as an example to show how Monte
Carlo methods can be applied to real problems.

Consider a two-dimensional cubic lattice of IV sites. At each lattice site a spin is defined that
can either point up or down, s; = £1. The spins can interact with neighbouring spins with a
coupling constant .J and, with an external magnetic field /1. This expressed in the Hamiltonian,

N
U == Hsi =TS sis, (29)
i=1 ij

where U, is the energy of a particular configuration v and s; the value of a spin ¢, J is the
coupling constant between neighbouring spins. The primed sum in Eq. (29) runs over nearest
neighbours only. Periodic boundary conditions are applied which means that the system is
semi-infinite, i.e. surface effects are absent but the maximum correlation length is bounded by
the size of the central cell. The model is schematically illustrated in Fig. 5.

The physical picture is that of an array of magnets that are obliged to align parallel to one an-
other and parallel to the field /7 — the model is a ferromagnet. If we set J < 0, the neighbouring
spins try to align anti-parallel and we have an anti-ferromagnet. The phase behavior of the Ising
model is as usual the result of a competition between energy that tries to align spins and entropy
that tries to disorder the spins.

Although the Ising model is simple in its structure, it was only solved by Ising in 1925 for
the one-dimensional case [26]. Ising did not find no phase transition in one dimension and
then (wrongly) concluded that there would be also no phase transition in higher dimensions. It



Monte Carlo simulations B2.11

then it took 20 years until Onsager solved the two-dimensional Ising model with zero external
field [27] and only in 1989, Zamalodchikov solved the two-dimensional case with external
field [28]. The exact solution in three dimensions is still unknown. For the general case we can
write the partition function,

7 = Zexp(—ﬁ U,) (30)

which is in fact a configurational integral since momenta play no role. The number of states in
the Ising model is finite, and grows exponentially (~ 2/) with the number of lattice sites. The
free energy is given by,

F =—kgTInZ. (31

From the free energy all the relevant thermodynamic quantities can be calculated being,
the average magnetization,

OF
M= 32
oH (32)
the susceptibility,
oM 0?F
Yo T om? 33
the energy,
B oF L 0(F/T)
L{—}"—Tﬁ— Té?—T (34)
and finally the specific heat,
C = 8_1/{ (35)
0T

Below, we discuss some of the easy examples that can be worked out without great difficulty.

H=0,J# O‘ Suppose we have N spins arranged on a line which only interact with their
direct neighbours. In the case that the external field is zero, the partition function is,

N
Z=> exp (ﬁ Iy siSiH) (36)

which can be reformulated slightly since the spin products of neighbours is limited to s;5;11 =

a; = %1 to give,
N
Z = Zexp (ﬁ JZ(LZ) 37

where we have neglected end effects. This can be written as a sum of products,

N
Z = Z Hexp (6 Ja;) (38)

v 1=1
and yields the simple result,
Z = (" e )" (39)

In search for a phase transition we seek a temperature for which there is a spontaneous magne-
tization, i.e. a finite magnetization at zero field. This can be done by calculating the partition
function in presence of a small external field, then calculate the free energy and from the free
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energy the magnetization and then take the limit of zero field. This calculation shows that there
is no spontaneous magnetization at any temperature for the one-dimensional Ising model (for
the details see Refs. [23,29]) and thus there is no phase transition in one dimension. This can
be understood intuitively as well. Suppose we have a one-dimensional array of spins. If all
spins are aligned the energy is at a minimum but the entropy is zero (perfect order). If we now
choose one spin and flip all spins at the right of this spin (we make a wall), the energy increases
by 2.J but the entropy increases by kg In(/N — 1) since there are (N — 1) places to put the wall.
One can now introduce a second wall which can be put at (N — 2) positions giving an energy
increase of 2.J and an entropy gain of kg In(/N — 2) and so on. In the limit of long chains, the
entropy gain associated with the insertion of an extra wall will always out-balance the increase
in energy and thus the system will fully randomize due to entropic effects. Therefore there is
no phase transition in one dimension.

’ H#0,J=0 ‘ In the case that J = 0 the partition sum can be evaluated easily and equals,

7 = (e‘ﬁH + eﬂH)N = cosh(BH)Y (40)

The free energy (compare Eq. (18) then equals F = —kgT'In Z and from that the energy,

U= —T2M = —NH tanh(SH) (41)
orT
and magnetization
M = 07 N tanh(GH) (42)
- 0H '

can be calculated. We will encounter this example again in the next section.

Phase transitions and the Ising model As mentioned before, the phase behavior of the Ising
model is determined by competition between entropy and energy. At high temperatures, entropy
wins and a disordered state with zero magnetization is found. At low enough temperature, the
energy contribution to the free energy dominates and the system shows a spontaneous magneti-
zation M. At the critical point, a transition from a disordered to ordered state is found and this
phase transition is second order. This means that the order parameter (in this case the magneti-
zation which is the first derivative of the free energy with respect to the external field) changes
continuously when we cross the critical point (see Fig. 6). It is the second derivative of the free
energy with respect to the field, the magnetic susceptibility, that changes discontinuously with
the field. This in contrast first order transitions where one finds a discontinuous change of the
order parameter (the first derivative of the free energy with respect to the chemical potential).
The thermodynamic quantities given above diverge at the critical point with exponents that
depend only on the dimensionality and internal symmetries of the Hamiltonian and not on mi-
croscopic details of the model. The divergent behavior at the critical point of for instance the
correlation length results in what is called critical slowing down. Relaxation processes that
require the break-up of large domains get slower and slower as the size of these domains in-
creases.

A much more complete discussion of the Ising model and related models can be found in stan-
dard statistical mechanics text books [23,24,30,31] or in one of the many papers.
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Fig. 6: Artist impression of the spontaneous magnetization as a function of temperature in the
Ising model. For T' = T there is a second order phase transition from the disordered to the
ordered state. Spontaneous symmetry breaking results in a finite magnetization that is either
positive or negative.

3 Monte Carlo integration

In this section the fundamental concepts of the Monte Carlo method are introduced and illus-
trated by the Ising model and the hard sphere model.

3.1 Simple sampling

Using simple or random sampling Monte Carlo, integrals like,

b
I= / f(z)dx (43)

can be approximated as,
b—a < 44
2 @) (44)

by evaluating f () at a large number M of randomly chosen points z; in the interval [a, b]. This
approach works in general quite well for low dimensional integrals and if the integrand is a
smooth and not a too sharply peaked function. Let us know see what happens if we apply this
random sampling to some physically interesting models.

Application to the Ising model Consider the Ising model for a very small number of spins. If
we want to calculate the partition function in absence of interactions between the spins Eq. (40)
we should be able to generate all possible configurations For very small numbers of spins,
all configurations and therefore all properties of the system can be determined exactly. For a
moderate number of spins, say N = 25 — there are then ~ 4 - 107 configurations — one can
attempt to obtain results from a brute force Carlo simulation. This can be done as follows.
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Fig. 7: Energy as a function of the number of Monte Carlo steps.

Generate a random configuration v by assigning random values to all the spins and calculate
the total magnetization M. Repeat this procedure at least 225 times to ensure that all possible
states have been visited. The average energy is calculated using Eq. (17). In Fig. 7 some
results are shown for the brute force MC simulation with J = 0 and H = 1for N = 5, 7
and 10. Only for the smallest system we see that the energy converges to the theoretical value
Uy, = —NH tanh(BH). Clearly, the above described Monte Carlo procedure is doomed to
fail for any serious calculation, simply because the number of configurations that contributes
significantly to the average is small and cannot be adequately sampled in this way.

Application to a hard sphere fluid For a system of hard spheres it is even more obvious that
simple sampling cannot work. Suppose we have a (not too dilute) fluid with interactions as
described in Eq. (1). For such a system the partition function is zero whenever two particles
overlap. By generating configurations randomly, the vast majority of configurations will contain
one or more pairs of particles that overlap en therefore by far most of the Boltzmann factors
generated in this way are zero.

3.2 Importance sampling and the Metropolis rule

In order to improve on random sampling Metropolis et al [1] introduced what is called im-
portance sampling, configurations are generated proportional to their Boltzmann weight. This
gurantees that the phase space is sampled often where the Boltmann factor is large and less
frequent when the Boltzmann factor is small. Let us now derive the Metropolis scheme for
determining the transition probabilities from a state r = o (0 = old) to another state r’ N=n
(n = new) and thus for generating a sequence of states obeying the Boltzmann distribution.
State o has a Boltzmann factor given by exp [—3 U(0)] /Q(N,V,T'), where U(o) is the poten-
tial energy of this configuration and = 1/kpT the prescribed thermal energy. In equilibrium
there is no net flow between states o and states n. This means that, on average, the number
of accepted trial moves resulting in leaving states o must be exactly balanced by the number
of accepted trial moves arriving in states o from any other state n (see Fig. 8). In practice, a
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Fig. 8: In equilibrium, the flow from an old state (0) is balanced by the flow from all new states

(n).

stronger condition is imposed, namely that in equilibrium the number of accepted trial moves
from a state o to a particular state n should be exactly balanced by the number of accepted trial
moves from a particular state n to o. This condition is called detailed balance and can be written
as,

p(0)T (0o = n) =p(n)T'(n = o) (45)

where p(«) is the probability to be in state o and 7'(a« = [3) denotes the transition probability
to go from a state « to a state 3. The subtle difference is thus that in equilibrium the net flow
from each state is zero (which means that there can be still flow from this state to a specific
other state under the condition that it is balanced by flow backwards from other states) while
detailed balance implies that the net flow from each state to each other state is exactly zero.
The transition probability is in itself the product of two processes, the creation of a trial move
C'(0 = n) and the acceptance of this trial move A(o = n),

Tla= p) =Cla = B)A(a = () (46)

In many Monte Carlo applications the creation of a trial move is a symmetric process, i.e. the
creation of the forward and backward moves have the same probability and thus C'(a = §) =
C(8 = «). Using this form, inserting Eq. (46) in Eq. (45) and using the Boltzmann weight
ple) = exp [-B U(a)] gives,
p(n) _ Alo=n)
plo)  A(n = o)

= exp{—0 [U(n) —U(0)]} 47)

There are many possible choices for A(o => n) that fulfill Eq. (47) but one of the most efficient
and most commonly used is the Metropolis rule,

Alo=n) = exp{-BUn)—UWO)} if Un)>Ulo)

1 it U(n) <U(o) (“45)

This can be written in short as,
A(o = n) = min(1, exp{—p3 [U(n) —U(0)]}) (49)

In practice, a Monte Carlo translational move is performed as follows.
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1. select a particle ¢ at random
2. calculate the present energy U; (o) of particle i

3. move particle 7 randomly
ri(n) =r;(0) + RANAR
4. calculate the new energy U;(n) of particle ¢

5. accept/reject the move according to Eq. (49)

Here RAN is a random number in the interval {—1...1} and AR the maximum displacement
(which is a tunable parameter of the program). The acceptance is implemented by generating
a random number RAN in the interval {0...1}, if RAN < p(0)/p(n) the move is accepted. If
RAN > p(0)/p(n) the move is rejected. The magnitude of the parameter AR determines the
efficiency of the Monte Carlo procedure. If AR is large, many of the trial moves are rejected,
on the other hand, if AR is too small we will only sample phase space very slowly. A good
choice for AR is a value such that half of the trial moves are accepted.

Now that the translational move of the particles is defined we can set up a general scheme for a
NVT Monte Carlo simulation,

1. initialise
generate [V particle positions in a volume V'
set temperature kg1’

2. equilibrate
doi=1, Neq
move particles
end do

3. main loop
doi=1, Npr
move particles
collect data
end do

4. finish
calculate averages
write output

The simulation starts an initialization step in which the initial particle positions, and all other
relevant parameters (temperature, density ...) are set. Subsequently, the system is equilibrated
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Fig. 9: Metropolis and Glauber acceptance probability.

for a number of integration steps so that the initial configuration (which could be ordered for
instance) relaxes towards some state representative for the equilibrium state. This is typically
monitored by looking at the internal energy, pressure or paircorrelation function. Then, the real
simulation starts and a large number of configurations is created. Every 1y, iterations the
relevant observables are sampled and stored. Finally, the simulation terminates by calculating
averages, errors and writing output and the final configuration. If necessary the simulation can
be restarted from this final state to improve statistics.

3.3 The Glauber acceptance rule

As mentioned in the previous section, the Metropolis acceptance rule is not unique since there
are many possible choices that would fulfill Eq. 47. An alternative to Metropolis rule is the
so-called Glauber rule [32],

Alo —> n) = % (1 ~ tanh {g Un) - u(@]}) (50)

Figure 9 shows both the Metropolis and Glauber acceptance probability as a function of the
energy difference between the new and the old state. Whereas the Metropolis rule accepts all
trial moves for which the energy of the new configuration is lower than the energy of the old
configuration, the Glauber rule is symmetric around A/ = 0. In the case of spin systems,
Metropolis sampling can give rise to non-ergodic behavior at high temperatures. As at high
temperatures all spin flips are accepted, the system jumps back and forward between only two
states.

3.4 Markov chains and the Master equation

The sequence of states generated by the Monte Carlo method is a so-called Markov chain. This
is a sequence of states that result from a stochastic process and in which each state depends
only on the immediate predecessor. The ’dynamics’ of a Markov chain where we identify each
configuration by a Monte Carlo time can be described by a master equation,

Opa(t)

e Z[ ()T (n = m) — pp,(t)T(m = n)] (S
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where p,, (%) is the probability to be in state n at time ¢ and 7'(n == m) is the transition rate to
go from state n to m. In equilibrium the net flow from each state is zero (see Fig. 8) and so

Pu(6)T(n = m) = pp(t)T(m = n). (52)

which is known as the condition of detailed balance.
If we now use p,(t) = exp(—F U,,)/Q(N,V,T) we arrive exactly at Eq. (47).

3.5 Monte Carlo in various ensembles

Isothermal-isobaric Monte Carlo The first isothermal-isobaric Monte Carlo simulations
were performed by Wood [33] on hard disks and McDonald [34] on Lennard Jones particles.
The important difference with a canonical simulation is that in an isothermal-isobaric simula-
tion, the volume and thus the density of the system fluctuates.

In the NPT ensemble the configurational average is given by Eq. (24) which we can rewrite
slightly different as [3, 5],

_ J AVV ¥ exp(—p PV) [ ds™ exp[—pU(sV)]
Z(N, P, T)

{4) (53)
with Z(N, P,T) the isothermal-isobaric configuration integral. Here V" is the volume of the
fluid and s indicates the set of scaled coordinates s = r/L with L = V'/3 the linear dimension
of the (cubic) simulation box. The factor V' stems from the scaling of the coordinates s = r/L.
The Metropolis scheme is implemented by generating a sequence of states with limiting distri-

bution,
exp{—B [PV +UESM)] + NInV} (54)

This sequence of states is obtained by performing trial moves, for which there are two kinds the
first being translational trial moves of particles

s(n) = s(o) + RANAS (53)
which are accepted with probability,
A(o = n) = min(1, exp{—p[U(n) —U(0)]}). (56)

Here s(0), s(n) indicate the old and new position of a particle and U (o) and U (n) the energy of
the old the new configuration.
Secondly there are trial volume changes,

L, =L,+RANAL. (57)
which are accepted with probability,
A(L, = L,) = min[l, exp(—FAH,,)] (58)
where
AH,, =U(n) —U(o) + PV, —V,) = N3 'InV,/V, (59)

where L,,, L, the new old and new length of the simulation cell and V,, and V, indicate the new
and the old volume. RAN is again a random number between {—1...1} and AS, AL are the
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maximal displacement and change in box length. In order to establish volume changes one can
alternatively make a random walk in In V' instead of in V' itself which changes the factor /V in
Eq. (59) to N + 1 [35]. This kind of move is computationally more convenient.

The extra computational expense of an NPT’ simulation compared to a N V1" simulation comes
from the volume change which requires an evaluation of the energy of all particles. For poten-
tials of the form 1/r™ or of combinations thereof, the energy of the system with a new box
size L,, can be obtained using a simple exact scaling relation. For the Lennard Jones potential
(Eq. 2) this scaling relation can be obtained using the following expressions for the total energy,

UL) = 4622 (%)12 —4e >N (L;j)6 (60)

v i g>i

= Ua(L) —Us(L) (61)

where U2 (L) and Us(L) denote the contributions of 1/7'% and 1/r° terms to the total energy in
a box with length L. The 'new’ energy for a box that is scaled to have length L,,, the energy
simply is,

(L) =thalL) (£2) L) (f—) ©)

If we store the two contributions to the total energy separately we can always calculate the new
energy after scaling the box in one step instead of having to perform a double loop over all
particles.

Grand canonical Monte Carlo In the grand canonical ensemble the volume, temperature
and chemical potential of the particles are fixed. The last property is implemented by letting the
system being in contact with a reservoir of particles that is at fixed chemical potential x. The
method was first implemented by Norman and Filinov [36] and later extended by a number of
other groups (see for an overview Ref. [5] and references therein).

For the grand canonical ensemble, the averages are defined as,

D (NN / ds™M A(s™) exp[-B U(s™)]
) == QVT) ©

with z = exp(BuN)/A3N the fugacity and A = (h?/27rmkpT)'/2. The factor V'V stems from
the scaling of the coordinates s = r/L. The Metropolis scheme is implemented by generating
a sequence of states with limiting distribution,

exp{BluN —U(V)]+ NInV —3NInA — In N} (64)

In this simulation there are two types of trial moves, the first being a translational moves of
particles,
s(n) = s(o) + RANAS (65)

which is accepted with probability,

A(o = n) = min(1, exp{—BU(") —U(™)]}) (66)
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The second type of move involves the creation or removal of a particle. A particle is created by
randomly generating a position in the simulation box which is accepted with probability,

A(N = N + 1) min ( exp{Blu — UV + L{(SN)]}) (67)

Ly

"A3(N +1)
Similarly, a randomly selected particle can be removed with acceptance probability,
3

NA
A(N = N — 1)min (1, exp{—Blu+U(EVT) - u(sN)]}) (68)
In order to satify detailed balance for particle creation/removal the number of attempts to create
or destroy a particle needs to be the same. The insertion of particles is in general effective only
for not too large densities so that for concentrated systems other methods have to be used [37].

4 ’Advanced’ Monte Carlo methods

4.1 Cluster algorithms and the Ising model

After we introduced the Ising model in section 2.2 we have have seen in section 3.1 how the
Monte Carlo method can be implemented in a straightforward way to calculate the properties
of the Ising model far from the critical point. When approaching the critical point, correlations
in space build up and finally diverge at the critical point. In order to break up these diverging
spatial correlations increasingly more time is required. This phenomenon is known as critical
slowing down. In general the time constant for a relaxation process (at the critical point) scales
with the system size like 7(L) ~ L* where z is the dynamical critical exponents which depends
on how the simulation is implemented. For the two-dimensional Ising model and using a local
update scheme (Metropolis Monte Carlo) z ~ 2. Consequently, the standard Metropolis Monte
Carlo technique breaks down as it becomes very inefficient to de-correlate a configuration via
single spin flips. In order to tackle the problem of critical slowing down a special class of
methods has been developed, the so-called cluster methods of which we will discuss only one,
the Swendsen-Wang method [38]. The basic idea of all cluster algorithms is that spins are
flipped in groups at the same time which increases the efficiency. The groups of spins are
constructed by constructing clusters of connected spins that are in the same state.

Swendsen-Wang method The Swendsen-Wang method is based on the fact that a spin model
can be mapped on a percolation model on the same lattice [39,40]. This is conveniently illus-
trated by a two state Potts model which is apart from constants equal to the Ising model. Let us
now derive the algorithm following for a two state Potts model without external field. Suppose
we have a Potts Hamiltonian,

H=—J) (0;—1) (69)
(i.7)
where the sum runs over nearest neighbours. The probability density function for this system
18,
P(v) = w (70)

with partition function

Z =Y exp|-BH(v)| (71)
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where the sum runs over spin states v.

As mentioned above, the Swendsen-Wang method relies on the mapping of the Potts model on
a bond percolation model and thus the aim of the following is to derive the partition function of
the percolation model from the partition function of the Potts model.

Suppose we have our original partition function Eq. (71). Now, consider the following reduced

Hamiltonian,
=—J > (72)
(1.5)#(Lm)
which denotes a summation over all pairs of spins except the pair [, m.
The original Hamiltonian can be written in terms of this reduced Hamiltonian as,

R P
We can now rewrite the original partition sum in terms of the reduced hamiltonian,

Z = exp(—3Hum)0um + exp[—B (Him + J)|(1 = dim) (74)
where the delta functions serve to select only terms with equal spins s; = s,, or terms with
different spins s; # s,,. Rewriting Eq. (74) by reordering terms yields,

Z = exp(=BHim) {5im[1 — exp(—B)] + exp(=5J)]} (75)

which can be simplified to

Z =1 —exp(=B)] Y exp(—BHim)0um + exp(=57) Y exp(—6Him) (76)

The notation can now be made a little bit more compact; using p = (1 — exp(—/3J)) and
(1 — p) = exp(—5J) Eq. (76) reduces to,

Z=pY_ exp(—BHum)0m + (1 = p) Y exp(—FHim) (77)

In Eq. (77) we see that Z is the sum of two terms, the first is a "restricted’ sum over states and it
comes with a pre-factor p while the second is a full sum which comes with a pre-factor (1 — p)
We can iterate the process of excluding pairs of same spins in the partition sum so let us next
consider another pair &, n. By applying the same procedure again we obtain,

S,S S, I 1,1
Z =020 ey T P = D) 20y oy + (L= PIPZ ) oy + (L= P 2y oy (T®)

where
Z35 oy = D XD(— M n) Otk

and
Zim kn)ZeXp (=Him jen ) Ot

Similar expressions are obtained for the other terms in Eq. 78
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Fig. 10: Counting bonds and clusters. This particular configuration contains N, = 40 possible
bonds, Ny, = 17 real bonds and N. = 9 clusters (a single isolated site also counts as a cluster).

Recursive application of this procedure for (all) other pairs gives a binomial expression in which
each term is a product of p’s and (1 — p)’s and a restricted sum of Z. Since by recursive
application all neighbouring pairs are taken out of the hamiltonian H, there are no terms left in
any of the exponentials and the Z’s contain just sums of delta functions. These sums turn out to
count the number of possible bond configurations. For a Potts model with ¢ states this term is
qY with N, the number of clusters in the specific configuration of bonds. We can now replace
the original partition sum by,

Z =Y p"(1—p)Nr NN (79)
8l

where N, is the total number of nearest neighbours and [V, the number of bonds in the config-
uration. Figure 10 illustrates how to count bonds and clusters. In this configuration of 25 spins
there is a total of [V, = 40 possible bonds, there are 9 clusters (unconnected spins count as a
single cluster) and there are in total 17 bonds.

In order to create a new configuration using the bond model we first draw all the bonds between
neighbours that have the same spin (Fig. 11 A). We then delete within each of the clusters each
of the bonds with probability exp(—/3.J) (Fig. 11 B). Finally, each of the clusters is assigned a
new spin value at random (Fig. 11 C). The process repeats now from the start on with creating
clusters of equal spin value (Fig. 11 D). The sequence of states in (Fig. 11 D-E-F) illustrates
that this procedure satisfies microscopic reversibility. The transition probabilities to go from A
to C' are given by the product of the probability to be in A, to go from A to B and to go from A
to C'. We can then immediately write down the condition of detailed balance,

T(A—=C)=P(A)T(A= B)T(B=C) = (80)
T(D= A)=P(D)I'(D = E)T(E = A)

The probabilities 7'(B = C) and T(E = A) are equal (in these transition states we have
always the same number of clusters to have new spins assigned) so that,

T(A=C)=PA)T(A= B) = (81)
T(D = A) = P(D)T(D = E)
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from which we see that,

P(A) T(A=C) T(A= B) -
P(D) T(D= A) T(D=E) (82)

In order to flip the spins we do the following:

1. create bonds between all spins of same sign
2. destroy bonds with probability p
3. orient all spins in a cluster collectively and randomly

4. remove all bonds and go to 1

Finally, we note that the Swendsen-Wang methods satifsies detailed balance and generates the
proper equilibrium distribution. In Fig. 12 we show the dynamical critical exponent as a func-
tion of the system size for a two-dimensional Ising model. Using the Swendsen-Wang algo-
rithm, the dynamical critical exponent was reduced from 2.1 (Metropolis) to 0.35 [38], clearly a
significant performance boost. Further improvement on this algorithm was established through
the so-called Wolf algorithm [41] in which the dynamical exponents could be further reduced
to zero. For the interested reader we refer to [6,31,41] for more details.

4.2 Parallel tempering

Parallel tempering is a special Monte Carlo simulation technique that was developed to sample
systems with many local minima in the free energy [42,43]. The method is based on carry-
ing out multiple simulations at the same time, but each at slightly different conditions. Apart
from the usual trial moves for the individual simulations, there are additional moves, namely
the swapping of configurations between the different simulations. A simple example is that
of n-NVT simulations that are performed at a slightly different temperature. Apart from the
usual displacement steps in each of the separate simulation boxes there are also attempts to
switch configurations between systems at a different temperature. The method is not exclu-
sive for swapping configurations at different temperature but can also be implemented to swap
configurations at different chemical potential, pressure et cetera.

For now we will just focus on the situation of n NV'T" systems differing in temperature. The par-
tition function of this extended system is the product of the partition sums of the (independent)
sub-systems,

n n 1
Qe = [QO V1) = [] vy [ e expl-AUG™) (83
i=1 i=1"" '

where the subscript 7 indicates the different sub-systems with different temperature.
The acceptance rule for a particle displacement is the same as in the canonical ensemble,

A(o = n) = min(1, exp{—8 [UEY) —UE)]}) (84)

o
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Fig. 11: Top row. A: all spins of equal sign are connected in clusters. B: bonds within clusters
are destroyed with probability p. C: this new state originates from B by randomly selecting
a new spin state for each of the clusters. Middle row: D originates from C by connecting
neighbouring spins that have the same sign. The process then continues like in the top row.
Bottom row: this illustrates microscopic reversibility. From D there is always a path to go back

to A.
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Fig. 12: Log-log plots of the correlation times for Monte Carlo simulations of the 2d Ising
model at the critical temperature as a function of the system size. The circles indicate data for a
standard Monte Carlo simulation and seem to follow a scaling with exponent 2.1. The crosses
are results using the cluster flipping model described here and follow a powerlaw with a much
smaller exponent of 0.35. Data were taken from Ref. [38].

The acceptance rule for the configuration swap is easily obtained from the condition of detailed
balance,

P(j, B) P, B;) x A, )1, 8;) = (1, 3:)(, 55)]

where we have like in Eq. (46) assumed that the probability to create a move is symmetric in
both directions. We then find that

Al 8:) (. 8;) = (1, 8) (. 8,)] = min(L, exp{[8; — BU(x") —U(x])]})  (86)

Configuration swaps are only possible if the temperature differences are not too large — the
probability density functions for the different temperatures need to overlap in (at least) their
tails. Parallel tempering provides an improved sampling of regions of phase space that are
difficult to reach.

Figure 13 shows an example of a system where parallel tempering is used to improve sampling.
A single particle moves in a one-dimensional potential landscape that is characterized by deep
valleys and high barriers (Fig. 13 A). In both cases, the particle was initially put at x = 0
where the potential is zero. In this case we used a system at 5 different temperatures but we
show only the lowest and highest temperature. In Fig. 13 B we show the probability density
functions of the particle position without parallel tempering for a particle at kzT /A = 4 10~*
and kT /A = 2.0 where A is the height of the highest barrier. The low-temperature particle
(in red) explores essentially only the potential landscape nearby its initial position, whereas the
high temperature particle hops over any of the barriers without great difficulty and samples the
whole configuration space. If we now switch on the configuration swaps between high and
low temperature all ’potential valleys’ become accessible to the low temperature particle and
(Fig. 13 C) sampling is greatly improved.
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Fig. 13: lllustration of parallel tempering. A: one-dimensional potential in which a particle
is confined. B: probability density function (not normalized) to find a particle at position x
without parallel tempering. Red: low temperature, green: high temperature, black: theoretical
curve. C: same as for B, but now with parallel tempering.

4.3 Umbrella sampling

In many cases, Metropolis sampling of the configuration space provides accurately the desired
averages. In some cases however, the Metropolis method fails and one has to utilize alternative
methods.

One of these cases is when the states of interest have a low probability, like for instance the top
of a free energy barrier, or, when one is interested in free energy differences. In that case the
umbrella sampling technique [44] is a convenient tool. In order to derive the umbrella sampling
method, let us start by rewriting the average of Eq. (20) in a modified fashion by introducing a
weight function w(r"),

[ drNw e A(rN) exp[— B U(XN)]w(r?)
fder LrN) exp[—B U(rN)]w(rN)

(4) = (87)

If we now define the biased Boltzmann factor exp[—3 U (r™)]w(r") we can recognize the ratio
of two averages in Eq. (87),

Jdr¥w =t (2N A(x™) exp[—B U (xN)]w(xN)
_ fdrN eXP[ BUEN)|w(x)
W = T N ) exp - A U (2w () (88)
J deN exp[ BUN)|w(rN)
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which is just,

(A/w),

(A) = AJjwy, (Afw),(w). (89)
The averages with subscript b denote averages in the biased ensemble that have a limiting distri-
bution exp(—8 U)w(r"). As we see from Eq. (89) the average (A) is thus simply the average
of A/w in the biased ensemble times the average of w in the 'normal’ ensemble.
In order to obtain good statistics for (A), the biased Boltzmann factor exp(— /AU )w should over-
lap with A/w while the function w should overlap with the bare Boltzmann factor exp(—( U).
The name umbrella sampling originates from this bridging property of w. The optimal choice
for w would be exp(3 F) since this would yield a flat distribution over which is finally in-
tegrated. However, F is not known beforehand (if it would be, the whole simulation would
not be necessary) and so some rough estimate for w has to be constructed in order to start the
simulation.
It has been proven computationally convenient to divide the integration interval in multiple sub-
intervals and to use separate weight functions instead of only one for the whole interval [5,29].
This can be seen as follows. Suppose we want to sample an interval A® = &, — P,,;,, which
we subdivide in 7 intervals of length A® /n. Associated with the random walk in ®-space there
is a diffusion constant Dg. The time to sample one interval parallel to @ is 7y = (A®/n)?*/Dg
and thus the total time to sample all intervals is n 7y = (A®)?/nDg which seems to indicate
that the total simulation time is inversely proportional with the number of intervals. However,
the total simulation time also depends on the sampling time 7, in directions orthogonal to
®. When this time becomes larger than the time to sample parallel to ® the efficiency of the
algorithm decreases. The optimum should be when 7y ~ 7,. In practice it is not really so
easy to estimate these times beforehand so some trial and error will be involved in choosing the
optimal parameters.

Estimating the free energy difference of a liquid and a crystal As an example we will in
the following consider the free energy barrier for crystallization of soft spheres interacting via
a soft-sphere pair potential,

o\ 12

u(r) = e (—) (90)

r
studied by Van Duijneveldt and Frenkel using umbrella sampling [45]. Similar studies were car-
ried out more recently for the crystallization of spheres in a narrow slit [46] and for estimating
the nucleation rate in Lennard-Jones fluids [47].
The problem can be formulated as follows. Suppose we have a fluid of soft repulsive particles
close to, or at, the phase transition to the crystalline state. In Landau theory of phase transitions
the system is characterized by an order parameter ® which takes different values in the different
phases that the system can be in. In the one-phase region of the phase diagram the probability
density function P(®) takes only values that are sharply peaked around the average value for
that phase. In the two phase region of the phase diagram we will observe a bi-modal order
parameter distribution function. The probability distribution function is calculated in a simu-
lation by collecting statistics of the occurrence of a particular value of ® in a histogram. The

Helmholtz free energy in the Landau formulation is related to the order parameter distribution
function via [46,48,49],

F(®)=C — ' In{P(®)}. 91)
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In this particular case the order parameter ® has to distinguish between the fluid and crystal
phase and thus an obvious choice is the bond order parameter ()¢ for which the explict expres-
sions can be found in for instance [45, 50]. The bond order parameter measures the degree
of orientational order for a group of particles centered around a central particle. It takes for
instance the values of O for the fluid phase, 0.35 for a simple cubic lattice, 0.51 for a body cen-
tered cubic lattice and 0.57 for a face centered cubic lattice. This makes it possible to identify
these structures by just a number.

The actual simulations were carried out at constant pressure and in this ensemble the order
parameter is related to the Gibbs free-energy,

G(Qs) = C — 3" In{P(Qs)}. (92)

The order parameter interval of interest 0.05 < ()¢ < 0.5 was divided in sub-intervals. The
first simulation for each sub-interval was performed without a weight function for measuring a
first estimate of the distribution function P(Qg). From this distribution function the Gibbs free
energy was calculated using Eq. (92) and fitted to a polynomial G'(Qs) = ag+a;Qe+asQ2+. . ..
Subsequently, the simulation was repeated for the same sub-interval with a weight function
w(Qs) = exp[BG'(Qs)]. This simulation was then used to determine P(®) more accurately.
After all the simulations for all intervals were completed, the distribution functions were shifted
by arbitrary factors to achieve continuity at the borders of each of the intervals. In Fig. (14) we
show just one of the results of the calculation of the Gibbs free energy of the soft sphere system
as a function of ().

Using the pre-hand knowledge that the fluid and fcc phase are in equilibrium at the given pres-
sure and temperature we know that their Gibbs energy is the same. The barrier between the
two phases can be seen to about 5 kp7" and the intermediate state between liquid and fcc has a
strong bcc character.

The strength of the umbrella sampling method lies in the fact that one can really constrain the
system to a certain range of order parameters by adding a weight function that depends on
the order parameter to the Boltzmann factor. In the case described here the weight function
was chosen such that it flattened the distribution function whereas in other simulations it was
constructed for instance using a form w(®) = kg(P — P)? to constrain the system to a -
window centered around ® [47].
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Fig. 14: Gibbs free energy near coexistence (P* = Po3/e = 24.21 and T* = kT /e = 1) for
a 128-particle r—12 system as a function of Qg. The three different branches correspond to the
liquid, the defect rich bcc crystal and the fcc crystal. In the drawing it was assumed that the

liquid and fcc phases are in equilibrium and have the same Gibbs free energy [51]. All data
were taken from Ref. [45].
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