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1 Introduction

The exact quantum mechanical equations for many-electron systems are highly intricate. Any
attempt to solve these equations analytically for real systems is doomed to fail. Numerical
methods such as Configuration Interaction based methods or Quantum Monte Carlo methods
can in principle solve these many-electron equations but because of the extremely high numer-
ical effort required, their applicability is rather limited in practice.
The bulk of all practical applications is therefore done within various independent-electron
approximations such as the Hartree-Fock method, Density Functional methods or Tight Binding
methods. Even these approximate quantum mechanical equations are still fairly complicated
and in general not solvable by analytical methods. Finding efficient algorithms to solve the
many-electron problem numerically within any of these approximations is imperative for the
applicability of quantum mechanics to physics as well as to chemistry and materials science.
Due to efforts in the past satisfactory algorithms are now available and computational electronic
structure methods are making very important contributions to our understanding of matter at the
microscopic level. The 1998 Nobel prize for W. Kohn and J. Pople is a landmark sign of the
importance of this approach.
Due to the constant increase in computer power and due to algorithmic improvements the im-
portance of computational methods is growing further. Whereas computational methods nowa-
days mainly supplement experimentally obtained information, they are expected to increasingly
supersede this information.
This article will concentrate on methods that allow us to calculate the total energy within various
independent-electron methods for large systems. Practically all physical observables can be
obtained from the total energy, for instance in the form of derivatives with respect to certain
external parameters. The reason why large systems containing many atoms are accessible with
these algorithms is their linear scaling with respect to the number of atoms.
Traditional electronic structure algorithms calculate eigenstates associated with discrete energy
levels. The reason for this is probably historical since the prediction of these experimentally
observed levels was the first big success of quantum mechanics. The disadvantage of this
approach is that it leads to a diagonalization problem which has a cubic scaling in the com-
putational effort. Direct diagonalization, which was the standard approach in the early days
of the computational electronic structure era, has a cubic scaling with respect to the size of the
Hamiltonian matrix, i.e. with respect to the number of basis functions M. Iterative diagonaliza-
tion schemes, preconditioned conjugate gradient minimizations and the Car-Parrinello method
for molecular dynamics simulations were a big algorithmic progress because of their improved
scaling behavior. Their scaling was not any more proportional to the cube of the the number of
basis functions but grew only like M, log(M,) if plane waves were used as a basis set. Never-
theless these methods still have a cubic scaling with respect to the number of atoms N,;, which
comes from the orthogonality requirement of the wavefunctions. The reason why this orthog-
onalization step scales cubically can easily be seen. As the system grows, each wavefunction
extends over a larger volume and has therefore to be represented by a larger basis set resulting
in a longer vector. At the same time there are more such wavefunctions and each wavefunction
has to be orthogonalized to all the others. Thus there are 3 factors that grow linearly, resulting
in the postulated cubic behavior. The computer time 7 pyy required to do the calculation is thus
given by

Topy = 3N,

o (1)

where c3 is a prefactor. It has to be pointed out that Equation (1) gives only the asymptotic scal-
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ing behavior. Within Density Functional and Hartree Fock calculations there are other terms
with a lower scaling which dominate for system sizes of less than a few hundred atoms due to
their large prefactor. In the case of plane wave type calculations the Fast Fourier transforma-
tions necessary for the application of the potential to the wavefunctions consume most of the
computational time for small systems, in the case of calculations using Gaussian type orbitals
it is the calculation of the Hartree potential. This cubic scaling is a major bottleneck nowadays
since in many problems of practical interest one has to do electronic structure calculations for
systems containing many (a few hundred or more) atoms. Evidently, cubic scaling means that
if one doubles the number of atoms in the systems the required computer time will increase by
a factor of eight. By enlarging the system one therefore rapidly reaches the limits of the most
powerful computers.

So called O(N) or low complexity algorithms are therefore a logical next step of algorithmic
progress since they exhibit linear scaling with respect to the number of atoms

Tepy = 1Ny - 2)

These methods offer thus the potential to calculate very large systems. The prefactors c; and
c3 depend on the approximation used for the many-electron problem. For a Density Functional
calculation with a large basis set the prefactors are of course much larger than for a Tight
Binding calculation, where the number of degrees of freedom per atom is much smaller. The
prefactor ¢; depends also on what O(N) method is used, but in general the prefactor c; is always
larger than c3 assuming that the same independent-electron approximation is used both in the
traditional and O(N) version. There is therefore a so called cross over point. For system sizes
smaller than the cross over point the traditional cubic scaling algorithms are faster, for larger
systems the O(N) methods win. Tight Binding calculations are an ideal test environment for
O(N) algorithms. Because of their rather small memory and CPU requirements one can easily
treat systems comprising of a very large number of atoms and venture into regions beyond the
cross over point. Contrary to what one might naively think, the importance of O(N) algorithms
will also increase as computers get faster. Whereas at present it is difficult to access the cross
over region situated at some 100 atoms using the Density Functional framework, this will be
easy with faster computers and O(N) algorithms will be the algorithms of choice.

Even though O(N) algorithms contain many aspects of mathematics and computer science they
have nevertheless deep roots in physics. Obtaining linear scaling is not possible by purely
mathematical tricks but it is based on the understanding of the concept of locality in quantum
mechanics. Conversely, the need of constructing O(N) algorithms was also an incentive to
investigate locality questions more deeply, and has thus lead to a better understanding of this
very fundamental concept. An algorithmic description of electronic structure in local terms can
give a justification of the well established concepts of bonds and lone electron pairs in empirical
chemistry.

Since O(N) algorithms are based on a certain subdivision of a big system into smaller subsys-
tems, techniques developed in this context might also be helpful in reaching another important
goal for treating large systems, namely combining electronic structure methods of different
accuracy such as empirical Tight Binding and Density Functional theory in a single system.
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2 Locality in Quantum Mechanics

Locality in Quantum Mechanics means that the properties of a certain observation region com-
prising one or a few atoms are only weakly influenced by factors that are spatially far away
form this observation region. This fundamental characteristic of insulators is well established
within independent-electron theories [1] and it can even be carried over into the many-electron
framework [2].

Traditional chemistry is based on local concepts. Covalently bonded materials are described in
terms of bonds and lone electron pairs. It is standard textbook knowledge that the properties of a
bond are mainly determined by its immediate neighborhood. The decisive factors are what type
of atoms and how many of them (the coordination number) are surrounding it. Second nearest
neighbors and other more distant atoms have a very small influence. As an example let us look
at the total energy of a hydrocarbon chain molecule C,, Hs,,, 5. In this case each C'H, subunit
is from an energetical point of view practically an independent unit. As one adds one C'H,
subunit, the energy increases by an amount which is nearly independent of the chain length.
Already the insertion of a C'H, subunit into the smallest chain C;Hg gives an energy gain
which agrees within 10~ a.u. with the asymptotic value of the insertion energy for very long
chains. This means that the electrons belonging to this inserted subunit already do not see any
more the end of the chain for very short chain lengths. This example is a drastic illustration of
a principle sometimes termed “nearsightedness” [3]. In other insulating materials the influence
of the neighboring atoms decays slower. An example is shown in Figure (1), where the total
energy per silicon atom is plotted as a function of the size of its crystalline environment.
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Fig. 1: The deviation of the total energy per silicon atom from its asymptotic bulk value as a
function of the size of the periodic volume in which it is embedded. The calculation was done
with a Tight Binding scheme using exact diagonalization

Even in metallic systems, where the elementary bond concept is not any more valid, locality
still exists. This is supported by the well known fact, that the total charge density in a metal
is given with reasonable accuracy by the superposition of the atomic charge densities. Since
atomic charge densities decay rapidly, this implies that the charge density at the midpoint of
two neighboring atoms is mainly determined by the two closest atoms and very little by other
more distant atoms. Another related example is given by V. Heine [1] who points out, that the
magnetic moment of an iron atom, which is embedded in an iron-aluminum alloy differs by
less than 5 % from the value for pure iron if the atoms are locally surrounded by only eight
aluminum atoms.
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This locality is not at all reflected in standard electronic structure calculations which are based
on eigenorbitals extending over the whole system, making both the interpretation of the results
more difficult and requiring unnecessary computational effort. The simplistic bond concepts
of empirical chemistry are certainly not adequate for electronic structure calculations aiming at
high accuracy. Nevertheless one might hope to incorporate some more general locality concepts
into electronic structure calculation to make them both more intuitive and efficient. In the
following we will therefore carefully examine the range of interactions in quantum mechanical
systems.

Self-consistent electronic structure methods require essentially two steps. The calculation of
the potential from the electronic charge distribution and the determination of the wavefunction
for a given potential. In non-self-consistent calculations such as Tight Binding calculations, the
first step is not needed.

The calculation of the potential consists usually of two parts, the exchange correlation potential,
and the Coulomb potential. The exchange correlation potential is a purely local expression in
Density Functional Theory and can therefore be calculated with linear scaling. In the Hartree
Fock scheme one might first think that the exchange part is non-local, but a more profound
examination reveals that it is local for insulators. The Coulomb potential on the other hand is
very long range and needs proper treatment. A naive evaluation of the potential U arising from
a charge distribution p by subdividing space into subvolumes AV and summing over these
subvolumes,

Uy =3 25 Ay
; r; — 1]

would result in a quadratic scaling since both indices 7 and j have to run over all grid points in
the system. The Coulomb problem actually arises not only in the context of electronic structure
calculations but also in classical calculations of Coulombic and gravitational systems such as
galaxies of stars. Much effort has therefore been invested in this computational problem and
several algorithms are known which solve the problem with linear scaling.

The more interesting and more difficult part is to assess the role of locality for a given external
potential. The appropriate quantity to study this property is the density matrix. The one-particle
density matrix F' completely specifies our quantum mechanical system within the independent
electron approximation and all quantities of interest can easily be calculated from it. The central
quantities in any electronic structure calculation, the kinetic energy FEy;,, the potential energy
E,,+ and the electronic charge density p are given by

Epin = —% / ViF(r,r')| _, dr' 3)
Bt = /F(r’,r’)U(r’)dr’ 4)
p(r) = F(rr), (5)

where U (r’) is the potential. A related quantity which will frequently be used throughout the
article is the band structure energy Fpg defined as

EBS - Ekzn + Epot (6)

and the grand potential
Q= Epg — iNer (7
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where 4 is the chemical potential and N,; the number of electrons. Subtracting uN; from
Eps leaves () invariant under a constant potential offset. If one applies the shift (U(r) —
U(r) + const) the potential energy will increase by N,; const. In order to conserve the total
number of electrons, 4 also has to be shifted (1 — p + const) and thus €2 remains constant.
Discretizing the Hamiltonian A which is the sum of the kinetic and potential energy as well as
F with respect to a finite orthogonal basis ¢;(r), i = 1, ..., M, one obtains

Hy = [ow (-394 0w ) o ®)
F, = / / 5 (r) F (r,v') 6, (') drdr’ ©)

and the expressions for the central quantities become

Eps = Tr[FH] (10)
Q = Tr[F (H — pl)] (11)
plr) = Z Fij ¢i(r)o;(r) (12)

where T'r denotes the trace. It follows from Equation (12) that the total number of electrons NV,
in the system is given by
Ng =Tr[F]. (13)

Evaluating the traces using the eigenfunctions V,, of the Hamiltonian one obtains immediately
the well known expressions for N, Epg, {2 and p within the context of conventional cal-
culations which are based on diagonalization. Denoting the eigenvalues associated with the
eigenfunctions V,, by €, one obtains

Na = Y flen) (14)
Eps = Y f(e) e (15)
Q = > (flen) —p)en =) flen) en — tNa (16)
p(r) = zn:f(en) U (r) W (r) - (17)

The function f is the the Fermi distribution

1

fle) = T o () (R (18)

where kp is Boltzmann’s constant and 7' the temperature. If we talk about temperature in this
article, we always mean the electronic temperature since we are not considering the motion
of the ionic degrees of freedom which might be associated with a different ionic temperature.
In the expressions (14), (15), (16), and (17), as well as in the remainder of the whole article,
we will use the convention, that all the subscripts indexing eigenvalues and eigenfunctions are
combined orbital and spin indices, i.e. that we can put at most one electron in each orbital.
This will eliminate bothering factors of 2. The usually relevant case of an unpolarized spin
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restricted system can always easily be obtained by cutting into half all sums over these indices
and multiplying by 2.
In terms of the Hamiltonian / the density matrix is defined as the following matrix functional

F=f(H). (19)
Since F'is a matrix function of H it has the same eigenfunctions ¥,, as H

HY, = 6,0, (20)
FU, = f(e)¥,. Q1)

The density matrix can consequently be written as
F(r,r') =) fle)Un(r)T,(r) (22)

where n runs over all the eigenstates of the Hamiltonian. From the functional form of the
Fermi distribution it follows that the eigenvalues f (e, ) are always in the interval [0:1]. At zero
temperature the density matrix of an insulating system containing N.; electrons will have N,
eigenvalues of value one, all others being zero. Thus the density matrix does not have full rank,
but only rank V,;. Hence we can write it as

F(r,r')y= > Ui(r)¥,(), (23)

n=occ

where . runs now only over the N,; occupied states. It is easy to see that F'(r,r’) is a projection
operator in this case

/F(r,r”)F(r”,r’)dr” = F(r,r'). (24)

A new set of N,; eigenfunctions ¥'“(r) can be obtained by any unitary transformation of all
the N,; degenerate eigenfunctions W, (r) associated with eigenvalues one,

e (y) = Z UpmWp(r) (25)

m=occ

where U is a unitary N, by N, matrix. In the case of a crystalline periodic solids such a
transformation can be used to generate the localized Wannier functions [4] from the extended
eigenfunctions W,,. We will refer to any set of orthogonal exponentially localized orbitals which
can be used to represent the density matrix according to Equation (23) as Wannier functions.
How to construct an optimally localized set of Wannier functions by the minimization of the
total spread > (r?),, — (r)2 in a crystalline periodic solid has recently been shown by Marzari
and Vanderbilt [5]. It has been well known in the chemistry community that sets of maximally
localized orbitals give excellent insight into the bonding properties of systems. In addition to
the spread criterion used by Marzari et al. there are still other criteria in common use in the
chemistry community. They are all in a certain sense arbitrary, but usually lead to the same
interpretation of the bonding properties.

The density matrix F(r,r’) is a diagonally dominant operator, whose off-diagonal elements
decay with increasing distance from the diagonal. The exact decay behavior depends on the
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material. We will derive the decay properties within the theoretical framework of the description
of periodic crystalline solids. For a periodic solid the density matrix is given by

F(r,r') = Z@% /B de Flen(k) Uh 1o (1) Ty e(x) (26)

n

— L € o (ru r eik(r’—r)
= Y M S00) )

n

where W, 1 (1) = U, (r)e’ @ are the Bloch functions associated with the wave vector k and
band index n. The integral is taken over the Brillouin zone (BZ) and V' is the volume of the real
space primitive cell.

The Wannier functions WW,, of the n-th band in an insulating crystal are defined in the usual way

V
(2m)?

W,(r—R) = /B Z dk e R, (r). 27)

The Wannier functions are not uniquely defined. One can construct a different set of Bloch
functions by multiplying them with a phase factor, ¥, (r) « e“®W¥, (r), where w(k) is
an arbitrary function. This will obviously modify the Wannier functions. Further ambiguities
arise in the case of degenerate bands. Because of these ambiguities in the construction of the
Wannier functions it is advantageous to work with the density matrix where any phase factors
cancel (Equation (26)) and where degeneracies do not cause any problems since one sums over
all the occupied bands.

We will first discuss the decay properties of the density matrix in metallic systems. In this
discussion we will assume that metals behave essentially like jellium and that exact results for
jellium can be carried over to real metals.

The decay properties of the density matrix of a metallic system at zero temperature are well
known (March). Because the integral in Equation (26) contains a discontinuity in the metallic
case, the density matrix decays only algebraically with respect to the distance between r and r’.
The decay is given by

cos(kp|r —1'|)

F(r,r') o< kp , (28)

lr — /|2

K3, .
N — Zk jpa

where the Fermi wave vector kr is related to the valence electron density by =5 35

non-spin-polarized system.

Introducing a finite electronic temperature 7" in a metal leads to a drastic change in this decay
behavior. Instead of an algebraic decay one has a much faster exponential decay. As shown
independently by Goedecker [8] and Ismail-Beigi and Arias [7], the decay at low temperatures
is then given by

k —r kgT
F(r,r) ock:FCOS( rlr —r') exp (—c : |r—r'|> , (29)
— I

where c is a constant on the order of 1. We thus find oscillatory behavior with an exponentially
damped amplitude. The decay rate depends linearly on temperature and the oscillatory part is
described by the wave vector kr. In an insulator finite temperature plays no role as long as the
thermal energy k71" is much smaller than the gap, which is usually fulfilled.
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Let us next discuss the important case of an insulator with a band gap ¢,4,, at zero temperature.
We will first present some numerical results, then we will put forward some arguments to ex-
plain the qualitative features of the density matrix and finally discuss in a more quantitative way
the factors which determine the exact decay rate.

Numerical calculations of the density matrix or the related Wannier functions show an oscil-
latory behavior with a decaying amplitude. There is exactly one node per primitive cell and
logarithmic plots of the amplitude clearly reveal an exponential decay. In the case of alkanes
the decay of the density matrix calculated by the Hartree-Fock method has been studied and
plotted on a logarithmic scale by Maslen et al. [9]. Interestingly, the decay depends also on
the basis set used. Small low quality basis sets lead to a larger band gap and consequently to a
faster decay of the density matrix.

Let us now make plausible the exponential decay of the density matrix. The demonstration is
based on the fact, that one can express the Fourier components ¢, (R) of the band energy ¢, (k)
through the Wannier functions W, (r)

V[ g
Q(R) = 5 /B lige

where R is a Bravais lattice vector. Now it is known, that the band energy ¢, (k) is an analytic
function [4]. This is actually not surprising. The first and second derivatives of the band-
structure have physical meaning since they are related to the electron velocity and effective
mass. So it is to be expected that higher derivatives exist as well. Since the Fourier transform
of an analytic function decays faster than algebraically there exists a decay constant v and a
normalization constant C' such that

(2r)?

Wi YHW,(r' —R)dr',  (30)

space

1
Ce ™ >¢,(R) = v Wi )HW,(r' — R) dr’ (31)
space

It is reasonable to expect that HW,,(r) will behave similarly as W, (r). In particular we expect
W, (r) to be small whenever HW, (r) is small. So we will just drop H in Equation (31). In
addition we will define this modified integral not only for lattice vectors R but for arbitrary
vectors r to obtain.
Ce " > L Wy (e YW, (r" — r) dr’ (32)
space

If Equation (32) holds, then one can use the mean value theorem to show that

1
Ce™ " > — W ("YW, (x" —r) dr’

Vv space
1 * / !/ / ! /

— V; CdlI/Vn(r —R)W,(r" =R ' —r)dr

= Y Wi(s(r) = R)W,(s(r) =R’ — 1) dr’
R/

= F(s(r),s(r) —r) (33)

where the mean value s(r) is a vector within the primitive cell. Assuming that the density matrix
has the same order of magnitude within each cell one can neglect the dependence of s on r to
obtain the final result

Ce™ " > F(s,s —r) (34)
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The numerically observed nodal structure of the density matrix can be motivated in a very
similar way. Because of the orthogonality of the Wannier functions we have

0= W ("YW, (r' — R) dr’ (35)
space
for any non-zero lattice vector R. Doing the same sequence of transformation as in Equa-

tion (33) one obtains
0=F(s(R),s(R) - R) (36)

So there has to be one node in each cell. The numerically calculated nodal structure for a
1-dimensional model insulator is shown in Figure 2.
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0 2 4 6 8 10 12

Fig. 2: The nodal structure of the density matrix for a I-dimensional model insulator with a
bandwidth of 4 a.u. and a band gap of 2 a.u.. The length of the primitive cell is 1. The nodes
predicted by Equation (36) are at the intersections with diagonal lines, two of which are shown
by the dashed lines.

The next step is to examine in a more quantitative way which factors determine the rate of this
exponential decay for an insulator with a band gap €,,,, at zero temperature.

Cloizeaux [10] proved the exponential decay behavior of the zero temperature density matrix,
which is a projection operator. Considering the extension of the band energy €,(k) into the
complex k plane he found that the minimal distance of the branch points of ¢, (k) from the real
axis determines the decay behavior. For the Wannier functions, which are closely related to the
density matrix by Equation (23), Kohn [11] proved the same decay behavior in the case of a
one-dimensional model crystal. In a later publication Kohn [12] claims that this distance to the
real k axis should be related to the square root of the gap. Even though he did not present a
derivation of this result, it was widely accepted to be generally valid. Ismail-Beigi and Arias
[7] have however shown that Kohn’s claim is not generally valid. They demonstrated that in the
Tight Binding limit the square root behavior can be found under certain circumstances, but that
different behaviors can be found as well. In the weak binding limit, where the band-structure
can be obtained by perturbation theory from the band structure of the free electron gas, they
showed that the dependence is actually linear.
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F(r,r") oc exp(—y|r — r|) where y = ¢ €gap a (37)

The lattice constant is denoted by a, and c is an unknown constant of the order of 1.

The dependence of the decay rate on the size of the band gap is a rather surprising relation.
After all it follows from Equation (26) that only the properties of the occupied bands enter
into the calculation of the density matrix, whereas the size of the gap is not directly related
to the occupied states. In the following we will give an intuitive explanation of the factors
determining the decay rate. This explanation will again be based on Equation (30) relating the
bandstructure to the decay properties of the density matrix. As is known from complex analysis,
the distance of the singularities from the real axis is comparable to the length over which one
has very strong variations along the real axis of a complex function. Now, the long range decay
properties of a Fourier transform are exactly determined by the length A% of such a region of
strongest variation. One thus regains Cloizeaux’s result that the decay rate is proportional to the
distance of singularities from the real axis. Let us now explain the behavior found in the weak
binding limit by Ismail-Beigi and Arias. In the weak binding limit the effective mass establishes
the connection between the gap and the important features of the occupied bands. The effective
mass for the n-th band at the point kg is defined as

(38)

1y 23 L sl
En kO - €m<k0)
m;én
Since we are only interested in order of magnitudes, we have here averaged over the diagonal
elements of the effective mass tensor in order to obtain a effective mass which is a scalar quan-
tity. In the case of the weak binding limit, a gap will open up at the boundaries of the Brioullin
zone and this gap will be small. The effective mass is therefore small and proportional to a?e,,,
where we have assumed that the dipole matrix elements | U 1, (1) VW, i, (r)dr are on the order
of % The band-structure near the boundaries of the Brioullin zone is then given by

LAy (39)

1 2

a~€gap

where Ak is the distance from the boundary, neglecting directional effects. Since the effective
mass is small, the curvature of the band-structure is large in this region. Hence this region is
just the region with the strongest variation. As is well known the perturbation theory arguments
leading to Equation (39) are valid within an energy range of the order of €4,;,. It then follows
from Equation (39) that the corresponding range of Ak is €44, a, confirming the linear decay of
the density matrix with respect to the size of the gap, i.e. v = c €yqp a.

Let us next show how a square root like behavior v = ¢ , /€4, can arise for real crystals with
a big gap. In this case the effective mass is of the order of one at all stationary points kg in
the Brioullin zone. Assuming that it is then of the order of one over the whole Brioullin zone,
the region of largest variation is just the Brillouin zone itself. The decay constant is therefore
simply related to the lattice constant a.

1

v =c— (40)
a

In order to get the square root dependence of the decay constant 7, one has to assume that

1
€gap = Cgap; (41)
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where C,,,, is a constant which is not or only weakly dependent on the material. Such a behavior
has indeed been observed for certain classes of materials, where the tight binding limit is the
most appropriate one, such as ionic crystals but with a non-negligible variation of C,, across
different materials. A square root behavior of v can therefore be expected if one varies the
lattice constant for a certain material, but the decay constants for different materials that happen
to have the same gap are not necessarily comparable.
In practice the distinction between the Tight Binding and weak binding case may not always
be clear. Unless the region of strongest variation is really a very small fraction of the whole
Brioullin zone, all the prefactors which were neglected in these considerations might be impor-
tant enough to blur out differences. The importance of these prefactors can also be seen from
the fairly strong directional dependence of the decay rate. Ismail-Beigi and Arias [7] found
such a strong directional dependence in numerical tests to confirm the linear dependence of the
decay constant on the size of the gap (Figure 3). Stephan et al. [13] found the same behavior
during Tight Binding studies of carbon. So a statement in an old paper by Kohn [2]), namely
that the decay length of the Wannier functions is of the order of the interatomic spacing, is for
practical purposes probably in many cases the best available characterization of localization.

5

T
*

% 2 4 6,8 10 12 14

a%egap
Fig. 3: The dependence of the decay constant -y on the gap. Plotted are the two dimensionless
quantities a vy versus a*e,qy. The variation of the gap was obtained for a three-dimensional
cubic model crystal by varying the strength of the potential. Circles refer to the [100], stars to
the [110] and pluses to the [111] direction. This figure is reproduced with kind permission of

the authors from Ismail-Beigi and Arias (1998)

All the above arguments apply to simple and mainly periodic materials. Advanced electronic
structure calculations however frequently study materials which are not in this class. The lo-
calization properties of such materials have not yet been studied systematically and so there is
some incertitude about which orbitals are localized and to what extent (Kohn 1995). If the lo-
calization properties are unknown one should better not impose any localization constraints. In
this case some of the discussed O(N) techniques still give a quadratic scaling, which also allows
us to gain computational efficiency compared to the traditional cubically scaling algorithms.

3 Basic strategies for O(N) scaling

Most O(N) algorithms are built around the density matrix or its representation in terms of Wan-
nier functions and take advantage of its decay properties. To obtain linear scaling one has to
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cut off the exponentially decaying quantities when they are small enough. This introduces the
concept of a localization region. Only inside this localization region the quantity is calculated,
outside it is assumed to vanish. For simplicity the localization region is usually taken to be a
sphere, even though the optimal shape might be different [13]. In the Tight Binding context the
boundary of the localization region can either be defined by a geometric distance criterion or in
terms of the number of hops”, i.e. the number of steps one has to do along bonds connecting
neighboring atoms to reach this boundary [14]. Different localization regions generally have
significant overlaps. The localization regions thus do not form a partition of the computational
volume and one atom in general belongs to several localization regions.

In a numerical calculation the density operator F'(r,7’) is discretized with respect to a basis.
The basis set has to be chosen such that the matrix elements F; ; reflect the decay properties of
the operator F'(r,r’). This will obviously only be the case if the basis set consists of localized
functions, such as atom centered Gaussian type basis functions. Sets of orthonormal basis func-
tions usually facilitate the calculations. Unfortunately all currently used localized basis sets are
non-orthogonal. In the context of the orthogonal Tight Binding scheme one just assumes the
existence of a basis set which is both atom centered and orthogonal. Since only the parame-
terized Hamiltonian matrix elements enter in the calculation, there is no need to explicitly ever
construct such a basis set. In the following sections, we will follow this practice and assume in
all relevant parts that we are dealing with such a localized orthogonal basis set. Whenever we
refer from now on to a localization region, we actually mean the subset of all basis functions
which are contained within this spatial localization region.

Obviously the size of the localization region needed to obtain a certain accuracy depends on
the decay properties of the density matrix as well as on the selected accuracy threshold. It
also depends on the quantity one wants to study. Generally, the total energy as well as derived
quantities such as the geometric equilibrium configurations are surprisingly insensitive to finite
localization regions, because these quantities are not strongly influenced by the exponentially
small tails which are cut off by the introduction of a localization region. This insensitivity
also holds true, even though to a much lesser extent, for metals. As we have seen above the
introduction of a finite temperature leads to an exponential decay of the density matrix which in
turn justifies truncation. In a metal, the difference between the finite and the zero temperature
total energy AL is proportional to the square of the temperature, AE oc T2, and thus rather
small. There are however quantities which are very sensitive to finite localization regions. In
the modern theory of polarization in solids [15], the polarization can be expressed in terms of
the centers of the Wannier functions [ W (r)rW(r)dr. Using this formula one has a strong
influence of the tails of the Wannier functions because they get strongly weighted by the factor
of r in the integral. Since the tails are much more influenced by the boundary of the localization
region than the central part, this quantity is more sensitive to the size of the localization region.
There are even quantities which are not at all directly accessible by a solution which is given
in terms of density matrices or Wannier functions. The Fermi surface in a metal which can be
calculated via the eigenvalues of the band structure ¢, (k) is such an example.

It is clear that one can gain significant computational efficiency only if the extent of the sys-
tem is larger than the size of the localization region. The cross over point depends therefore
on the decay properties of the density matrix of the system. It however also depends on the
dimensionality of the system. For a linear-chain molecule with a large band gap, it might be
enough to have a localization region containing just two neighboring atoms on each side. So the
localization region would just contain 5 atoms and for systems larger than 5 atoms one might
potentially gain computational efficiency by using an O(N) method. If one has a 3 dimensional
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system with a comparable gap, then a spherical localization region extending out to the second
neighbors would contain some 60 atoms and the crossover point would already be much larger.
For a system with a small gap such as silicon or for metallic systems the crossover point is even
larger.

There are essentially six basic approaches to achieve linear scaling.

e The Fermi Operator Expansion (FOE) is based on Equation (19). In this approach one
finds a computable functional form of F' as a function of H to build up the density matrix.
Two possible representations based on a Chebychev expansion and a rational expansion
will be discussed.

e The Fermi Operator Projection (FOP) method is closely related to the FOE method. The
computable form of F' is however not used to construct the entire density matrix but to
find the space spanned by the occupied states, i.e. the space corresponding to the eigen-
functions associated with the unit eigenvalues of the Density matrix at zero temperature.

These eigenfunctions can be considered as Wannier functions in the generalized sense
defined before.

e In the Divide and Conquer (DC) method [16] for the density matrix the relevant parts
of the density matrix are patched together from pieces that were calculated for smaller
subsystems.

e In the Density Matrix Minimization (DMM) approach, one finds the density matrix by a
minimization of an energy expression based on the density matrix.

e In the Orbital Minimization approach (OM) [17], one finds a set of Wannier functions by
minimization of an energy expression.

e The Optimal Basis Density Matrix Minimization scheme (OBDMM) contains aspects of
both the OM and DMM methods. In addition to finding a density matrix with respect to
the basis, one also finds an optimal basis by additional minimization steps. The number
of basis functions has to be at least equal to the number of electrons in the system, but
can be bigger as well.

A major difference between these methods is whether they calculate the full density matrix
or only its representation in terms of Wannier functions. The later approach applies only to
insulators while the former is in also applicable to systems with fractional occupation numbers
(i.e. f(e,) is not either 1 or 0) such as metals or systems at finite electronic temperature.

In the following four of these six approaches will be presented in detail. The FOE [18] is
the most straightforward approach for the calculation of the density matrix. The basic idea in
this approach is to find a representation of the matrix function (19) which can be evaluated
on a computer. Several such representations are possible. We will discuss a Chebychev and a
rational representation.

3.1 The Chebychev Fermi Operator Expansion

One of the most basic operations a computer can do are matrix times vector multiplications. The
simplest representation of the density matrix would therefore be a polynomial representation

Frp(H)=cl+cH+cH + .. +c, H™ .
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where [ is the identity matrix. Unfortunately polynomials of high degree become numerically
unstable. This instability can however be avoided by introducing a Chebychev polynomial
representation, which is a widely used numerical method (Press ef al., 1986)

Npl

p(H) = %01 +3 ¢ Ty(H) . (42)
j=1

Since the Chebychev polynomials are defined only within the interval [-1:1], we will assume
in the following that the eigenvalue spectrum of H falls within this interval. This can always
be easily achieved by scaling and shifting of the original Hamiltonian. The Chebyshev matrix
polynomials 7;(H) satisfy the recursion relations

To(H) = I (43)
T\(H) = H (44)
Ti(H) = 2HT;(H)—T;_(H). (45)

The expansion coefficients of the Chebychev expansion can easily be determined. The eigen-
function representation (Equation (21)) of F'is,

<\I[n|F|\I/m> = f(%) 5n,m . (46)

Evaluating the polynomial expansion in the same eigenfunction representation we obtain

(Wl p(H) W) = plen) Onm (47)

where
npl

ple) = %0 +3 ¢ Ti(e) - (48)
j=1

Comparing Equation (46) and Equation (47) we see that the polynomial p(¢) has to approximate
the Fermi distribution in the energy interval [-1:1] where the scaled and shifted Hamiltonian has
its eigenvalues. How to find the Chebychev expansion coefficients for a scalar function is de-
scribed in standard textbooks on numerical analysis. Actually it is not necessary to take the
exact Fermi distribution. In practically all situations one is interested in the limit of zero tem-
perature. Hence any function which approaches a step functions in the limit of zero temperature
can be used. In the case of simulations of insulators for instance it is advantageous to take the
function f(e) = 1(1—erf (%)) shown in Figure 4 since it decays faster to O respectively 1 away
from the chemical potential. The term Fermi distribution will in the following always be used
in this broader sense. The energy resolution Ac is chosen to be a certain fraction of the size of
the gap. In the case of metals, Ae is chosen by considerations of numerical convenience. Large
values of Ae will give lower accuracy results. However as pointed out before, the convergence
of the total energy with respect to Aec is quadratic and so highly accurate total energies can be
obtained with rather high values of Ae. Small values of Ae make the calculation numerically
expensive. The detailed scaling behavior of the numerical effort in the limit of vanishing gaps is
analyzed in section 4, where it is found that actually the increase in the size of the localization
region is the limiting factor in all methods.

Even if one wants to study electronic properties in the limit of zero electronic temperature it is
important that one nevertheless uses a finite temperature Fermi distribution for the Chebychev
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Fig. 4: The Fermi distribution as obtained by a Chebychev fit of degree 40 in the case of a
diamond structure. The bandgap is in between the two vertical lines.

fit. Using the zero temperature step function introduces so-called Gibbs oscillations in the fit
and spoils the Chebychev fit over the whole interval.

How to eliminate these Gibbs oscillations in the zero temperature case by the so called kernel
polynomial method [14] can be used as a starting point for an alternative derivation of the
FOE method. The basic idea is to expand a delta function as a polynomial using damping
factors to suppress large oscillations. This representation of an approximate delta function can
then be integrated to obtain a smooth representation of the Fermi distribution. Used this way
the kernel polynomial method is thus just another way to derive the expansion coefficients for
the Chebychev expansion [19]. In addition the kernel polynomial method can also be used
to smear out the density of states rather than the zero temperature Fermi distribution resulting
in a method with practically identical computational requirements but some slightly different
properties. One useful property is that the smeared density of states energy is an approximate
lower bound to the energy, whereas the smeared Fermi energy is an approximate upper bound
[14].

Coming back to the original motivation for a polynomial representation, let us now show how
the density matrix can be constructed using only matrix times vector multiplications. Let us
denote by #] the I-th column of the Chebychev matrix 7;. Now each column of these Chebychev
matrices satisfies the same recursion relations

) = le) (49)
) = Hle)
G = 2H ) — 1)
where ¢; is a unit vector that has zeroes everywhere except at the [-th entry. So Equation (49)
demonstrates that we indeed need only matrix vector multiplications. Once we have generated
the [-th columns of all the Chebychev matrices, we can obtain the [-th column f; of the density
matrix just by forming linear combinations

Tpl

) = %u?) +Y el . (50)
j=1

As we have described the method so far it has a quadratic scaling instead of the linear scaling we
finally want to achieve. If we have M, basis functions, the density matrix is a M, x M, matrix
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and we have to calculate M, full columns. For the calculation of each column, we have to do 7,
matrix times vector multiplications, each of which costs Mny operations assuming the matrix
H is a sparse matrix with ny off-diagonal elements per row/column. So the total computational
cost is M7 ny ny. The degree of the polynomial n,; and the width ny of the Hamiltonian are
independent of the size of the system, whereas )/, is proportional to the number of atoms in the
system. The overall scaling with respect to the number of atoms is therefore quadratic.

In order to do the correct shifting and scaling of the original Hamilton to map its eigenvalue
spectrum on the interval [-1:1] we have to know its lowest and highest eigenvalues ¢,,;, and
€maz- 1N addition we have to know the chemical potential p. There are auxiliary matrix func-
tions of [ that can help us to determine these quantities. These functions of H can be built
up in the same way as the density matrix. Since the recursive build up of the Chebychev ma-
trices is the most costly part, the additional cost for evaluating other functions is negligible.
To determine whether we have a vanishing density of states beyond an energy ¢,, we can for
instance construct a Chebychev fit p,,(€) to a function which is zero (to within a certain tol-
erance) for energies below ¢,,, but blows up for energies larger than €,,. If Tr[p,,(H)] does
not vanish we have a non-vanishing density of states beyond €,,. A similar procedure can be
applied to determine a lower bound for the density of states. The determination of the chemical
potential in an insulator can be done along the same lines as well (Bates and Scuseria 1998).
Without any significant extra cost one can build up several Fermi distributions with different
chemical potentials until one finds the correct chemical potential leading to charge neutrality.
In a metallic system the search for the chemical potential can be accelerated since it is possible
to predict with high accuracy how the number of electrons changes in response to a change in
the chemical potential. From Equation (13) it follows

ON
o

= ~Trlp ()], (51)

where p' is the derivative of the Chebychev polynomial p that approximates the Fermi distribu-
tion. The Chebychev expansion coefficients of p’ can be calculated from the coefficients for p
(Press et al., 1986). Using the finite difference approximation of Equation (51),

AN

B = T (E)]

(52)
it is possible to find the correction Ay to the chemical potential which will nearly exactly
eliminate an excess of AN, electrons due to an incorrect initial chemical potential. The correct
chemical potential in a metallic system can thus be found with very high accuracy with a few
iterations.

The desired linear scaling can be obtained by introducing a localization region for each column,
outside of which the elements are negligibly small. For the k-th column, this localization region
will be centered on the k-th basis function. If we use atom centered basis functions, then the
localization region will consequently be centered on the atom to which this k-th basis function
belongs. We have then to calculate only that part of each column which corresponds to this
localization region. This means that we can use a truncated Hamiltonian H (k) which retains
only the matrix elements corresponding to the basis functions contained within the localization
region k. Denoting the number of basis functions in this region by M. (which might actually
depend on the localization region k being considered), the overall computational cost is then
MyMioe 1y np and thus scales linearly. Let us stress, that the size of the localization region is
independent of the degree of the polynomial. If one uses for instance a polynomial of degree
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ny = 50, the recursion in Equation (49) will extend over the 50 nearest neighbor shells without
localization constraint for a Hamiltonian coupling only nearest neighbors. The localization re-
gion however is typically much smaller comprising just a few nearest neighbor shells. Imposing
a localization region introduces some subtleties. For instance the eigenvalues of the truncated
density matrix are not anymore exactly given by p(e,,) and F' is not any more strictly symmet-
ric. More importantly, strictly speaking we can no longer use the Trace notation, since we use
different local Hamiltonians H (k) to build up the different columns of the density matrix. The
band-structure energy Epg has now to be written as

Eps =) Z[p(H(/f))]k,j [H (k)] jk - (53)

Another important quantity are the forces. The force acting on the a-th atom at position R,
is obtained by differentiating the total energy with respect to these positions. The total energy
consists of the band structure part and possibly other contributions. We will only discuss the
non-trivial part of the force arising from the differentiation of the band structure energy Epgs.
For simplicity let us assume that we have a simple polynomial expansion and not a Chebychev
expansion. Let us also assume that we calculate the full density matrix, i.e. that we do not
truncate H by introducing a localization region. We then obtain

dEps  d
dR, dR,

HY CVH”] => oTr {aggj . (54)

Let us consider for instance the term for which v = 2

OH
OR,

OH
OR,

OH
OR,

dTr[H3|
dR,

=1r [HH :|+TT[H H]+Tr{ HH}:?)TT [HHaH

aRJ , (35)

where we used that Tr[AB] = Tr[BA]. The final result for the force, which also holds in the
case of a Chebychev expansion, is thus

dEps
dR,

R (56)

~ T (o) + P |
In the case of an insulator, the second term in the brackets Hp'(H) is very small compared to
the first term p(H ) at small but finite temperatures and it vanishes in the limit of zero temper-
ature. The reason for this is that the eigenvalues of the matrix p'(H) are p'(e,). Since at zero
temperature p’(¢€) is nonzero only at the chemical potential which is in the middle of the gap,
all eigenvalues are zero and the matrix is identically zero. Nevertheless it is recommendable
to retain this term in numerical calculations because it leads to forces consistent with the total
energy.

In the case where we calculate only part of the density matrix, i.e. where we have a truncated
Hamiltonian H (k) going with the energy expression (53) we cannot use the properties of the
trace to simplify the force expression as we did in Equation (55). The equation corresponding
to Equation (55) therefore reads
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Similar results hold for all the other terms with different values of v. In the case of a Chebychev
expansion the situation is completely analogous, just the formulas are more complicated. The
force formula has been worked out in this case by Voter et al. (1996) and is given by

ATy (H)  dTj o(H) = 3 OH
dJRa ] + ; (14 k)(1+ kj—l—i)ﬂ(H)a_&E—l—i(H) ; (58)

where k; = 0if j < 0 and k; = 1 otherwise. In the typical Tight Binding context .- is
a very sparse matrix. If it contains np non-zero elements, we need of the order of "pz n DMI7
operations to evaluate all the forces according to Equation (58). The error incurred by using the
approximate formula region is large enough. Since the approximate formula can be evaluated
with order n, np M, operations, it might actually be preferable to do so. In a molecular dynam-
ics simulation, the largest deviations in the conservation of the total energy come from events
where atoms enter or leave localization regions and this kind of error is not taken into account
by either force formula.

All the above force formulas were derived for the case where we have a constant chemical
potential and where the polynomial representing the Fermi distribution does thus not change.
Frequently one wants however to do simulations for a fixed number of electrons rather than
for a fixed chemical potential. In this case one has to readjust the chemical potential for each
new atomic configuration. The chemical potential is thus a function of all the atomic positions
p = u(R,), but the explicit functional form of this dependence is not known. The force formula
can however also be adapted to this case [29]. Ignoring the above warnings and using again trace
notation for simplicity we have

Eps = Tr[Hp(H - pl)] (59)
Ne = Tr[p(H — pl)] (60)
and consequently
dFE BS ’ o0H ’ 6u
= Tr|(H —Tr|(Hp)| = 61
T = | )| - T 1)
dNel o0H 6u
= Trlp —Trlp . 62
dR., " {p 8RJ Wby ©2)
Since ‘flgzl has to be equal to zero, we can solve Equation (62) for -t a R and insert it into equa-

tion (61) to obtain the force under the constraint of a constant number of electrons.

Let us finally derive a force formula for the case where a local charge neutrality condition is
enforced [19] The motivation for this approach is that in non-self-consistent Tight Binding cal-
culations one frequently finds an unphysically large transfer of charge between atoms. In a
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self-consistent calculation the electrostatic potential, built up by a charge transfer, is counter-
acting a further charge flow and thus limits charge transfer to reasonably small values. Some
Tight Binding schemes enforce a so-called local charge neutrality condition requiring that the
total charge associated with an atom in a molecule or solid be equal to the charge of the isolated
atom. This is done by determining a potential offset u,, for each atom « in the system which
will ensure this neutrality. The total Hamiltonian H of the system is then given by Hy + U
where H is the Hamiltonian without any potential bias and U a diagonal matrix containing the
atomic potential offsets u,. The band structure energy is given by

Eps = Tr[(Hy+U) p(Ho + U)] Z Qo (63)

where the term containing the atomic valence charges (), has been subtracted to make the
expression invariant under the application of a uniform potential bias to all atoms in the system.
Expressed in terms of the density matrix the local charge neutrality condition becomes

> p(H)apos = Qa - (64)
l

In Equation (64) we have labeled the basis functions by a composite index where « indicates
on which atom the basis function is centered and where [ describes the character of the atom
centered basis function. If we have carbon atoms, for which (), = 4, [ would for instance
denote the 4 orbitals 2s, 2pzx, 2py, 2pz. Using Equation (64), Equation (63) then simplifies to

EBS = TT[HO p(Ho + U)] . (65)

Taking the derivative we get

dEBS GEBS 8U5 OEBS
66
Z Oug OR, 8Ra ’ (66)
where s 3H
BS /
=Tr |H H)—| . 7
s v [ )5 &

As discussed above, the matrix p’(H ) is close to zero in an insulator at sufficiently low temper-
ature and can often be neglected. The forces are therefore approximately given by
oH
OR,

dEs
dR,

=1Tr [Ho p(H) (68)
It has to be pointed out that to get sufficiently high accuracy the degree of the polynomial has
to be higher than in the case of Tight Binding case without local charge neutrality.

The degree n,,; of the polynomial needed to represent the Fermi distribution is proportional to

ny oc ez Smin A:’”m . (69)
This follows from the fact, that the nth order Chebychev polynomial has n roots and so a
resolution that is roughly proportional to 1/n. For the usual Tight Binding Hamiltonians the
ratio in Equation (69) is not very large and for silicon and carbon systems without gap states
polynomials of degree 50 are sufficient. In contexts other than Tight Binding this ratio can
however be fairly large and polynomial representation would become very inefficient.
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3.2 The Rational Fermi Operator Expansion

A rational representation of the density matrix [20] is in this case more efficient
Wy
F = v . 70
27 7
As is well known, the function f(¢) given by

f(e) = — ]4 e (71)

211 €—z

is equal to 1 if € is within the volume encircled by the contour integration path and zero other-
wise. If the integration path contains the occupied states as shown in Figure (5) it can therefore
be used as a zero temperature Fermi distribution. Actually, as already mentioned above, it is
usually not necessary to have the exact Fermi distribution. The electronic temperature is just
determined by the slope (and possibly some higher derivatives) of the distribution at the Fermi
energy. We will also refer to such generalized distributions as Fermi distributions. A distri-
bution of this type can be obtained by discretizing the zero temperature contour integral from
Equation (71) as shown in Figure 5.

A

& e

®  occupied @ unoccupied
|

\, states . states eﬁergy

. o
integration path

Fig. 5: A discretization of the contour integral in the complex energy plane of Equation (71).

The resulting Fermi distribution is shown on top.

In principle any other set of z,’s and w,,’s can be used as long as it satisfies

fleo) Y = (72)
v=1 v

where n,,4 is the degree of the rational approximation. How can we now evaluate Equation (70)

on a computer? Denoting 1 — by F, we have

(H—2z)F, = I (73)
F = ZwyFy. (74)

So we have first to invert all the matrices H — z, and then to form linear combinations of
them. The inversion is equivalent to the solution of M, linear systems of equations. This can
be effectuated using iterative techniques so that in the end everything can again be done by
matrix times vector multiplications. A rational approximation can represent the sharp variation
near the chemical potential of a low temperature Fermi distribution in a more efficient way than
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a Chebychev approximation. Whereas in the Chebychev case the degree of the polynomial is
given by Equation (69) the degree of the rational approximation n,,q is given by

K — €min

Ae (75)

Npg X
This n,4 in contrast to n,; does not depend on the largest eigenvalue €,,,,. Once n,q is of the
order of magnitude given by Equation (75) one has exponential convergence to the zero temper-
ature Fermi distribution. In the case where the integration points and weights are obtained by
discretizing the contour integral of Figure 5 this exponential behavior is immediately compre-
hensible since an equally spaced integration scheme gives exponential convergence for periodic
functions. Since 7,4 is usually reasonably small, the success of the method will hinge upon
whether it is possible to solve the linear system of equations associated with each integration
point with a small number of iterations. The number of iterations in an iterative method such as
a conjugate gradient scheme is related to whether it is possible to find a good preconditioning
scheme. In the case of plane wave calculations a good preconditioner can be obtained from the
diagonal elements and of the order of 10 iterations are required. In other schemes using Gaus-
sians for instance it is not quite clear whether good preconditioners can be found. When the
Hamiltonian depends on the atomic positions R, Equations (73) and (74) can be differentiated

to obtain the derivative ddTF, which is needed for the calculation of the forces.

3.3 The Fermi Operator Projection Method

The FOE method is used to calculate the full density matrix. This can be inefficient if the num-
ber of basis functions per atom is very large. As was mentioned before, the density matrix at
zero temperature does not have full rank. In the case of an insulator it can be constructed from
N, Wannier functions (23). If one has a numerical representation of the zero temperature den-
sity operator, which is actually a projection operator, that eliminates all components belonging
to eigenvalues above the Fermi level, one can apply it to a set of trial Wannier functions Vi,
n =1, ..., Ny to generate a set of orbitals which span the space of the Wannier functions. The
numerical representation of the density operator can again either be a Chebychev or rational
one. We will first discuss the rational case [20].

To do the projection with a rational representation, a system of equations analogous to (73) and
(74) has to be solved for each trial Wannier function f/n and at each integration point v

(H=2)Wo, = Vi (76)
Wn - ZwVWn,u- (77)

Thus the saving comes from the fact that one has to solve this system of equations (76) just
for N, right hand sides, whereas one has M, right hand sides in Equation (73). Obviously the
solution of the Equation (76) has to be done not within the whole computational volume but
only within the localization region to obtain linear scaling. The functions W, will now span
our subspace unless one of our trial functions V,, was chosen in such a way that it has zero
overlap with the space of the occupied orbitals, which is highly unlikely. To obtain a set of
valid Wannier functions W,, one has still to orthogonalize the orbitals Wn Since the W,,’s are
localized the overlap matrix is a sparse matrix and can be calculated with linear scaling. In the
typical Density Functional context, the inversion of this matrix is a rather small part, even if it
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is done with cubic scaling. In a Tight Binding context it is much more important and a linear
scaling method has been devised by Stephan [13] for the inversion. The construction of the
Wannier functions by projection according to Equations (76) and (77) is illustrated in Figure 6
in the case of a silicon crystal. In this case one knows that the Wannier functions are bond
centered and it is therefore natural to choose a set of bond centered functions as an initial guess.
In this example we took simple Gaussians. As shown in Figure 6, the projection modifies the
details of the Gaussian but does not significantly change its localization properties.

Fig. 6: The effect of applying the density operator, which is a projection operator in the eigen-
value space, to a Gaussian (dashed line) centered in the middle of a bond between two silicon
atoms denoted by discs. The resulting function W is shown by the solid line. The orthogonal
Wannier function W obtained by symmetric orthogonalization is practically indistinguishable
from W on this scale. The calculation was done using Density Functional Theory with pseu-
dopotentials

3.4 The Density Matrix Minimization approach

The DMM approach of Li, Nunes and Vanderbilt [21] is another approach where the full density
matrix is constructed. In contrast to the FOE method one obtains the density matrix F' in the
limit of zero temperature, so no adjustable temperature parameter enters the calculation. The
density matrix is obtained by minimizing the following functional for the grand potential {2 with
respect to F’

Q="Tr((3F* —2F*(H — ul)] . (78)

There is no constraint imposed during the minimization so all the matrix elements of /' are
independent degrees of freedom. Nevertheless the final density matrix will obey the correct
constraint of being a projector if no localization constraints are imposed. This is related to the
fact that the matrix 3F2 — 2F? is a purified version of F as can be seen from Figure 7. If '
has eigenvalues close to zero or one then the purified matrix will have eigenvalues that are even
closer to the same values. It is also clear from Figure 7 that the eigenvalues of the purified
matrix are contained in the interval [0;1] as long as the eigenvalues of F' are in the interval [
-1/253/2 1.

The gradient of {2 as given by Equation (78) with respect to F' is itself a matrix and it is given
by

0
g_F:3(FH’+H’F)—2(F2H’—|—FH’F+H’F2), (79)
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Fig. 7: The McWeeny (1960) purification function 3x* — 23

where H' = (H — pl). In order to verify that Equation (78) defines a valid functional we
have to show two things. First, that the grand potential expression (78) gives the correct result
if we insert the exact density matrix F', and second, that the gradient (79) vanishes in this
case. From Equation (24) we see that the exact I is a projection operator, i.e that F? = F.
Therefore (3£ — 2F3) = F and the grand potential expression (78) agrees indeed with the
correct result (11). Using in addition the fact that H’ and the exact F' commute (as follows from
Equations (20), (21) ) it is also evident that the gradient in Equation (79) vanishes. The gradient
vanishes however not only for the ground state density matrix F' but also for any excited state
density matrix. In order to exclude the possibility of local minima, we have to verify, that these
stationary points are no minima. This can easily be done (D. Vanderbilt, private communication)
using the fact that the functional is a cubic polynomial with respect to all its degrees of freedom.
Let us suppose that there are two minima. Inspecting the functional along the line connecting
these two minima we would obviously again find these two minima, which is a contradiction
because a cubic polynomial cannot have two minima. Thus we have proved by contradiction
that the DMM functional has only one single minimum.

There is a second thing which is worrying at first sight with this functional. If the density matrix
for an insulator at zero temperature is of the correct form (i.e. if the occupation numbers n; are
integers) the gradient (79) will vanish independently of the value of the chemical potential.
This ambiguity however disappears as soon as one has fractional occupation numbers. Let us
consider an approximate density matrix of the form

F=> m|i) (V. (80)
!
Then it is easy to see that
Q = (¢ pn)(3nf —2n) 81)
!
o}
oF ;6(61 — (1 — ) [ W) (| . (82)

The polynomial of Equation (81) is the same as the one shown in Figure 7 and we see that com-
ponents corresponding to eigenvalues larger than the chemical potential are damped until they
vanish in the minimization process, whereas components corresponding to smaller eigenvalues
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are amplified until they reach the value one. Thus the chemical potential will determine the
number of electrons to be found in the system as it should. The above statements are actually
only correct if all the n;’s are contained in the interval [-1/2: 3/2]. If this is not the case then one
can see from Figure 7, that there can be runaway solutions, where some 7; tend to £00. When
we implemented the scheme we however never encountered in practice such a runaway case.
Having convinced ourselves, that the functional defined in Equation (78) is well behaved, let us
now estimate the number of iterations which are necessary to minimize it. As is well known,
the error reduction per iteration step depends on the condition number x which is the ratio of the
largest curvature a,,,, to the smallest curvature a,,;, at the minimum. These curvatures could
be determined exactly by calculating the Hessian matrix at the minimum. Let us instead only
derive an estimate of these curvatures by calculating the curvature along some representative
directions. To do this let us now consider a ground state density matrix where some fraction x
of an excited state is mixed in

F(x) = Z U (r)U,,(r) — 20 (r)U,(r) + 205 (r)U,(r) . (83)

The index [ is a member of the N, eigenstates below p and the index J refers to a state above
1. The expectation value of the OM functional for this density matrix is given by

Q) = Trl(B3F)? - 2 ())(H - ul)] (84
— ze:en + (32* — 22°) (e; — €1)

and its second derivative by
0?Q(x)
0x?
The largest curvature will roughly be €,,,,. — €,i, and the smallest curvature of the order of the
HOMO-LUMO separation €4, = €n,,+1 — €n,, The condition number is thus given by

= 6(6] - 61) . (85)

=0

a € — €mg
K — mazr . ‘maz min . (86)

Qmin €gap

In the conjugate gradient method, which is the most efficient method to minimize the DMM
functional, the error ¢;, decreases as follows (Saad)

_1 k
er X (%) . (87)

The error e, 1s defined in this context as the length of the vector which is the difference between
the exact and approximate solution at the k-th iteration step. Under realistic conditions ~ 1is
large and the number of iterations n;; to achieve a certain accuracy is therefore proportional to

i X VK = (88)

This is an important result since it indicates that in an insulator the number of iterations is
independent of system size. This result is also confirmed by numerical tests.
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The use of a conjugate gradient scheme requires line minimizations along these conjugate di-
rections. For arbitrary functional forms this has to be done by numerical techniques such as
bisection. In the case of the DMM functional we have however a cubic form along each direc-
tion. The four coefficients determining the cubic form can be calculated with four evaluations
of the functional. Once these 4 coefficients are known the minimum along this direction can
easily be found.

The forces on the atoms are given by

aQ 00 OF 00 0H

= - . 89

dR.  OFOR.  OHOR, (89

Since the method is variational, % vanishes at the solution and the force formula simplifies to
dS) o) OH oH

= =Tr [(3F? —2F3 90

ik, omom. |l JoR, 0

which can easily be evaluated.

The introduction of a localization region leads again to some subtleties. Whereas in the uncon-
strained case the eigenvalues of the final density matrix F' will all be either zero or one, this is
not any more the case when a localization region is introduced. So the truncated F' is not any
more a projection matrix but it is given by

My
F =Y n,V,(r)¥,(r), 20
m=1

where now V,,, are the eigenfunctions of the truncated F' and the occupation numbers n,, their
eigenvalues. In a certain sense the localization constraint introduces a finite electronic tempera-
ture. This is actually not surprising after the discussion of the relation between the temperature
and the localization properties in section 2. Figure 8 shows the energy expectation values of
the eigenvectors of [ versus the occupation numbers, for the case of a crystalline Si cell of 64
atoms, where the localization region extends up to the second nearest neighbors. As one sees,
the energy expectation values (V,,|H|V,,) of the eigenvectors of F" are very close to the exact
eigenvalues of H.

This close correspondence of the eigenvectors of F' to the eigenvectors of H explains why the
number of iterations needed to find the minimum does not increase as one introduces localiza-
tion constraints. Equation (85) remains approximately valid if the occupation numbers for the
occupied states are close to 1 and if the occupation numbers for the unoccupied states are very
small as well as if the energy expectation values (V,,,|H|¥,,) are close to to the exact eigenval-
ues of the Hamiltonian. These conditions are fulfilled as discussed above. Hence the condition
number for the minimization process does not change appreciably in the truncated case.

All the arguments used to prove the absence of local minima remain valid in the truncated case
as well. The force formula Equation (90) remains equally valid.

3.5 The Optimal Basis Density Matrix Minimization method

Despite its many advantages in the Tight Binding context, the DMM method has the big disad-
vantage that it is very inefficient if one needs very large basis sets (i.e. many basis functions per
atom). Large basis sets are typically required in grid based Density Functional calculations. In
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Fig. 8: An analysis of the eigenvectors of the full and truncated density matrix. In the case
of the full density matrix the eigenvectors were chosen to be simultaneously eigenvectors of
both F' and H, and the eigenvalues with respect to F' (occupation numbers) are plotted versus
the eigenvalues with respect to H. In the case of the truncated density matrix, the eigenvectors
cannot anymore simultaneously diagonalize F' and H. Therefore the eigenvalues with respect to
F' are plotted versus their energy expectation values with respect to H. Note that in the energy
expression (78) the purified density matrix 3F* — 2F? enters instead of F. The occupation
numbers of the purified version are closer to zero or one.

this case it just becomes impossible to calculate and store the full density matrix in the DMM
method even though it is a sparse matrix. From this point of view the Wannier function based
methods are advantageous since they do not require the full density matrix. The basic idea of the
OBDMM method as put forward by Hierse and Stechel [22] and Hernandez and Gillan [23] is
now to contract first the fundamental basis functions into a small number of new basis functions
and then to set up the Hamiltonian and overlap matrix in this new small basis. A generalized
version of the DMM method which can be applied to the non-orthogonal context is then used
to solve the electronic structure problem in this basis. The essential point is that one tries to
do the contraction in an optimal way. This is done by minimizing the total energy also with
respect to the degrees of freedom determining the contracted basis functions V,,. Formulated
mathematically the density matrix is given by

F(r,r')=> Ui(r)K;;U;(r') . (92)
2%

The matrix K is a purified version of the the density matrix within the contracted basis L and it
is given by

K =3LOL —-2LOLOL, (93)
where O is the overlap matrix among the contracted orbitals. The main difference between the

formulation of Hierse and Stechel and of Hernandez and Gillan is that in the first formulation
the number of contracted basis functions W; is equal to the number of electrons, whereas in
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the second approach it can be larger. In the formulation of Hernandez and Gillan the basis set
can for instance be chosen to have the size of a minimal basis set. The difference to standard
minimal basis sets from quantum chemistry is that it is optimally adapted to its chemical en-
vironment since the contraction coefficients are not predetermined but found variationally. In
practice the full density matrix is found by a double loop minimization procedure. In the inner
loop one has the ordinary DMM procedure to find the density matrix for a given contracted ba-
sis set. In the outer loop one searches for the optimally contracted basis functions W; for fixed
L.

Unfortunately the minimization of the contracted basis functions W; is ill conditioned [24] and
the number of iterations is therefore at present very large. As already explained before ill-
conditioning occurs if the curvatures in the minimum along different directions are widely dif-
ferent. Three causes for the ill-conditioning exist in the OBDMM method

e [ength scale ill-conditioning:

This problem is actually not related to the OBDMM algorithm itself but to the (uncon-
tracted) basis functions which are taken to be so-called ”Blip” functions in the present
implementation. This kind of problem can be found in all iterative electronic structure
algorithms if grid based basis functions such as finite elements are used. Its origin is easy
to understand. Let us imagine that we are searching for the lowest state of jellium using
a localized basis set associated with an equally spaced grid. By symmetry the solution is
a constant vector, i.e. all basis functions have the same amplitude in the solution vector.
Let us now assume that we explore the energy surface around the minimum along several
directions. Let us first ’go” into a direction where we add components in such a way that
the sign of the amplitude of each neighboring basis function changes. This corresponds to
a high frequency plane wave and since the kinetic energy of such a plane wave is big, the
total energy will rapidly increase if we add a such a contribution to our solution vector. If
on the other hand we add contributions that correspond to low frequency plane waves the
energy will increase much more slowly. Since in grid based methods the basis functions
are usually narrow and since one can thus construct high frequency functions the condi-
tion number can be very bad. As one can suspect from the above explanation the different
curvatures can be estimated by doing a Fourier analysis. With this information one can
then use preconditiong techniques to cure the length scale ill-conditioning problem. Such
a scheme has been proposed [25].

e Superposition ill-conditioning:
This ill-conditioning problem is essentially identical to the ill-conditioning problem of the
OM functional. If we have N, contracted basis functions and no localization constraints
the total energy is invariant with respect to unitary transformations of these functions.
The introduction of a localization constraint destroys this invariance but there is an ap-
proximate invariance left which manifests itself in very small curvatures in the minimum
along certain directions.

e Redundancy ill-conditioning:
This problem can only be found in the formulation of Hernandez and Gillan, where the
number of contracted basis functions is larger than the number of electrons. In this case
one spans a space that contains not only the occupied orbitals but also some unoccu-
pied. As was shown before in the context of the DMM functional introducing a local-
ization constraint will not assign zero occupation numbers, but only very small occupa-
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tion numbers to components corresponding to the unoccupied states in the unconstrained
case. Since these components corresponding to the unoccupied states have now very little
weight they have little influence on the total energy and one has again certain directions
where the total energy changes very slowly resulting in very small curvatures.

Another open question is whether the OBDMM has local minima. The functional is a 6-th
order polynomial with respect to the expansion coefficients of the contracted basis functions
as can be seen from Equation (92) and (93). The two overlap matrices in Equation (93) give
each a quadratic term, the two contracted orbitals in Equation (92) a linear term. Minimization
with respect to the contracted basis functions should therefore exhibit local minima. Local
minima have however not been reported with this method so far. Perhaps the following DMM
minimization step which is free of local minima saves the method from overall local minima.

4 Comparison of the basic methods

It is certainly not possible to claim that a specific method is the best for all applications. Never-
theless the methods presented so far differ in many respects and one can therefore clearly judge
under which limiting circumstances certain methods will fail or perform well. In the following
the methods presented so far will therefore be compared under several important aspects. The
comparison will be done in two categories. The first category applies to electronic structure
methods requiring a small number of degrees of freedom per atom. The Tight Binding method
belongs to the first category requiring a few basis functions per atom (or just a few degrees of
freedom in the case of semiempirical Tight Binding). But we will also include the standard
quantum chemistry methods into this first category, where one typically needs from a few up
to a few dozen Gaussian type basis functions per atom. The second category contains meth-
ods which are grid based such as finite difference schemes, or where the basis functions can
be associated with grid points such as in finite element basis functions or blip basis functions.
In these methods one has typically many hundred degrees of freedom per atom. Even though
the density matrix is a sparse matrix, O(N) methods which calculate the full density matrix can
not be applied to the second category of electronic structure methods. The memory require-
ments alone are already prohibitive. As pointed out before we can expect that the localization
region in a 3-dimensional structure comprises on the order of 100 atoms. The density matrix
will exhibit significant sparseness only for larger system. Assuming that we just have 100 basis
functions per atom the storage of the density matrix would require about 1 Gigabyte of memory
which is the upper limit of current workstations. The comparison in the large basis set class
will therefore comprise only the methods which are Wannier function based namely FOP, OM
and OBDMM. The comparison in the small basis set class will comprise FOE, DC, DMM and
OM, excluding two methods which are explicitly targeted at large basis sets, namely FOP and
OBDMM.

4.1 Small basis sets
The comparison of the methods applicable to small basis sets is based on the following criteria:

e Scaling with respect to the size of the localization region:
The size of the localization region is taken as the number of atoms contained within it.
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Only the FOE method has a linear scaling with respect to the size of the localization re-
gion. As one increases the size of the localization region the nonzero part of each column
of the Chebychev matrices increases linearly implying also a linear increase in the ba-
sic matrix time vector multiplication part. In the DMM method the CPU time increases
quadratically since the numerical effort for the basic matrix times matrix multiplications
grows quadratically with respect to the number of off-diagonal elements of the matrix.
From the comparison of the scaling behavior of all these methods one can thus conclude,
that the FOE method will clearly perform best if large localization regions are needed.
The FOE method is thus also the only method which can be faster than traditional cubi-
cally scaling algorithms if no localization constraints are imposed. In this case its overall
scaling behavior is quadratic whereas all other methods have a cubic scaling with a pref-
actor which is significantly larger than the one for exact diagonalization.

e Scaling with respect to the accuracy:

A detailed comparison of the polynomial FOE method and the DMM method under this
aspect has recently been given by Baer and Head-Gordon [26] for systems of different di-
mensionality. Their analysis is based on the assumption that the decay constant -y is given
by the tight binding limit of Equation (37). They conclude, that in the one dimensional
case the DMM has the best asymptotic behavior, but its prefactor is much larger than the
one of the FOE method, so that the FOE method is more efficient in the relevant accuracy
regime. In the two dimensional case they have the same asymptotic behavior, but the FOE
method has again a much smaller prefactor. In the most relevant three dimensional case
the FOE method has both the best asymptotic behavior and prefactor. These results are
plausible after the preceeding discussion of the scaling with respect to increasing local-
ization region size. When one wants to improve the accuracy the most important factor
is the enlargement of the localization region. It is also clear that in higher dimensions the
number of atoms within the localization region grows faster than in lower dimensions and
that the scaling with respect to the number of atoms will thus become the decisive factor
in 3 dimensions. In lower dimensions the number of iterations has higher relative impor-
tance, favoring the DMM method. A comparison of the FOE and DMM method applied
to quasi two-dimensional huge tight binding fullerenes by Bates and Scuseria [27] is also
in agreement with the above statements. They found that the FOE and DMM methods
give nearly the same performance with a small advantage for the FOE method.

e Scaling with respect to the size of the gap:
In the FOE method the degree n,,; of the Chebychev polynomial increases linearly with
decreasing gap (Equation (69)). At the same time the density matrix decays more slowly.
It follows from Equation (37) that the linear extension of the localization region grows
as e;alp in the applicable weak binding limit. The volume of the localization region and
the number of atoms contained in it grow consequently as e;fp. Taking into account the
number of iterations (Equation (69)), the total numerical effort increases thus as e;fp. In
the DMM method the number of iterations also increases with decreasing gap but more
slowly namely like eg_alp/z as follows from Equation (88). Taking into account the above
discussion of the scaling properties of the DMM method with increasing localization
region we obtain the overall scaling of e;al;’ / ? which is higher than the scaling behavior of

the FOE method. So in contrast to what one might first think the FOE methods performs

best in this limit. In three-dimensional metallic systems, the FOE method is thus to be
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expected to be the only method which will work efficiently at good accuracies.

e Finding a first initial guess:
No initial guess is required in the FOE method (except perhaps for the potential in a
selfconsistent calculation). In the DMM method an extremely simple and efficient input
guess for the density matrix is just a diagonal matrix that sums up to the correct number
of electrons.

e Cross over point for standard Tight Binding systems:
The FOE method has the lowest reported cross over point for the standard carbon test-
system in the crystalline diamond structure. For the FOE method it is around 20 atoms
[20] and for the DMM it is estimated [21] to be around 90 atoms.

e Influence of the range of a sparse Hamiltonian matrix on the performance:

In the FOE method the numerical effort increases strictly linearly with respect to the
number of nonzero elements per column which depends cubically on the range of the
Hamiltonian matrix. In the case of the DMM method it can be shown [21] that one has to
calculate intermediate product matrices only up to a range which is the sum of the range
of the density matrix and the Hamiltonian matrix. As long as the range of the Hamiltonian
is small compared to the range of the density matrix the number of operation increases
therefore only very weakly with respect to an increasing Hamiltonian range. The DMM
method therefore outperforms the FOE method under such circumstances [28]. Hamil-
tonian matrices of relatively large range are found in the context of Density Functional
calculations using Gaussian basis sets. For Tight Binding calculations, in contrast, the
range of the Hamiltonian is usually small.

e Scaling with respect to the size of the basis set:

Let us now consider the case, where the number of atoms as well as all other relevant
quantities, such as the size of the localization region, are fixed and where we only in-
crease the number of basis functions per atom m;. Both the number of columns 7 and the
number of off-diagonal elements per column m of the density matrix will then increase
linearly with respect to m;. We will also assume that the Hamiltonian is a sparse matrix
with m,, off diagonal elements per column. In the DMM method the numerical effort will
consequently grow cubically with respect to my, since the number of operations needed
for the multiplication of two sparse matrices of linear dimension n with m off-diagonal
elements per column is proportional to n m?. The FOE method scales cubically, since
three factors are increasing. The number of columns in the density matrix, the number of
coefficients in each column and the number of off-diagonal elements of the Hamiltonian
matrix. In addition to the arguments showing the unrealistically large memory require-
ments of these methods when used with large basis sets, we thus also find a cubic scaling
which prohibits the use of these algorithms in this context.

e Memory requirements:
The DMM method requires the storage of the whole sparse density matrix. If one takes
advantage of the fact that the matrix is symmetric storage can actually be cut into half.
In the method only the subparts respectively the columns of the density matrix which are
consecutively calculated need to be stored. The storage requirements are therefore greatly
reduced compared to the DMM method, namely by a factor of roughly N,;.
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e Quality of forces:

In the case of the variational DMM method the force formula is particularly simple (Equa-
tion 90) since only the Hellman Feynman term survives. It has to be stressed that this
formula is however only exact if one has succeeded in reducing the gradient with respect
to all variational quantities really to zero. If, in a simulation, the gradient is not reduced
to zero within the required precision because too many iterations would be required, er-
rors will creep into the calculated forces, making them inconsistent with the total energy.
From this point of view the situation is easier in the FOE method. Since the FOE method
is not an iterative method (in the sense that one iterates until a certain accuracy criterion
is met), the force formula of Voter (Equation (58)) will always give forces consistent with
the total energy.

Consistent forces are a prerequisite for the conservation of the total energy in Molecular
Dynamics simulations. Even with consistent forces there are however other factors which
can cause deviations from perfect total energy conservation in Molecular Dynamics sim-
ulations such as finite time steps and events where atoms enter or leave the localization
region.

In summary, we see that the performance depends critically on many parameters which can
change from one application to another. Performance superiority claims based on test runs of a
particular system have therefore to be taken with caution.

4.2 Large basis sets

Whereas the methods which are mainly applicable in the context of small basis sets showed
important differences under the various comparison criteria, the behavior of the FOP, OM and
OBDMM methods are quite similar under most of these criteria. The comparison of the methods
which are applicable to large basis sets will therefore be based only on a smaller set of important
criteria.

e Scaling with respect to the size of the basis set:

As pointed out before the methods compared in this sections all have a reasonable scaling
with respect to the size of the basis set allowing thus their use in the context of very
large basis sets. In contrast to the discussion of the same point within the small basis
set framework, the number of nonzero matrix elements of the Hamiltonian is typically
independent of the resolution of the grid, i.e. of the number of basis functions. The most
important part of the FOP and OBDMM algorithms, the application of the Hamiltonian
matrix to a wave vector scales therefore linearly. At the same time all these algorithms
require at some stage the calculation of an overlap matrix among the occupied orbitals.
This part scales quadratically as discussed before.

e Finding a first initial guess:
As discussed in the comparison part dealing with small basis sets, it can be difficult to
find an initial guess for Wannier function based methods. This problem does not exist in
the OBDMM method if the number of orbitals is larger than the number of electrons. In
this case the orbitals are just basis functions and by analogy with the usual tight binding
or LCAO basis sets it should always be possible to generate a physically motivated initial
guess for these orbitals.
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e Required number of iterations:
As mentioned both the OBDMM method suffers from ill-conditioning problems and re-
quires therfore frequently an excessive number of iterations for the iterative minimization.
No such ill-conditioning exists for the FOP method.

e Cases where the methods become highly inefficient:
None of the 3 methods have ever been applied to metallic systems, and they are all ex-
pected to fail in this case.
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