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1 Introduction

In the last decades, the discovery of high-temperature superconductivity in cuprate oxides (e.g.
YBayCu307) and of colossal magneto resistance in manganites (e.g. La;_,Sr,MnOs) have
driven a lot of attention toward transition metal oxides [1]. The properties of these systems
are very sensitive to doping, pressure and temperature; transition metal oxides could there-
fore become the building blocks for future technologies. The varieties of exotic phenomena
that these materials exhibit — from unconventional superconductivity and striped phases (e.g.
La;_,Sr,CuQ,) to Mott insulating behavior (e.g. V,03), charge (e.g. Lag5Cag5MnQO3) and
orbital (e.g. LaMnOs) ordering — are believed to be the effects of the interplay between
electron-electron Coulomb repulsion, charge, spin and orbital degrees of freedom and chem-
istry. Unfortunately, because of the strong electron-electron interaction, the standard ab-initio
band structure approaches do not work for these strongly correlated systems. Thus a full un-
derstanding of their properties is, at present, missing; the most striking example is that, even 20
years after the discovery, the microscopic mechanism behind high-temperature superconductiv-
ity is still unknown.

In this lecture I will introduce the modern approach to the electronic structure of strongly cor-
related materials. The outline of the lecture is the following. First I will explain why traditional
methods fail for these systems and discuss the effects of electron-electron repulsion. In order to
treat these effects, many-body methods (beyond mean field) are needed. While the full many-
body Hamiltonian of the system cannot be solved, few-band models can now be studied. I will
show how to construct small but realistic model Hamiltonians, extracting the parameters from
ab-initio calculations. I will then illustrate how to solve these models with a recently developed
many-body method, the dynamical mean-field theory.

2 From ab-initio to many-body model Hamiltonians

Solids are complex many-body systems made of electrons and nuclei. While the heavy nuclei
usually form a lattice and for many purposes can be considered as classical point charges, the
light electrons move very fast in the potential of the nuclei. The (electronic) Hamiltonian of
such a many-body system can be written as
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where 7' is the kinetic energy, Ve is the external potential, and the last term the electron-
electron repulsion and where we adopted atomic units (¢ =m = h=1). The Coulomb interac-
tion is usually very large, and makes the theoretical description of the electronic structure (the
solution of Hamitonian Eq. (1)) a very difficult task. In the presence of such a two-body inter-
action, the motion of each electron is strongly dependent on the motion of all the others and it
is in practice impossible to calculate the many-body wavefunction even of a single atom. As
introduced in the first lecture by R. Zeller, in 1964 a way out from this problem was found: den-
sity functional theory (DFT). This theory shifted the focus from the many-body wavefunction
to physical quantities, in particular the charge-density. Hohenberg and Kohn [2] proved that
the total energy of an interacting system is a functional of the charge-density and that, in addi-
tion, the ground state charge density minimizes the total energy; soon after Kohn and Sham [3]
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showed that an interacting system can be formally mapped onto an equivalent non interacting
system. By minimizing the total energy for fixed particle numbers, they obtained the equations
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and with the ground state density given by n(r) = .1 |W;(r)|%. These equations describe a
single electron in an effective potential, Vg, the sum of an external potential, V.., an electro-
static (Hartree) term Vg, and an additional exchange-correlation term, V,.. The Kohn-Sham
equations are a tremendous simplification of the original many-body problem and still are in
principle exact. In practice, however, only approximations to the exchange correlation con-
tribution are known. Among those the local density approximation (LDA), proposed in the
70s [4], turned out to be very successful. The generalized gradient approximation (GGA) is
also used very often in electronic structure calculations. With a given choice of the exchange-
correlation potential the ground state energy and the electronic structure is obtained by solving
self-consistently the Kohn-Sham equations. At present DFT (based on LDA or GGA) can be
used to understand and predict the properties of many materials, to design new materials, han-
dle very large many-particles systems and it is used in different fields, ranging from physics to
chemistry, biology and geology. For this success the noble prize in chemistry was awarded to
W. Kohn in 1998 [5].

The main success of DFT (LDA/GGA) is that, thanks to the Kohn-Sham equations, it let us think
about complex many-body systems in terms of single particle orbitals (V;) and single particle
energies (¢;). Although the Kohn-Sham equations are only an auxiliary problem and the Kohn-
Sham energies are only Lagrange parameters (except for the highest energy, €y, which gives,
in principle, the ionization energy, € y=-I), they have been used with success also to calculate
quasiparticles masses, Fermi surfaces, and in general to understand the electronic structure of
complex materials. The main weakness of DFT is, instead, that there is no systematic procedure
for improving V. and that it is not entirely clear why LDA/GGA are so successful for many
complex systems.

However, there are some systems for which DFT fails, even qualitatively. Since this is true for
all of the known approximations of V,. (LDA, GGA, ....), I will from now on refer to LDA
results only. The systems for which LDA fails are those with localized d or f electrons: in these
materials the electron-electron Coulomb repulsion is particularly strong and the one-electron
picture, obtained from Kohn-Sham equations, does not apply. Among the strongly correlated
systems there are many of the modern challenges: high-temperature superconducting cuprates,
colossal magneto-resistence materials, Mott and charge transfer insulators and strongly corre-
lated metals, heavy-Fermions and Kondo systems [1]. Mott insulators [6] are the most striking
example of this failure. In LDA, a crystal with an odd number of valence electrons per cell has
partially filled bands and it is therefore metallic. However, there are materials in this category
which are, experimentally, paramagnetic insulators: V5,03 or CoO are famous examples. The
origin of this insulating behavior is the strong electron-electron Coulomb repulsion, poorly de-
scribed by LDA. A simple model which is believed to properly describe this interaction is the
so-called one-band Hubbard model

H=-1 Z cjgcjg—f—UZniTnilET—i-U. 4)

<i,j> 0
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Fig. 1: Pictorial view of the metal-insulator transition. For U = 0 the system is metallic; the
spectral function N(E) shows a single feature, the quasi-particle peak. Increasing the ratio
U/W the quasi-particle peak becomes progressively more narrow and some spectral weight is
moved toward higher/lower energy; two broad features appear, the so-called lower (LHB) and
upper (UHB) Hubbard bands. For larger U/W the system eventually becomes an insulator:
the quasiparticle peak disappears and only the Hubbard bands are left.

Here ¢ is the hopping integral from site ¢ to its nearest neighbors j, n;, = CZTUCw, cj»a (ci») creates
(destroys) an electron with spin o at site ¢, and U 1is the on-site Coulomb repulsion. If U = 0,
at half filling (n = 1 electron per atom), the Hamiltonian (4) describes a half-filled metallic
band with a band width WW; in the atomic limit (W = 0) it describes an (insulating) collection
of isolated atoms. In the general case the kinetic energy T and the Coulomb repulsion U will
compete: For U/W <« 1 (weak Coulomb interaction or wide band) the system is metallic;
increasing U the quasi-electrons become progressively more heavy, and for U/W > (U/W). ~
1 the system is an insulator. No single-electron theory can describe such a Mott metal-insulator
transition. The solution of the simple one-band Hubbard model, Eq. (4), already requires the
fool-blown machinery of non-perturbative quantum many-body methods, and, apart from very
special cases, can be still be achieved only within some appoximation. A schematic picture of
the Mott transition is displayed in Fig. 1.

Very recently a new and successful many-body tool was developed, the dynamical mean-field
theory (DMFT) [7, 8]. In this approach the lattice Hubbard model is mapped into an effec-
tive single-site quantum impurity model, the parameters of which are found self-consistently.
DMEFT is a mean field method; differently than in traditional mean field techniques, however, in
DMEFT the (local) dynamical fluctuations are fully taken into account; only spatial fluctuations
are frozen. Using the dynamical mean-field theory, the phase diagram of the Hubbard model
could be studied in detail [8].

The self-consistent DMFT cycle requires, in each iteration, the solution of a quantum impurity
model. For this purpose several many body approaches, some rigourous (e.g. quantum Monte
Carlo and exact diagonalization), some approximate (e.g. iterative perturbation theory or the
non crossing approximation) are used. Here we will focus only on one scheme, the scheme
based on quantum Monte Carlo (QMC) [9]. With this numerically exact method, already the
solution of a simple one-band model at high (1000 K) temperatures takes significant time on
a normal workstation. For realistic problems (many orbitals, lower temperature) the compu-
tational effort increases substantially; to solve the full many-body Hamiltonian (1) is totally
impossible. Only the most advanced parallel supercomputers presently start to make realistic
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Hubbard models accessible. It is therefore fundamental to construct minimal models, in which
only the strongest interactions and the most important states are retained. This conclusion is
general, i.e., it is valid not only for the QMC scheme but also for all the other rigorous schemes.
Exact diagonalization is, for example, limited by the prohibitive size of the Hilbert space, and
therefore by the memory; again, while few-band models are accessible, complex many-orbital
systems become easily out of reach.

The LDA electronic structure of most transition metal oxides exhibits few partially filled and
narrow d bands: high temperature superconducting cuprates have a half-filled x2-y? band at
the Fermi level, manganites have partially filled e, states, several correlated metals and Mott
insulators have partially filled ty; or e, bands. It is therefore natural to use generalized few-
band Hubbard model for describing the low temperature properties of these materials. Such a
model may be written as

1
— T
o = _A Z timvjmlacim o ij’ o + 5 A Z Umm’nim o imlo’
im,jm’, o imm/o#o’
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Here t;,, jm - is the hopping integral between site orbital m on site ¢ and orbital m’ on site j.
The electron-electron repulsion is a local (on-site) interaction, the sum of a direct and exchange
term; for reasons that will be explained later we neglected the spin-flip terms in the exchange
interaction.

The model Hamiltonian (5) has many free parameters: all the hopping integrals and the Coulomb
couplings. It is therefore necessary to calculate as many of these parameters as possible from
first principles. To date this is still a problem for the interaction terms, while the hoppings,
which determine the chemistry of the material, can be reliably determined. In the next section I
will show how they can be derived ab-initio by means of Wannier functions.

3 Realistic many-body models from LDA

3.1 From the Bloch to the Wannier representation

In strongly correlated transition metal oxides, the difference among materials and the micro-
scopic origin of exotic phenomena can be understood only if Coulomb repulsion and chemistry
are treated on the same footing. Simple model Hamiltonians can easily overlook the non trivial
part of the material dependence; they could be oversimplified, the parameters chosen could be
unrealistic, and thus they can easily lead to wrong conclusions.

A strategy to construct realistic models is to extract the parameters from band structure calcula-
tions. Electronic structure techniques solve the Kohn-Sham equation for a given approximation
of the exchange potential and for a periodic system

v?
B

——+ Veff(r)l U = g;(k)U,. 6)

As a result, they yield the energy bands ¢;(k) and the corresponding Bloch functions, ¥} (r).
LDA electronic structures are, in general, very complicated to analyze, since they can extend
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over several Rydbergs and can include, depending on the method used for solving the Kohn-
Sham equations, up to thousands basis functions. Electronic structure techniques based on
minimal local basis sets (like the Linear Muffin Tin Orbital (LMTO) method ) produce smaller
matrices and are more accessible to a physical interpretation. Still, it is difficult to disentangle
the relevant parameters from the full LDA band structure. Thus, in order to construct many-
body models, Wannier functions became recently very popular and have already proven to be
quite powerful. Formally, a Wannier function is obtained as a Fourier transform of the Bloch
functions, Vi (r),

wh(r) = % /dk\Iff((r) exp(—ik - T), @)
where € is the volume of the primitive cell, the integral is extended to the first Brillouin zone
and T is a reciprocal lattice vector.
The Wannier function for a given band is not unique, because the Bloch function can be multi-
plied by an arbitrary phase factor; consequently there are different methods for obtaining Wan-
nier functions from LDA calculations. A very efficient approach is the downfolding technique
based on the recently developed N*"-order Muffin Tin Orbital method (NMTO) [10] which I
will describe in the next section; the NMTO Wannier functions, the localization of which is
assured through the choice of boundary conditions, provide direct insight into the chemistry of
materials. Other techniques of constructing Wannier functions exploit the arbitrariness of the
phase and minimize the spread (defined with a given, but essentially arbitrary, criterium) of the
Wannier functions [12]; these techniques, developed for plane-wave based methods, have been
exported also to other band structure methods [16].
For strongly correlated systems, Wannier functions, if sufficiently localized, are the ideal build-
ing blocks for constructing (from first principles) generalized Hubbard models; Wannier func-
tions yield directly the real space Hamiltonian, i.e., hopping integrals and on-site energies for
the bands they span.

3.2 Electronic structure calculations with the NMTO method

NMTO is a special technique to solve the Kohn-Sham equation in a periodic potential. To solve
this equation, space is divided into spatially separate regions (overlapping spheres of radius sg,
centered on the atoms, and interstitial regions); the Kohn-Sham (or Schrodinger) equation is
solved in each region separately and only at the end the solutions are matched at the interface.
Close to the nuclei (inside the atoms) the potential changes rapidly (~ 1/7) with the distance,
while in the interstitial regions between the atoms it varies more slowly. Furthermore, free
atoms are spherical and, to good approximation, they remain almost spherical in solids, in
particular close to their nucleus. Thus the potential can be approximated with a superposition
of spherically symmetric (atomic-like) potentials, vy, with range si and a constant interstitial
potential (Muffin Tin approximation)

‘/eﬂ = ZUR(I' — R)@(|I‘ — R| - SR) + thz®[<r)7 (8)
R

where © is the step functionand ©; =1 — ) g O((Jr — R| — sgr)).
Inside a sphere, the Schrodinger equation may be written as [13]

1 [82 I(1+1)

5 ﬁr%,m(r) - TSOa,Rl:| Yo + vp(r)pem(r)Yr = e ri(r)Yr, 9)
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where Y7 is a spherical harmonic with quantum numbers L = Im. The regular solutions of (9)
for a chosen energy and momentum are the partial waves ,

OrL(En, TR) = Pen 1YL, (10)

where rp = r — R. In the NMTO method the partial waves are calculated for a set of energies
€n = €0,---,En. Next, hard spheres are constructed around each atom; hard spheres have a
radius ap and, differently from the potential spheres, they do not overlap. The Schrodinger
equation is then solved in the (empty) interstitial region, where it can be written as

V2 = —(e — Va0 = —k*. (11)

There are different ways of solving Eq. (11). Here the solutions — the screened spherical waves
— are expressed as a superpositions of spherical Hankel functions. Furthermore, the screened
spherical wave centered at site R and of character L, g1 (e, [r — R|), is constructed with the
following boundary conditions

Y., ifR'=R;

0 ifR #R. (12)

Yre(e, [r — R| = ar/) = {
This means that the screened spherical wave — by construction — vanishes on all the hard
spheres except its own, where it equals the spherical harmonic Y7,. The above choice of the
boundary conditions helps in matching the interstitial solution to the partial waves and assures
the localization of the NMTOs. To compute the screened spherical wave is usually the major
task in an NMTO calculation.
At this point we can match the solutions in the different regions and construct the kinked partial
waves, linear combinations of a partial wave and a screened spherical wave. The kinked partial
wave, ¢rr (e, |r — R|) is, by construction, a solution of the Schrodinger equation in all space
except at the hard spheres, where it has a kink. The true solution is the linear combination
|W) = >, cri|¢re) of kinked partial waves for which the kinks cancel. The kink-cancellation
condition leads to the secular equation

K(e)-c=0. (13)

This equation is also know as the screened Korringa-Kohn-Rostoker (KKR) secular equation
and K (¢), the kink-matrix, is the screened KKR matrix [11]. In KKR the non-zero solutions of
the linear homogeneous Eq. (13) give directly the eigenvalues ;. Another possibility to obtain
eigenvectors and eigenvalues is the linearization approach which is at the basis of the successes
of the LMTO method or the polynomial interpolation used in the NMTO method. Let’s see how
the linearization works. The first order Taylor expansion of the KKR matrix around the energy
€, yields

(V|K(e)|V) =0~ K(e,) + (e —e,)K(e)) + ..., (14)
and the corresponding expansion of the wave function is
|0) = |p(e,)) + (e — &,)|d(e,) + ... (15)

Solving the secular equation at zero order (|1)) = |¢(e,))) leads to the generalized eigenvalue
problem defined by the Hamiltonian and overlap

(D(en)|H —eld(e,)) = =K(e),  (8(e)|6(e.)) = K(e,). (16)
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At this point, it is useful to introduce the set of Muffin Tin Orbitals (MTO)

X(£)) = 1(2)) — o) K (e,) K (e). (17)

The MTOs are a complete basis with respect to the Muffin Tin potential, because a given solu-
tion of the KKR equation, |¥) = |¢(c;))c;, can be expressed as |x(g;))c; = |o(g;))c; = |¥),
with the same coefficients; the MTO is independent of energy to linear order, because |x(¢,)) =
0. We can use the MTOs to calculate the effective Hamiltonian and overlap to any order. In
order to do his we use the following results, which hold for the kinked partial waves

(@e)lo(en) = K(e)  (9e)loe) = K(e,)/20 (e)d(e) = K(e,)/3L (18)

In the MTO basis, the first order solution of the secular equation (13) is therefore

K(e,)

(O — 2 V() = —K () + K@) e)

K Ye,)K(s,), (19

with the overlap

KM (e) = K- KK = - K '(e)K(e))

+ K(e,)K Ye) =LK (e,)K (e,). (20)
The first order MTOs, |x™")(g,)), correspond to a set of LMTOs, they are, however, complete
to linear order with respect to the Hamiltonian and yield eigenvalues correct up to fourth order.
The NMTO method is a generalization of this. Now the solution of the Schrodinger equation
is obtained by means of a polynomial interpolation of the true solution; therefore the NMTOs
span the space of the true solutions W;(s;, r) with an error of order x (g, — &) ... (&; — en).
The set of NMTOs can be written as

N
ngj\[?@) = Z Z R (En, r)LijR/L/,RL (20

n=0 R'L’

where LY are coefficients in the Langrange interpolation formula. In the limit where all the
energies € . . . €y are identical to €, these coefficients can be expressed as a function of G(¢) =
K~'(¢) and its energy derivatives. It can be shown that the NMTO Hamiltonian can then be
expressed as

-1 -1

(]CVJ) (2(1;\/) (]CV,‘)
Mg — Ny — | = i il 22

) o L .
where (G is the N energy derivative of G in a similar way the overlap can be written as

-1 -1

@) (2N +1) )
(M, — | 2 - ~ 23
I NI oN+11 ) | ™ (23)

Thus, in the limit of a condensed mesh, the N=1 NMTO (two energies) yields the LMTO Hamil-
tonian and overlaps, Eq. (19) and Eq. (20).
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Fig. 2: The LDA electronic structure of SrVOs obtained with the NMTO method. The black lines
are the NMTO bands (full Hamiltonian). The red lines are the bands obtained by downfolding

all the states but the to,; the N+1 energies used for the interpolation, measured with respect to
the Fermi level, are ¢ = 0.6 eV, ¢1 = 0.2 eV and ¢, = 0.8 eV. From Ref. [20].

The NMTO band energies are then obtained as the eigenvalues of the orthogonal Hamiltonian

H = ("M H ™), (24)
where
|X(N)L> = !X(N)><X(N)|X(N)>_1/2 (25)

are symmetrically orthonormalized NMTO.
The NMTO Wannier basis for these bands can then be obtained by Fourier transform of the
symmetrically orthonormalized NMTOs

0
X —T —R) = o / ANk, 1) exp(—ik - (R + T)). (26)

The NMTO Wannier basis set yields the hopping integrals and the on-site energies.

Up to now we have considered all the channels active. However, in order to construct minimal
many-body models, we need to disentangle the important degrees of freedom from all the rest.
This is achieved by means of the downfolding procedure, described in the next session.

3.3 Downfolding and NMTO Wannier functions

Let’s consider the cubic perovskite SrVOsg; this system has a cubic primitive cell with V at
(0,0,0), O at (1/2,0,0) and Sr at (1/2,1/2,1/2). Fig. 2 shows the electronic structure of this
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material obtained with the NMTO method [19, 20]. We see that the O bands are totally filled,
the V-ty, bands are filled by one electron, and the V-¢, bands as well as the Sr bands are empty.
Experimentally, this system is a strongly correlated metal with mass enhancement of ~ 2 — 3.
The LDA band structure suggests that only (or mainly) ty, electrons are involved in the low
energy physics. It is therefore reasonable to think that a 3-band Hubbard model is the minimal
model required to describe this system. In order to obtain the parameters of this model, the O-p,
Sr-d, Sr-s and V-e, channels have to be integrated out: only the ty, degrees of freedom can be
retained. To do this we use the NMTO-based downfolding method. The channels are divided
into passive (P) and active (A). For each active channel a kinked partial wave is constructed
from all the partial waves and from a screened spherical wave; such a kinked partial wave has
kinks only in the active channels, while it is smooth in the passive (or downfolded) channels.
The NMTOs constructed from these partial waves can have passive-channel character both at
their own site and at other sites, while the projection of the NMTOs on the active channels
vanish at other sites. Thus the passive channels reshape the NMTOs and, in general, make
the NMTOs longer range. It is important to notice that these NMTOs span a number of bands
equal to the number of active channels; furthermore in order to span a given set of bands, the
Bloch states which describe these bands should have sizable active-channel character; finally,
the energies for the polynomial interpolation must be chosen within the targeted bands, as done
in the example shown in Fig. 2.

The NMTO downfolding may look like a complicated procedure; it is therefore useful to com-
pare it with the simpler Lodwin downfolding method. Let’s start from the eigenvalue problem

Hya Hap A CA
= 27
(HPA HPP)(CP> <€(CP> 7)

and let’s define the matrix K (¢) = —H + ¢, so that the equation above can be rewritten as
K(e) - ¢ = 0. Using the Lowdin procedure we can elimintate cp and rewrite the Hamiltonian
in the space of active channel A as follows

Hpp —e = —Kpule) + KapKph(e)Kpa = —Kp(e). (28)

In a similar way, eliminating cp, one can rewrite the wavefunction as

[T(e)) = |¢n(€)) = [@a)ca + [¢p)cp = [Pa)ca — [dp) Kpp(e) Kpaca

This Hamiltonian and the wavefunction depend on energy; in order to obtain the eigenvectors
and the eigenvalues, the energy dependent term is usually approximated to linear order around
some energy ¢, €.g. the Fermi level or the center of the active channel bands; this leads to the
generalized eigenvalues probelm defined by the Hamiltonian and the overlap

Hua—¢,=—Kple,), Oan=Kple,). (29)
Similarly, one can also obtain the first order wavefunction
W(z,)) = pp(en)) — |6p(e.) K5 () Kp(en). (30)

Although Lowdin downfolding is often used, the energy bands obtained with the linear ap-
proximation are usually only a poor approximation of the original the LDA bands, especially
if massive downfolding (from LDA to one or few bands) is required. The NMTO downfolding
works in a similar way as the Lowdin procedure, but reduces the error in the wavefunction to
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Fig. 3: SrVO3: The xy-NMTO real-space orbital (before orthogonalization) in the xy-plain. The
orbital was obtained by downfolding all the channels but the tyy. The V is at the center, the O
are located at (£1/2,0), (0, £1/2).

order N. The SrVOs;-ty, bands obtained by downfolding all channels but the ty, are displayed
in red in Fig. 2: we see that these bands (obtained with N+1=3 energies) are basically identical
to the original LDA bands.

In order to better explain how downfolding works in practice, we simplify the StVO3 Hamilto-
nian neglecting the Sr states and adopting a tight binding (TB) approximation for O-p and V-d
states. The aim is to eliminate the filled O-p states, the empty e, states and only retain the ty,
states. First we notice that, in the TB approximation, since SrVOs is a cubic perovskite each
V-d state is coupled only to two O-p states, different for each d orbitals. Thus the Hamiltonian
for the, let’s say, xy-orbitals will look like (in k space)

H | Iova®) | l6on®) | ldoy(k)
(Pvay(k)| €d —2tpgsink, /2 | —2t,qsink,/2
(90,2(K)| | —2tpasink, /2 Ep 0
(D0, (K)| | —2tpgsink, /2 0 Ep

Downfolding the O orbitals with the Lowdin procedure, the energy-dependent Hamiltonian and
overlap

. 42 A2
H(e)—e=gq+ —2L - 1

ko k,)=—Kp(e), O=K
p— 6_%(cos + cos ky) p(e) p(e)

can be obtained. In addition, the Bloch function for the xy-orbital may be written as

2tpqasin k. /2 2t,asink, /2
+ pd—/‘¢01x(k>> + Pd—y/
E—¢p £—¢p

|¢D xy(k» = |¢my(k)> |¢02y(k)>- (31)

In the linear approximation

[0 2y(0)) = 6D 2y(0)) = 160wy (€0)) KD (60) Kp(e0)-
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SrvO3

t (meV)

neighbor

Fig. 4: Hopping integrals vs. neighbors in SrVOs5 for the xy-Wannier functions. Only the neigh-
bors in the xy-plane are considered. The values are taken from Ref. [20].

Eq. (31) shows that the downfolded wavefunction has tails on the O-sites, which is what we
also see in the NMTO Wannier function Fig. 3. Again, the linear approximation yields a poor
expression of the eigenvectors. In the NMTO the wavefunction is of order N and the error is
oc ™M (g; —€¢) ... (g; — en), where the constant ¢!) depends on the size of the set and it is
larger the smaller the set is. Clearly, the larger the number of downfolded orbitals, the smaller
is the energy window over which the bands are correctly reproduced, the more important is to
go beyond the linear approximation; in addition, since their interpolation error is different, the
downfolded NMTOs and the orginal ones are not equivalent although they both span the, e.g.,
to, bands.

We obtained Eq. (30) by using the Lowdin procedure. The expression for the downfolded
NMTO is — in the general case —rather complicated. In the limit of a condensed mesh,
however, in the linear approximation the downfolded N=1 NMTO, |xp(e,)), can be writ-
ten as (30); in this case |¥(e,)) = |xp(e,)), Kp is the downfolded kink-matrix, Kp(e) =
Kaa(e) + Kap(e)Kpp(e)Kpa(e) and |pp(e)) a downfolded partial wave, defined as

|6p(e)) = |9a(e)) — lop(e) Kpp(e) Kpale). (32)

3.4 Wannier functions as a basis for the Hubbard model

The Fourier transform of the downfolded (symmetrically orthogonalized) NMTO Hamiltonian
yields hopping integrals and on-site energies; in a similar way the Fourier transform of the (sym-
metrically orthogonalized) NMTOs yields a set of NMTO Wannier functions. These Wannier
functions can be used as a basis for the many-body Hamiltonian, i.e., the generalized Hubbard
model, Eq. (5). There are several approximations behind using LDA Wannier functions (con-
structed with the NMTO or other methods) as correlated electrons. In this section I will discuss
some of them.
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First, in the Hubbard model, Eq. (5), the Coulomb interaction is local (on-site). This is rea-
sonable for the localized atomic d states; Wannier functions are, however, longer-ranged than
atomic d wave-functions, and the validity of this approximation depends therefore on their de-
gree of localization. Thus it is important, for a given set of Wannier functions, to know how
small the long range Coulomb terms are compared to the on-site interaction. While it is not
clear, at present, how to construct the Wannier functions which best satisfy this requirement,
the localization of NMTO Wannier functions is assured by the choice of boundary conditions
used in constructing the screened spherical waves. Downfolding delocalizes the Wannier or-
bitals. Nevertheless, before orthogonalization, the NMTO cannot, by construction, have active
channel character on other sites and it is therefore unlikely that the Coulomb repulsion in the
Wannier basis is long-ranged. This can be seen in Fig. 3 for the xy-orbital in SrVOs5: the orbital
has O-p but no V-xy tails. Orthogonalization introduces however (small) longer-ranged xy tails.
In the case of SrVOj; Figure 4 shows that, for this material, despite both massive downfolding
and orthogonalization, hopping integrals decay very rapidly after the second neighbors, an in-
dication of a rather strong localization. Of course the actual degree of localization depends on
the orbital and on the system, and has to be verified case by case; e, orbitals hybridize more
strongly with O than ty, orbitals, and therefore, for transition metal oxides with partially filled
e, states (such as LaMnOs), downfolding the O-p states, usually has a bigger impact on the
extent of the Wannier functions than for the ty, systems.

A second important point is that LDA Wannier functions are constructed by downfolding one-
electron states. This is different from downfolding the many-body Hamiltonian, an operation
that would lead, in general, to complex effective Hamiltonians with, e.g., three- or higher-
body interactions. The Hubbard Hamiltonians constructed from LDA Wannier functions do not
carry any information on such kind of many-body terms. A simple example: for SrVO3; we
downfolded (one-electron downfolding) the empty e, channels. Clearly, we are neglecting all
the effects of the ty;-¢, Coulomb repulsion; in reality this repulsion is, most likely, of the same
order of magnitude as the ty;-to, Coulomb interaction. If ty,-¢, fluctuations become important
in some temperature regimes and/or for some specific properties, the ty, Hubbard model is
insufficient. There is no systematic way to know a priori how important, in a given basis, the
neglected terms are for the low temperature-properties of a given system, and in most of the
cases it can only be verified afterwards.

Finally, the effect of the Coulomb interaction of the downfolded channels is included as a renor-
malization (screening) of the Coulomb integrals. Before downfolding (i.e. for the full Hamilto-
nian (1)) the Coulomb interaction is exactly given by the bare Coulomb integrals for the Wannier
functions, e.g., the direct- and exchange-Coulomb integral would then simply be

1
Uiy = <mm' — ‘mm’>, (33)
12
/ ]' /
Jmm: = <mm — mm >, (34)
12

in a given Wannier basis set. The elimination of many states, however, makes the problem
of calculating U very hard, because all the eliminated states contribute to screen the electron-
electron repulsion. At present there is no reliable way of calculating the screened Coulomb
interaction in a given basis, although different methods have been proposed and are used [18].
Thus U,y and J,,,, essentially remain free parameters and have to be obtained empirically,
e.g., by the analysis of trends in series of similar materials.
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4 DMFT solution of realistic many-body models

4.1 Dynamical mean-field theory

In this session we discuss how to solve a generalized Hubbard model with dynamical mean field
theory (DMFT) [7, 8]. The Hubbard model is very complicated because it describe a lattice of
strongly correlated electrons. In DMFT this lattice problem is replaced by and effective single-
site quantum impurity model (e.g. the Anderson model) embedded in an effective medium (the
so-called bath), the parameters of which are determined through a self-consistent procedure.
DMEFT is a generalization of the static mean field theory used in statistical mechanics. It is
dynamical because it takes into full account local quantum fluctuations, i.e. temporal fluctuation
of the number of electrons at a given site. It is local because spatial fluctuation are frozen; thus
the self-energy depends on the frequency but it does not depend on the k vector

Y(k,w) ~ X(w). (35)

This is exact in infinite dimensions[7], but in realistic cases it is an approximation. Nevertheless,
DMEFT is a very powerful tool to study strongly correlated metals and the Mott metal-insulator
transition, and more in general all kind of phenomena in which time fluctuations are the key
ingredient. A review of the early successes of DMFT is reported in Ref. [8].

The strength of DMFT is the simplification introduced mapping a lattice problem in a single
impurity model; still the effective quantum impurity model remains a many-body model and it
has to be solved with an appropriate many-body technique. There are many possible methods
or impurity solvers which are commonly used at this purpose [8]. As already anticipated, here
I will only present the scheme based on quantum Monte Carlo (QMC).

In this scheme, the single impurity model is solved on the imaginary time axis. We will call G
the impurity Green function and G, the bath Green function.

The local Green function G is given by

G(t) = Zexp(—iwm‘) /de Ne) (36)

iwn, + p— e — X(iwy,)

n

where N (¢) is the U = 0 density of states, 4 is the chemical potential, ¥ (iw,,) is the local
self-energy (zero in the first iteration), w, are the Matzubara frequencies, w, = (2n + 1)7//,
with § = 1/kgT. The bath Green function is obtained from G and ¥ through the equation

Go'=G'+3. (37)

Go, together with the Coulomb terms, are then used to construct the effective quantum impurity
model, described by the effective action

B B B
Seft = —/ dT/ dr’ Z (TG T — T)eo (7)) + U/ drng (T)n (7). (38)
0 0 = 0

This effective single site model is then solved with the Hirsch-Fye QMC algorithm [9]. The key
steps are the following. First the imaginary time is discretized into L slices of size AT = §/L;
consequently, the action is also discretized. The partition function is then obtained by using
then Trotter decomposition

A~

exp (=ATT — A7U) ~ exp(—A7T) exp(—ATU), (39)
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where T is the kinetic and U the Cou}omb repulsion term of the effective model. Second,
the quartic terms in the action (due to U) are decoupled by means of a Hubbard-Stratonovich
transformation

exp(=ATUnn; + (ATU/2)(ny +ny)) = %exp(/\s(nT —ny)), (40)

and A = arccoshlexp(A7U/2)]. The variable s is a Ising field (s = £1); this transformation is
performed at every time slice, and therefore s; . .. sy, Ising variables are introduced. This leads
to the following relation

G = Gog exp(V) +exp(V) - 1 (41)
where V' = exp(oAs;). The partition function becomes
Z = Z det[Gy(s1,...,s.)] det[G | (s1,...,sL)] (42)
81...8[,

and the interacting Green function

1
G, = 7 Z det[Gi(s1,...,s)]det|G(s1,...,50)|Go(S1,--.,5L).

81...5L,

The interacting (impurity) Green function G is then obtained by stocastic Monte Carlo sam-
pling, using det[G;(s1,...,s.)]det[G|(s1,...,s.)] as a stocastic weight. When a move is
accepted the Green function is updated. The following Dyson equation

G'=A"'G, A=1+(1-G)[exp(V) —exp(V")], 43)

which relates any couple of Ising spin configurations, should in principle be used for updating
G (clean update). The inversion of the L x L matrix A is, however, very time consuming; in
practice, an approximate formula, the so-called dirty update, is used for most updates, and only
few times the clean update Eq. (43) is actually used. At the end of the QMC simulation, the
impurity Green function G is obtained; the new self energy is then calculated from Eq. (37).
At this point the self-energy can be used in Eq. (36) to obtain G and then calculate the new
bath Green function; the procedure continues till self-consistency in the self-energy is reached.
Usually 10-15 iterations are necessary.

The output of a DMFT simulation is the green function G on the imaginary time axis. The
spectral function

Aw) = %G@ +0) (44)

on the real axes is obtained from the converged GG(7) by analytical continuation. The standard
algorithm used is the maximum entropy method [14]. It is important to notice, that with this
technique, the spectral function is extracted from the Laplace transform

G(r) = /Oo deA(w),

o 1+ exp(—pw)

1.e. solving an ill-posed problem; in order to obtain reliable spectral functions the statistical
errors of G(7) must be very small and properly kept into account.

We point out that, in this DMFT scheme, the computational demanding task is the numerical so-
lution of the single impurity problem by means of QMC. The CPU time scales linearly with then
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Fig. 5: Contour plot of the to; Wannier functions for LaTiOs. The spheres represent the atoms:
La (orange), Ti (green), O (blue). From Ref. [20].

number of sweeps and scales with the third power of the number of slices. As a rule of thumb,
UB/L ~ 1/2 usually yields a reasonably small Trotter error; thus, the lower the temperature
the large should be L. Therefore QMC simulations are often performed at high temperatures
(IT' ~500-1000 K); these temperatures are usually appropriate for studying the paramagnetic
phases of strongly correlated metals and Mott insulator. Supercomputers make lower temper-
atures accessible. For the 7' = ( case other impurity solvers (e.g. exact diagonalization) are
used.

4.2 LDA+DMFT

Recently it has been suggested that DMFT could be used in combination with LDA [15] to
study realistic model Hamiltonians. The basic idea is to use the LDA density of states (DOS),
projected onto the correlated orbitals, as a input for DMFT calculations, and then proceed as
described in the previous session. LDA+DMFT was applied with success to many materials.
This implementation of LDA+DMFT is however useful for one-band cases and/or for cubic
multiband systems only. However, many interesting strongly correlated systems have many
bands and lower symmetry. The implementation of a general LDA+DMFT scheme requires
(i) a method for constructing material-specific multiband Hubbard Hamiltonians and (ii) an
appropriate DMFT impurity solver for such a multi-band Hubbard model. Recently such a
LDA+DMFT scheme has been implemented using (i) NMTO Hamiltonians and (ii) a general-
ized Hirsch-Fye quantum Monte Carlo alghorithm[19].

The local Green function matrix is obtained as

| 1
G(r) = Zn: exp(—inT) Xk: i + p— HPA = S(iwn) -

where HLPA is the LDA Hamiltonian for the correlated electrons (obtained downfolding all the
states but the correlated orbitals). Here the self energy, the bath Green function and the impurity
Green function are all matrices.

The procedure is similar to the one described in the previous session; the bath Green function
matrix, Gy, is obtained from Eq. (37), and from G, the quantum impurity model is defined
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through the effective action Seg. For a M -band Hubbard model, however, in order to decuple
the on site Coulomb interaction for each time slice, M (2M — 1) Ising fields are required.
Clearly, this means that the CPU time can increase dramatically when the number of orbitals
increase. The G matrix obtained from QMC is then used to calculate the new self-energy, and
therefore the new bath Green function matrix, till self-consistency on the self-energy is reached.
The LDA+DMFT approach described above is very general and can be successfully used to
study transition metal oxides and f electron systems. Before we discuss a recent application of
this method, it is important to underline two points.

The Hubbard model Eq. (5) is the sum of a kinetic energy and a correlation term; in LDA+DMFT
the kinetic energy is obtained from LDA, thus some of the electron-electron correlations explic-
itly described by the Coulomb interaction are also included in the kinetic energy term. To avoid
double-counting, a correction should be added to subtract the LDA contribution; unfortunately,
this correction is unknown. There is a case in which the double-counting correction is just a
shift of the chemical potential: the case in which the LDA Hamiltonian describes e.g. only
strongly correlated d electrons and the weakly correlated states are all downfolded. Therefore,
this is the most common approach to LDA+DMFT. In many cases, however, it is necessary to
work in a larger basis, which includes both correlated and uncorrelated channels. If this is the
case (see e.g. a recent implementation of LDA+DMFT [16]), the double counting correction
has to be explicitly included; different recipes to calculate this correction are commonly used.
Finally, it is worth to underline that, within the Hirsh-Fye QMC scheme, the exchange Coulomb
interaction in Eq. (5) is usually approximate to the density-density term only

U=U> N tnim |+ (U =2J) > iyt | + (U =3J) > Ny oMt o (46)

m i(m#m') io(m#m')

The spin-flip terms in the exchange interaction are neglected. This approximation is adopted
because the (small) spin-flip terms can give rise to a sign problem; new QMC algorithms which
can treat the full exchange interaction (e.g. continuos-time quantum Monte Carlo) are however
under development. In Eq. 46 we also adopted the common assumption that, as in the isotropic
case, Uy = U, Upyy = U — 2J and J,,,,y = J.

5 Application to orthorhombic 3d' perovskites

The series of strongly correlated 3d! perovskites, which includes SrvVO3, CaVOs3, LaTiO3 and
YTiO3, has been studied for decades for their unusual electronic and magnetic properties, aris-
ing from narrow 3d bands and strong electron-electron interaction. These systems are particu-
larly interesting because they are very similar and still display very different properties.

We have already described SrVOs; this material is a cubic perovskite and its primitive cell in-
cludes a single VOg octahedron, at the center of a Sr cubic cage. The other systems (CaVOs,
LaTiO3 and YTiOj3) exhibit the GdFeO3 distortion: the octahedra tilt around a [100] axis and
rotate around a [001] axes, the cation cage is distorted and the primitive cell includes 4 octahe-
dra. Going along the series (StVO3 — CaVO3; — LaTiO3 — YTiOj3) the GdFeOg distortion
increases; furthermore, the strength of correlation effects (measured by the mass renormaliza-
tion in metals and by the Mott gap in insulators) increases too, and a metal-insulator transition
occurs between CaVOs3 and LaTiO; [6].
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Fig. 6: The LDA+DMFT spectral function at 770 K (thick line) vs. the LDA density of states
(thin line). From Ref. [19]

In order to understand this Mott metal-insulatro transition we used the LDA+DMFT technique
described in the previous session [19, 20]. Here I will summarize only some of the results.

First we obtained the LDA electronic structure with the NMTO method. In all the 3d! per-
ovskites the t; LDA bands are occupied by one electron and well divided from the empty e,
bands and the filled O bands, as shown in Fig. 2 for SrVO;. Thus we downfolded all the degrees
of freedom but the ty, and we obtained the LDA Hamiltonian and the NMTO Wannier functions
for the ty, bands. The t;; NMTOs are displayed in Fig. 5 for LaTiO3. We found that the t5, band
width, W, decreases going from SrVOs; to YTiOg [20]. This is visible in Fig. 6 were the LDA
DOS is shown for each system. We calculated the spectral function by means of LDA+DMFT
for several values of U between 3eV and 6eV. The Mott transition was reproduced rather well
for U ~5 eV, the same for all materials (see Fig. 6); this is satisfying, because U is expected to
be similar in vanadates and titanates [17]. For this value of U, SrVO3 and CaVOg are metallic
with a mass renormalization 2.2 and 3.5 respectively, in reasonable agreement with the values
obtained from optical conductivity (2.7 and 3.6); the titatates are insulator, LaTiO3 with a small
(0.3 eV) gap and YTiO3 with a larger gap (1 eV), again in agreement with experiments. The
position of the LHB is around -1.8 eV for SrVO3; and CaVO3 and around -1.5 eV for the insula-
tors, in very good agreement with photoemission data [6]. The analysis of the spectral function
matrix (Fig.7) provides further insight. We found that, in the insulators, only one orbitals is
occupied, the lowest energy crystal field orbital (different for YTiO3 and LaTiOs). In LDA,
this orbital is only ~ 120 meV (LaTiO3) and ~ 200 meV (YTiO3) lower in energy than the
other two; thus orbital fluctuations are large. Electron-electron repulsion strongly suppresses
these fluctuations, as Fig. 7 shows: only the lowest energy (red) level is occupied. The effect of
the small crystal field splitting is surprisingly strong, but it can be understood by analyzing the
influence of orbital degrees of freedom on the Mott transition. It is known that the critical ratio
(U/W), increase with orbital degeneracy [21]. Close to the Mott transition, the quasiparticle
peak has a width ~ ZW, with Z ~ 1 — U/U,. Thus, although rather small compared to W and
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Fig. 7: The orbital resolved spectral function of LaTiOs and YTiO3 for U = 5 eV and in the
basis which diagonalized the DMFT occupation number matrix. These states turned out to be
similar to the crystal field levels, with the most occupied state (red curve) corresponding to the
lowest LDA energy level. From Ref. [20]

U, a crystal field splitting of the order of ~ ZW reduces the orbital degeneracy (in the extreme
case, from a three to a one band model), and favors the transition to a Mott insulating orbitally
ordered state [22].

6 Concluding remarks

In this lecture I have briefly presented the modern approach to the theory of strongly corre-
lated systems, the so-called LDA+DMFT method. In this approach optimal many-body model
Hamiltonian are constructed from first principles, and than solved by means of the dynamical
mean field theory (DMFT). I have shown that Nth-order Muffin Tin Orbital (NMTO) Wannier
functions are a suitable basis for building small but realistic models. Other types of Wannier
functions [12, 16] are currently available and/or under development.

Although rather successful in describing the low-temperature physics of many correlated ox-
ides, LDA+DMFT is only a first step towards a theory with predictive power for strongly cor-
related materials. Many questions are still open. An important issue is establishing a reliable
scheme to calculate the screened Coulomb interaction [18]. A related problem is finding the
best set of Wannier function, those that minimize the range of the electron-electron repulsion.
Furthermore, spatial fluctuation are important for many correlated materials and many phenom-
ena: spin waves in magnetic systems, phase transitions with non local order parameters, the
competition between magnetism and Kondo effect in heavy fermions. These effects cannot be
described by a local self-energy. To correct this flaw different types of cluster extensions of
dynamical mean field theory (CDMFT) have been suggested and are already used. Finally,
there are proposal of going beyond model Hamiltonians, getting rid of parameters, e.g. the
GW+DMEFT [23] scheme. There is still a lot to do before a fully ab-initio theory fo strongly
correlated system will be available.
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Appendices

A Atomic units

The atomic units can be obtained as follows. In the MKS units system /& = h/4, the electron
mass m., the electron charge e, 47ey have the following values

h o~ 10546 107**Js  [ML*T™]
me ~ 9109410 kg [M]
e ~ 1.6022107" C Q]
Areg ~ 11127107 F/m [M'L73T2Q?,.

The dimensions of each constant are written on the right. We now want to define a system of
units in which the four constants above are all 1, Ai=m, =e=4mey=1. Thus we have to solve
the following system of equations

ho o= 1aime/to
me = 1my
e = 1leg
dreg = 1tae*/agm?

where ag 1s 1 atomic unit of lenght, ¢, 1 atomic unit of time, and so on. The solution of this
system yields

4
Law lenght = aqp = — o ~5.2918 107" m
mee
la.u. mass = mg=m, ~ 9.1094 107! kg
lau. charge = ¢y =e ~ 1.6022 107" C
4 2p3
Lau time = f = TP o g9 10717

meet
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