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1 Introduction: colloids and soft matter

Perhaps the most fascinating aspect of soft matter science lies in the fact that the physical
systems considered in this field are not atomic or molecular in nature: the constituent particles
of what are synonymously known as complex fluids are instead macromolecular aggregates,
whose spatial extent lies in the domain between 1 nm and 1 gm. Although there is an abundance
of naturally occurring soft matter systems (one only needs to think about proteins, viruses, and
DNA molecules), a large variety of complex fluids are man-made [1,2]. It is hardly exaggerated
to state that the overwhelming majority of the products of the food, pharmaceutical, detergent
and chemical industries are indeed complex fluids. Therefore, there is an overwhelming need for
an understanding of the mechanisms by which the physical characteristics of the constituting
particles of the fluid are having an influence on the macroscopic properties of the physical
system. This is indeed the central question of the field of statistical physics (equilibrium or
otherwise): Given a collection of a huge number of microscopic particles under a small number
of fixed external parameters, which are the properties of the macroscopic system? The question
is hard enough to answer even when the constituent particles are simple atoms; the degree of
difficulty increases by at least one order of magnitude in the case of complex fluids, in which
the internal architecture and fluctuations of the aggregates play an additional role. But this
challenging problem offers at the same time a chance to design new materials with unusual
structural and rheological properties: only in the field of soft matter do we possess the possibility
of changing the properties of the constituent particles externally. For atomic fluids, the particles
are nature-given and the freedom to influence their interactions is absent.

A particluar category of soft matter systems are known under the name colloidal suspensions;
membranes, block copolymer melts, networks of filaments are other ones in the long list. Orig-
inally, the term colloids was employed to describe spherical, rigid particles of mesoscopic di-
mensions, 1.e., hard colloids dispersed in a microscopic solvent. Examples of such particles are
chemically synthesized polysterene [3, 4], silica [5, 6] or poly-methyl-methacrylate (PMMA)
particles [7, 8] that serve as realizations of hard-sphere solutions [9] or charge-stabilized col-
loidal suspensions, which have long attracted the interest of theorists and experimentalists
alike [9-11]. Aspherical rigid particles, such as rods or platelets are also described under the
name “colloids”, whereas recently the term has been extended to also include also soft particles
(polymer chains, polyelectrolytes, star polymers, dendrimers) with mesoscopic dimensions. In
this contribution we offer an overview of the theoretical tools employed with the goal of describ-
ing and understanding the structural and thermodynamic properties of these complex systems
and the connections that can be made to experimentally measurable quantities. In view of the
complexity of the solvent/solute system and the vast discrepancy in the length- and time-scales
associated with the two components, a coarse-graining approach is nevessary: a truly micro-
scopic theory for such highly complex molecules would be prohibitively complicated. There-
fore, we sketch the basic principles of the coarse-graining procedure in Section 2, in which we
introduce, in particular, the concept of the effective interaction between complex macromolec-
ular aggregates. In section 3 we turn our attention to the many-body problem of a unifrom fluid
made up of colloidal particles and to the current theoretical approaches employed to describe
the fluid structure and thermodynamics. In section 4, we present the powerful tool of density
funtional theory, which offers the suitable theoretical framework for the description of nonuni-
form fluids and fluid interfaces. In section 5, we summarize and conclude. In the Appendix,
we present a primer in the concept of a functional of a given function, in which the interested
reader can also find an exposition to the rules of functional differentiation.
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2 The coarse-graining strategy: effective interactions

Imagine that you want to visit the performance of a celebrated ballet ensemble, whose prima
ballerina is world-famous for her extraordinary dancing skills. In this case, you would like to
have a seating as close to the scene as possible, at a place where you can resolve every detail of
the movement of the artists: the waving of their arms and the elegant, skillful motions of their
legs and bodies are indeed important for obtaining the full aesthetic pleasure from the perfor-
mance. Details of the motion in short length- and time-scales are relevant and quite a bit would
be lost if one were seated at the last row, where just a diffuse ensemble of performers could
be discerned. The situation is different if one wishes to attend the opening ceremony of the
Olympic Games, for instance. Here, it is the collective behavior of a large number of individ-
uals performing coordinated movements that matters. One is interested in seeing, from a more
distant perspective, the large-scale shapes and patterns formed by the colorful groups of the
performing individuals. The relevant motions take place at time scales that are longer than the
ones involved in moving one’s finger or arm; and the length scales of interest are correspond-
ingly longer than the size of any single individual participating in the (literally!) many-body
process. Here, a choice of first-row seating would be unwise. Much more would be gained if
one positioned oneself farther away from the spectacle, so that the eyes automatically perform
a ‘coarse-graining’ procedure of the event and the short scales get effortlessly eliminated from
the view.

When dealing with soft matter systems, we are faced with a similar problem of coexistence
of various different length- and time scales. Indeed, almost every complex fluid is a solution
or dispersion of large particles in a molecular or atomic solvent. The solvent particles are
much smaller and much faster that the dissolved ones. If, in addition, the solute particles are
polymeric entities, there is a vast separation in the scales of the individual monomers and the
aggregate as a whole. A choice has to be made, therefore, as to which kind of phenomena one is
interested in. If the motions of the individual atoms are relevant, then a microscopic description
of the system is of order. However, a host of interesting problems pertaining, e.g., to the overall
phase or rheological behavior of the suspension, are rather connected to longer time scales and
larger length scales. Small angle scattering experiments with thermal neutrons can hardly probe
correlations at the monomer scale and they rather deliver information about the structure of the
system at the mesoscopic scale. Optical tracer experiments probe the slow, diffusive motion of
the macromolecular aggregates, in which the ultrafast motion of the individual atoms is lost.
Accordingly, one would like to construct a theoretical tool that encaptures the coarse-graining
procedure performed by such experiments: the small and fast degrees of freedom should be
eliminated from the problem, with their influence being ‘hidden’ in the form or in the parameters
of an interaction potential between the large and slow degrees of freedom only. This approach,
of successful, also has the advantage of already performing the first step in bridging the scales:
it takes us from the microscopic to the mesoscopic scale and the next step to the macroscopic
domain is often not terribly complicated. Fig. 1 shows a sketch of the procedure specifically for
the case of star polymers [12—14].

The coarse-graining procedure has its roots at the McMillan-Mayer theory of solutions [15] and
its formulation by Kirkwood and Buff [16], for a review of its applications to colloids see the
article by van Megen and Snook [17]. The theoretical tool that expressed the coarse-graining
at the mathematical level is called effective interaction. A detailed, statistical-mechanical de-
scription of the derivation of the effective interaction and its properties has been given, e.g., in
Ref. [18]. Here we only sketch the main ideas of the procedure. Suppose that we are dealing
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Fig. 1: The various length scales at which a star polymer solution can be looked upon, ranging
from microscopic to macroscopic and covering in this way about eight orders of magnitude.
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with a system whose Hamiltonian contains M ‘small’ degrees of freedom that are to be elimi-
nated and N large ones that are to be kept. Let V;;(r”) be the interaction potential between the
large degrees of freedom, Vo (s™) the one between the small ones and V;»(r”, s) the cross-
interaction term, where {r"¥'} and {s} denote the coordinates of the large and small particles,
respectively. The configurational part of the canonical partition function Z is given by

Z = /drN/dsM exp { =BV (r™) + Via(rV, sM) + Voo (s')]}
= [ exp Vi) [ ds¥ exp {-AlViale¥ ") + Varls™))
— /drN exp [—ﬁVH(rN)} Z(rN), (1)
vyhere 6= (k:BT)*l, kg denoting Boltzmann’s constant and 7' the absolute temperature, and
Z(rN) is, evidently, the constrained partition function of the small particles under a given con-

figuration {r"} of the big ones. By defining the corresponding constrained free energy ﬁ(rN )
as

F(rN) = —kgTln Z(rM) 2)
and the effective interaction potential function Vg (r) as
Ver (V) = Vi (&) + F(xV), 3)

it is evident from eqs. (1)-(3) above that the partition function of the system can be expressed
as a trace over the position coordinates of the large particles only and reads as

Z - / dr exp[—BVa (). @)

An unavoidable consequence of the partial trace is that the effective Hamiltonian contains not
only pair interactions but also the whole sequence of many-body forces. An explicit, diagram-
matic expansion in the semi-grand ensemble that brings about the structure of the many-body
terms has been carried out in Ref. [19]. Usually, however, the pair-potential approximation is
employed and indeed there are only few cases for which this has proven inadequate. In other
words, we express the effective interaction potential as a sum of pair interactions, explicitly

Ver (1Y) = we(|r; — 1), (5)
1<)

where r; ; denote the positions of the 7, j-particle. Furthermore, there is an overall extensive
and coordinate-independent term in the effective Hamiltonian that also derives from the above-
mentioned procedure. This so-called ‘volume term’ does not influence the correlation functions
of the large particles, though, that remain unaffected by the procedure of deriving the effective
interaction. It does influence the total thermodynamics, however, so care must be taken in
treatments regarding, e.g., phase equilibria [19-21].

3 Classical uniform fluids

The translational invariance of H.s implies that the one-particle density of the system is a
position-independent constant which is simply equal to the average particle density. In the ab-
sence of spontaneous symmetry breaking, the physical state of the system is also translationally
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invariant and we are dealing with a uniform fluid of density p:

) =p=1; (©6)

where N stands for the number of particles enclosed in the macroscopic volume V.! Accord-
ingly, in a fluid, the two-particle density depends only on the magnitude of the difference of its
arguments:

p® (e, x") = p? (| —r')). @
In the theory of classical fluids, a quantity of central importance for the investigation of the pair
structure of the system is the radial distribution function ¢(|r — r’|) defined through:

PP (e — ') = pPg(|r —1')). ®)

Physically, the quantity pg(|r — r’|) is proportional to the conditional probability density of
finding a particle at position r’ given that another particle is located at position r. The typical
shape of g(r) for a dense liquid is shown in Fig. 2(a).
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Fig. 2: Typical shapes of (a) the radial distribution function g(r) and (b) the structure factor
S(k) of a dense, classical liquid. The length scale a is set by the density, a = p~'/3. No-
tice the successive coordination shells in real space (represented by the maxima of the radial
distribution function), reflecting the short-range order of the fluid state.

Another important quantity is the structure factor S(k) of a fluid defined as a three-dimensional
Fourier transform of the total correlation function h(r) = g(r) — 1:

Sk)y=1+p / d®rh(r)e” T, ©)

which depends only on the magnitude & of the wavevector k since h(r) is a radially symmet-
ric function.? A typical structure factor for a dense liquid is shown in Fig. 2(b). It can be

IUnless explicitly stated otherwise, the thermodynamic limit, N,V — oo with N/V = p, constant, will be
assumed throughout.

2We denote the integration in d = 3 spatial coordinates but Eq. (9) as well as Eq. (11) that follows hold in
arbitrary spatial dimensions.
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shown [22] that the scattering intensity from a liquid sample at momentum transfer k is pro-
portional to S(k). This makes the structure factor an important diagnostic tool for testing the
accuracy of liquid-state theories, in which this quantity is usually calculated by means of some
approximation.> Moreover, the quantity S(k) offers a path to thermodynamics, as its k = 0
value is proportional to the isothermal compressibility xr of the system [22]:

For the theoretical approaches to the determination of the pair structure in the fluid state, one im-
portant function is the direct correlation function ¢(r) connected to h(r) through the Ornstein-
Zernike relation which has the form:

h(r) = c(r) + p/d?’r'c(|r —1'|)h(r"). (11)

The Ornstein-Zernike relation is exact. As it connects two unknown functions, one more rela-
tion or closure is needed in order to determine g(r) and ¢(r). Closures are approximate relations
which arise from exact diagrammatic expansions of g(r) in terms of ¢(r) but with certain classes
of diagrams ignored. The exact relation between ¢(r) and ¢(r) reads as [22]

g(r) = exp[=pu(r) +g(r) = 1 —¢(r) + B(r)], (12)

where v(r) is the pair potential and B(r) is the so-called bridge function, consisting of the sum
of all elementary diagrams that are not nodal. The bridge function is of short range and and
rather insensitive to the detailed form of the pair potential [24]. All known closures can be
thought of as approximate relations for the form of B(r). Common closures are the Percus-
Yevick (PY) and hypernetted chain (HNC) approximations [22]. In the PY closure, the approx-
imation for B(r) reads as

Bpy(r) = =[g(r) = c(r)] + 1+ Infg(r) —c(r)]  (PY), (13)
whereas in the HNC the approximation is made that the bridge function vanishes:

Egs. (13) and (14) together with the exact relation (12) yield the common forms of the PY and
HNC closures as

c(r) = g(r) [1 =] (PY) (15)
and
glr) = e O+h—e)  (gNQ), (16)

The Ornstein-Zernike relation, supplied with a closure, leads to the determination of the quan-
tities ¢(r), g(r) and S(k) for a given interaction potential v(r) and at given thermodynamic

3The scattering intensity is directly proportional to S(k) only when we consider scattering from point particles.
When we deal with large particles, such as colloids, then the form factor P (k) of the particle has to be taken into
account and the scattering intensity is proportional to the product P(k)S (k) [23].
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conditions, e.g., density and temperature. Various other quantities of interest, such as the pres-
sure P or the energy U can be calculated as integrals involving the radial distribution function:

2rp? [
P=kgTp— 7;p / 30’ (r)g(r)dr, (I7)
0
and
T o0
U _ 38T | omp / r2u(r)g(r)dr, (18)
N~ 2 ;

where ¢'(r) = dv(r)/dr. The free energy F' can then then determined by thermodynamic
integration of P (the pressure route) or of U (the energy route) as given in eqs. (17) and (18)
above. A third possibility is to use eq. (10) and the thermodynamic definition of the isothermal
compressibility, x7 = (VO?F/9V?)~L. This constitutes the compressibility route. If the exact
radial distribution function g(r) were known, then all three routes would yield identical results
for the free energy. Due to the approximations in constructing a closure, however, this is not the
case: every route yields a different free energy curve. This is the problem of thermodynamic
inconsistency of the closure [22].

The procedure to obtain the structure and thermodynamics of translationally invariant systems
(liquids and gases) described above, is known under the name integral equation theories (IET’s).
For every possible closure, one has to solve two coupled integral equations. There is by now a
large variety of closures in the literature and the accuracy of a given closure depends sometimes
on the characteristics of the interaction potential. For example, the PY closure is known to
yield very accurate results for short-range, hard interactions, whereas the HNC is accurate for
long-range, soft potentials [25].

The problem of thermodynamic inconsistency mentioned above is usually addressed by modi-
fying the integral equation through the inclusion in the closure of a function which contains one
or more additional parameters [24-28]. These parameters are then tuned until thermodynamic
consistency is achieved, obtaining in this way not only the thermodynamics but also the pair
structure with high accuracy. A particularly simple closure which yields excellent results for
purely repulsive potentials was introduced by Rogers and Young [25] and reads as

exp [y(r)f(r)] —1

g(r) = exp[=fu(r)] |1+ 70 , (19)
where
V(r) = h(r) —c(r) (20)
and the function f(r) is chosen to have the form
f(ry=1—exp(—ar). (21

Thermodynamic consistency is achieved by varying the parameter . A comparison between
eqgs. (19), (21) and (15), (16) shows that the Rogers-Young closure reduces to the PY when
a = 0 and to the HNC when o = oo.
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4 Nonuniform fluids: density functional theory (DFT)

4.1 The basic principles of DFT

In the preceding section, we discussed the pair structure and the thermodynamics of homoge-
neous fluids, also called uniform fluids, to emphasize the fact that their density is independent
of the position. Of course, when we say ‘density’, we refer not to an instantaneous value buy
rather to a time- or ensemble average. The process of obtaining this quantity can be visu-
alized as follows. Imagine dividing the whole space into increasingly small cells of volume
AV and let AN(r) be the number of particles enclosed in the cell centered at the position
r. Consider the ratio AN(r)/AV in the limit AV — 0 and take the ensemble average of it,
(limay—o AN(r)/AV). In a uniform fluid, the latter quantity is r-independent and equal to
the usual, homogeneous density p of the system. However, in many situations in condensed
matter physics, the systems involved are spatially inhomogeneous, i.e., the density turns into
a spatially-dependent field p(r) in thermodynamic equilibrium.* Typical examples are the
nonuniform density profiles arising in phase-separated liquids or liquid mixtures, in fluids under
the influence of external potentials (confining walls, optical-laser fields, electrostatic or mag-
netostatic fields) and, in the most extreme case, the vast inhomogeneities appearing when the
translational symmetry of the system breaks and the fluid freezes into a crystalline solid. Den-
sity functional theory (DFT) us with a powerful tool to accurately analyze these situations and
make nontrivial predictions on a number of properties of the physical systems under considera-
tion.>

Let us start with a more precise definition of the (inhomogeneous) density p(r). Consider a
system of NV pointlike particles of mass m in the volume V and let {r;},i = 1,2,..., N be their
positions and {p;} their momenta. Suppose, without restriction to pair potentials, that U ({r;})
is the potential energy function describing their interactions and that the system is additionally
placed under the influence of a one-body external potential V., (r). The Hamiltonian Hy for
the N-body system is, therefore®

N N
Hy(p",rV) = 2[)7% +U(r1,r2,...,rN)—|—ZVext(r,-). (22)
i=1 i=1

We employ the grand ensemble, in which the chemical potential p is fixed and the particle
number N is allowed to fluctuate, defining thereby the grand canonical partition function = as

(11

= dp” [ dr” exp[-G3(Hy — uN)], (23)
NZO h3N N N

and the associated grand potential 2 as

QV, T, 1) = —kpTIn=. (24)

“In the presence of time-dependent external fields, the one particle density becomes a spatiotemporal field
p(r, t). Recent developments allow for the extention of DFT-approaches also to dynamical problems [29-36].

SHere, we will present a concise exposure to the principles of DFT, avoiding proofs of the theorems associated
with it. For a more detailed discussion, we refer the reader to the standard work of R. Evans [37].

®In this section, we place a hat above the symbol of a classical operator O that depends on the canonical
variables of the system, in order to distinguish it from its thermodynamic average.
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The expectation value of any operator @(pN ,t™) is given in this ensemble as

1

. 1 & . .
O =(0m", ")) = EZ TN N /de/drNO(pN,rN)eXp[—ﬁ(HN—uN)]. (25)
N=0 ’

The so-called one-particle density operator p(r) is defined as

N
pr) = d(r—ry), (26)
=1

and the one-particle density p(r) is then nothing else but the expectation value of this operator
in the sense of Eq. (25) above, namely

p(r) = (p(r)). 27)

Evidently, [ d%rp(r) = (N), with (N) denoting the expectation value of the particle number’
in the system for the given p.

For a given interaction function U ({r;}) and fixed temperature 7" and chemical potential 1, the
definitions above make it clear that p(r) is uniquely determined by the external potential Vg (r).
The key property that lends DFT its power lies in the fact that also the opposite is true: a given,
equilibrium density profile py(r) also uniquely determines the external potential V. (r) that
gives rise to it. The proof of this important theorem follows the lines of reductio ad absurdum
and can be found in Ref. [37]. The implication is, then, that the grand potential {2 becomes a
functional of py(r), i.e., po(r) uniquely determines the thermodynamics of the system.® Taking
into account Egs. (22)-(27) above, we see that {2 can be expressed as

smdzﬂm+/&%mam—me, (28)

where the intrinsic free energy F'[po] explicitly depends only on py(r) and is, evidently, also a
unique functional of the one-particle density. In interpreting Eq. (28) above, it must be kept in
mind that the external potential V.. (r) that appears there is not arbitrary but rather precisely
the external potential that gives rise to po(r) as the equilibrium profile.

Motivated by the form of Eq. (28) above, we now introduce an extended functional Q([p], [Vixe])
of both p(r) and Vi (r) as

§MmW@D—ﬂm+/¥rMMﬂ—me (29)

Evidently, when p(r) = po(r), Q([po], [Vext]) = Q[po], the grand potential of the system and
F[po] becomes the intrinsic Helmholtz free energy of the same. The computational power
associated with DFT comes from a variational principle, which states that Q([p], [Vey]) attains
its minimum value for the equilibrium density profile py(r) [37]:

Q[p], Vext]) > Q[po], [Vext]) = Qlpo] for p(r) # po(r). (30)

"We display all integrations in d-dimensional space, as the results of this section are general, and we will return
to the familiar, d = 3-space in practical examples that follow.
8For a crash-course on functionals and functional differentiation, see Appendix A.
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The equilibrium density profile of a system, po(r), can therefore be determined by minimizing
Q([p], [Vext]) with respect to p(r), viz.

DD, e
pPr p(r)=po(r)
or, using Eq. (29)
(;F([f)] = b — Vext (). (32)
P p(r)=po(r)

The free energy functional F'[p] is hence the object of central interest in DFT. For each interac-
tion potential there exists a unique functional F[p| that determines the equilibrium configuration
of the system under the influence of an arbitrary external potential V. (r) with the help of Eq.
(32). For noninteracting particles, we can write down this functional exactly. It is referred to as
‘ideal free energy’ Fiq[p] and it takes the form

Falp] = keT / A p(r) {In [p(r)A’] =1}, (33)

with the thermal de Broglie wavelength A. Application of the minimization principle, Eq. (32),
to an ideal gas then leads to the equilibrium profile

po(r) = A% exp(Bp) exp[—BVext (r)], (34)

which we recognize as a generalization of the barometric law.
For interacting systems it is customary to separate F'[p] into the ideal free energy contribution
of Eq. (33) and the excess contribution Fy,[p| arising from the interactions:

Flp] = Falp] + Fex[p)- (35)

The excess free energy is a generating functional for the direct correlation functions of n-th
order, ¢\, which are defined as

) L 0" BFe|p]
P )(1'1, re,...,Iy;[p]) = _5p(r1)5p(r2) - 6p(ry)’

(36)

The direct correlation function ¢(r) of a fluid is precisely ¢'? (r1,rs; [p]) in the limit of a spa-
tially homogeneous density field. In this case, the translational and rotational invariance of the
underlying physical system imply that ¢'?) depends on r; and r, only through the combination
r=|r; —ral.

A great deal of effort has been devoted in the last thirty years, in order to construct approximate
functionals F[p], at least for some model interaction potentials that can serve as a reference
for more realistic ones. The pioneering work on the construction of approximate functionals is
due to Ramakrishnan and Yussouff (RY) [38], who proposed a functional Taylor expansion of
Fux[p] around the uniform fluid, truncated at the second order. The decisive merit of the RY-
theory is its generality: it can be applied to any interacting system and the functional that ensues
is generic in form, with the input dcf of the uniform fluid carrying the signature of the interaction
potential. Improvements to the RY-approach were such developed, and mostly applied to the
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hard-sphere system and it freezing transition. These come under the generic name of weighted-
density approximations, for a review see Ref. [39]. A prominent example of a weighted density
functional is the geometry-based fundamental-measure theory of Rosenfeld [40] and it subse-
quent extensions and generalizations to more complex systems [41]. There exists no reliable
geometry-based, Rosenfeld-type functional for soft potentials, however, because the notion of
a geometric shape is not well defined for a soft, deformable object.

4.2 Accurate density functionals for soft potentials

On the opposite extreme of the hard-sphere interaction potential lies the family of the ultrasoft
interaction potentials v(r). The latter can be generally defined through the property of integra-
bility, which in three dimensions takes the form

/OO ro(r)dr < oco. 37)
0

Eq. (37) above is, evidently, not satisfied by the hard-sphere interaction and by the whole family
of steeply diverging inverse-power-law potentials, v(r) = €(o/r)™. However, the Yukawa in-
teraction, v(r) = eexp(—Ar)/(Ar), the Gaussian-like interactions between polymer coils [42],
polyelectrolytes [43], and dendrimers in the center-of-mass representation [44—46], the inter-
action potentials between star polymers [13] and polymer chains in the midpoint representa-
tion [47], as well as the effective interactions between microgels [48,49] and polyelectrolyte
stars [50,51] do belong to the class of ultrasoft potentials.

It has been shown [52-58] that for ultrasoft potentials a very simple and accurate functional
for the excess free energy is provided by the so-called mean-field approximation (MFA) or
random-phase approximation (RPA), namely:

Fulpl =5 [ [ @y pptyix - v (38)

The physical motivation behind Eq. (39) above lies in the absence of significant short-range
correlations between the particles, caused by the ultrasoft divergence of v(r) as r — 0. Ac-
cordingly, one approximates the excess free energy of the system just by the interaction energy
between the particles. It should be noted that Eq. (39) above becomes increasingly accurate as
the density of the system grows, because in this case each particle interacts with an increasing
number of other ones, thus justifying the mean-field character of the approximation. An im-
plication of Eq. (39), in conjunction with Eq. (36), is the random-phase approximation for the
direct correlation function ¢(r), namely

c(r) = —Po(r). (39)
The RPA functional can be easily generalized to a v-component mixture of particles, mutually
interacting through the ultrasoft pair potentials v;;(r) with v;;(r) = v;(r), 4,7 = 1,2,...,v.

The free energy functional F' depends then on the v density profiles p;(r), p2(r), ..., p,(r) and
takes the form [55]:

Filod) = WY [ o) {in [o(6)3] - 1}
D99 DY I Kt S T (e (40)

i=1 j=1
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with the thermal de Broglie wavelength A; or species 7. The variational grand potential for a
mixture is simply given by [cf. Eq. (29)]:

Bl VN = Fllo) + 3 [ o [VEA0) = ] o), @n

where (; 1s the chemical potential of species 7 and v;ij@ (r) the external potential acting on it. The

equilibrium density profiles are then determined by the simultaneous solution of the v coupled
equations [cf. Eq. (31)]:

0Q{pi}, (V)
6pi(r)

4.3 Fluid-fluid interfaces

Here we proceed to a specific application of DFT for an ultrasoft mixture, to provide a taste of
the power and elegance of DFT-methods and of the RPA-functional in particular. Archer et al.
[57] considered a binary mixture of athermal polymer chains. Taking the chains’ midpoints as
effective coordinates, they reduced the problem to a binary mixture of soft particles interacting
by means of the pair potentials:

=0, fort=1,2,...,v. (42)

5 —ln<gu>+# for r < 0yj;
Buy(r) = —f2 ¢ |\ Ty ’ (43)
18 s exp [—T24(r? — o})] for r > oy,

where o;; is the corona diameter and 7;; is a parameter of order 1/ R;;, with R;; being the radius
of gyration of species i [47] and 5 = 1/kgT. Here, f represents, in general, the arm number of
star polymers and we focus on f = 2, so that the star polymer pair potential (43) is equivalent
to the effective potential between the central monomers on a polymer chain. For the ‘cross-
parameters’ 012 and 719, the ‘mixing rules’ employed read as

1
012 = 5(011 + 092) (44)
and 1 1 1 1
= =5+ 5. (45)
7'122 2 (7'121 7'222>

In what follows, we will discuss results obtained using the interactions of Eq. (43) and the
RPA-density functional of Eq. (40) for the case 04y/01; = 27%/° that corresponds to polymer
mixtures of polymerization ratio /Ny : No = 2 : 1, a standard test case.’

Setting p;(r) = p;, @ = 1,2 in Eq. (40) immediately yields the Helmholtz free energy of the
mixture, ' = N f(p1, p2). A standard Legendre transformation leads then to the Gibbs free
energy per particle, g(z, P), where x = py/(p1 + p2) is the concentration of species 2 and P the
pressure. Stable, homogeneous mixtures are characterized by ¢”(x) > 0 for all z-values. The
occurrence of concave parts in g(z, P) signals a demixing transition with the coordinates of the
coexisting phases given by the common tangent construction. The resulting phase diagram for
the system is shown in Fig. 3 above, where it can be seen that the system shows a demixing
transition at high densities.

This arises from the scaling law R ~ N” connecting the spatial extent R of a self avoiding polymer with its
degree of polymerization N, using the value v = 3/5 of the Flory exponent.
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Fig. 3: The RPA-spinodal and binodal lines for the star-polymer mixture (dotted and solid lines)
along with the HNC-binodal (dashed line). x is the concentration of species 2, the smaller
component. The straight segments denote HNC-tielines between coexisting fluid phases whose
coordinates are given by the closed circles at their ends. (From Ref. [57]).

The full power of DFT further develops when looking into more subtle, structural quantities in
the bulk or at interfaces. Indeed, the form of the RPA-functional, implying ¢;;(r) = —fv;;(r)
allows for an explicit calculation of the complex poles of the structure factors of the two com-
ponents. These, in turn, deliver information about the decay of the correlation functions g;;(r)in
the bulk system for large r-values. In Fig. 4 we show the phase diagram together with the so-
called Fisher-Widom lines that separate two distinct regions: the first, which is surrounding the
consolute point of the mixture, is characterized by a monotonic decay of the correlation func-
tions at large r-values, whereas the second by an oscillatory one. The second region is itself
subdivided into two domains, each with different decay- and oscillation lengths. The Lifshitz
lines drawn in Fig. 4 denote the locus of points on which the structure factors at ¢ = 0 cross
from having a local minimum to having a local maximum there.

The presence of two coexisting phases along points on the binodal implies that a free interface
between the two will form when the chemical potentials p;, 7« = 1,2 of the two phases attain
appropriate values. DFT allows for a calculation of the density profiles across this interface. Let
I and II be the two coexisting phases at the points (p', z') and (p", ™). Accordingly, the two
components will have bulk densities p§ = (1 — x%)p® and p§ = z*p®, a = 1,11, respectively.
The density profiles across the free interface can be calculated by Eq. (42) with v (r) =0,

ext
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Fig. 4: The RPA-phase diagram along with the Fisher-Widom line (light solid line) and the
Lifshitz lines of the various structure factors. The left hand branch of the FW line lies close to the
Lifshitz line for S11(k) (short dashed line) while the right hand branch lies close to the Lifshitz
line for Sas(k) (long dashed line). The dash-dotted line is the Lifshitz line for the concentration
structure factor Se.(k) = (1 —x)2S11(k) + 22S92(k) — 22(1 — x)S12(k). The points A-G on the
right-hand branch of the binodal are located at total densities po?, = 8,10,12, 14,16, 18 and
20, at which the free interface density profiles will be calculated in what follows. The gray lines
are RPA-isobars through the points A-G and their intersections with the left-hand branch of the
binodal yield the state points coexisting with A-G. The open circle denotes the RPA-consolute

point. (From Ref. [57]).
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Fig. 5: The fluid-fluid interface density profiles of species 1, calculated at states A-G in the
phase diagram, see Fig. 4. State A lies near the critical point and state G, for which the interface
is much sharper, far away from the critical point. These states correspond to total bulk densities
pos = 8,10,12,14, 16, 18 and 20 in the phase rich in species 2. (From Ref. [57]).

under the boundary conditions:

lim pi(z) = py; (46)
lim po(z) = py; (47)
im pi(z) = s (48)
im pa(z) = pp, (49)

1.e., forcing bulk phase I at z — —oo and bulk phase II at z — oo.

Defining the shifted chemical potentials fi; 2 = 112 — 31In(A;2/011), the explicit equations
to be self-consistently solved for the density profiles, under the above-mentioned boundary
conditions, read as:

ksT'In [py(2)0%,] + / & [pr(Z)on (It —r]) + po(Nvra(t — )] = fi;  (50)
kpT'In [ps(2)a, ] +/d37“/ [p1 (2N v —x]) + po(2)vae(|t' —x|)] = [z, (5D

where, in Cartesian coordinates, r = (x,y, z), ' = (2/,4/, 2’) and the profiles depend only in
the third component of the position vector. The imposition of the boundary conditions forces
then the occurrence of an interface. In Figs. 5 and 6 we show the density profiles for species 1
and 2 and for a number of different coexistence points, denoted A - G in Fig. 4. It can be seen
that in the neighborhood of the consolute point the profiles are smooth, whereas as one moves
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Fig. 6: Same as Fig. 5 but for species 2. The insets show magnified regions for state G. Note
the oscillations on both sides of the interface. (From Ref. [57]).

away from it, density oscillations develop. The latter are most strongly visible for species 1
and they are present at the interface between the species 1-poor and the species 1-rich phase,
on the species 1-rich side, see Fig. 5. The density oscillations for species 2 are much weaker
and can be seen in the insets of Fig. 6. On the basis of the density profiles of the free fluid-fluid
interface, the surface tension between the coexisting phases, -y, can be calculated, as

v = /_OO dz [P+ w(z)], (52)

[e.e]

where P is the pressure at coexistence and w(z) is the grand potential density obtained from
Egs. (40) and (41) with the inhomogeneous density profiles of the free interface!® p;(z) and

Vi) =0i=1,2

ext

4.4 Wetting

Another way to impose inhomogeneous density profiles in a fluid is to bring it in contact with
a planar wall.'! When a phase-separating mixture is forced to approach its binodal line in the
presence of a planar wall, a variety of wetting phenomena can take place. In particular, the
coexisting phase lying at the opposite side of the binodal can form a macroscopically thick
layer on the wall before the binodal is reached. In this case, one says that the phase wets the
wall and the layer thickness diverges on the binodal (complete wetting). The wetting scenarios,

10For homogeneous density profiles, it holds 2 = — PV and the integrand of Eq. (52) vanishes.

1Of course, there are infinitely many ways to bring a fluid under geometric confinement by using spherical,
cylindrical, arbitrarily shaped or topographically patterned walls. Here we limit ourselves to wetting on a single,
planar wall.
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Fig. 7: The phase diagram obtained from the RPA (as in Figs. 3 and 4). The two filled circles
show the location of the prewetting line. The upper point on the binodal is the wetting point
where the prewetting line meets the binodal tangentially and the lower point is the consolute
point at the end of the prewetting line. The inset shows the prewetting line at greater mag-
nification.The horizontal path labeled A is that along which the density profiles in Fig. 8 are
calculated. (From Ref. [57]).

which form indeed a distinct class of surface phase transitions, depend sensitively on the nature
of interparticle and particle-wall interactions [59].

For the binary polymer system at hand, a hard wall can be placed at z = 0. The effective
potentials of the central monomers of the chain with the walls, v ( ), have been calculated by

ext
Jusufi er al. [47]. Whereas Vext( ) diverge for z < 0, for z > 0 they take the form:

V() =0 { —ln (2_> - (4 - 1) (Vi —3) + G for 0<z<o0y/2; 3

o Gerfe(k;z) Jerfe(ki04/2) for z > 0;;/2

where erfc(x) = 1 — erf(x) is the complementary error function, ¢; = (1 + k?02/2)"!is a

77
parameter chosen to guarantee the continuity of the local osmotic pressure in the interior of the

polymer, and
2 ; KiO; Kio?
G = VY erfe < ) exp < 1 ) . 54)

HIUZZ

The parameters x; and © have the values x; = 1.16/0;; and © = 1.30 [47].
The inhomogeneous density profiles imposed by the presence of the wall can be now calculated
by solving the equations:

kpT'In [p(2)o7, ] + /d5 [o1(ZN)on (Ie" = x]) + p2 (o2 (It —x)] = wi(2);  (55)

ksT'In [py(2)0},] + /d3 [p1(2")via(Jt" —x[) + pa(2)vaa(t" —x)] = wa(2), (56)
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Fig. 8: The density profiles of species 1, the larger particles, adsorbed at a wall described by the
potential (53), calculated along a path of constant total density, poy, = 7.0, i.e., path A in Fig.
7. From left to right the profiles refer to x = 0.99,0.95,0.9,0.88,0.879,0.878955, 0.878951 and
0.8789505, where x is the concentration of species 2 and Z¢oex = 0.87895019. The thickness of
the adsorbed film increases continuously as © — x}, ., indicating complete wetting. The inset

shows the density profiles of species 2 for the same values of x. Note that species 2 is depleted
from the region adjoining the wall. (From Ref. [57]).
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Fig. 9: Plots of the adsorption of species 1, I'y, versus the logarithm of the deviation from bulk
coexistence In(x — Tooex ), at constant total density p, for paths intersecting [(a)-(c)] and passing
just below (supercritical) (d) the prewetting line. The jumps in (a)-(c) indicate the first-order
prewetting transition. (From Ref. [57]).

where u;(2) = fi; — V;(;t) (z). Consider, then, moving along a path of constant total density p and
decreasing x, such as path A in Fig. 7. The resulting density profiles are shown in Fig. 8. It can
be seen that, as the binodal is approached, a thick film of a species 1-rich phase wets the wall,
which diverges on the binodal: the system shows complete wetting.

The wetting behavior can be quantitatively analyzed by using the density profiles from DFT and
looking at the adsorption of species 1 on the wall, defined as

I = /0 dz [p1(2) — ;] (57)
where p; = p1(z — 00), i.e., the density of species 1 in the bulk.

In Fig. 9 we show adsorption curves at various different total densities p, varying the concen-
tration x. It can be seen that there is a jump in the adsorption curves, which occurs before the
coexistence curve is reached (at  — T¢oex, = 0). In other words, there is a line of first-order
wetting transitions traced by the points on the phase diagram for which the adsorption has a
discontinuity. This so-called prewetting line is a short segment that is shown in the inset of Fig.
7. The lower end of the prewetting line, marked by the lower thick circle in the inset of Fig. 7, is
the wetting critical point. This is a true surface critical point, similar in nature to the bulk critical
points known from the theory of classical fluids. The upper end of the prewetting line, marked
by the upper thick circle in the inset of Fig. 7, is the so-called wetting point and lies on the
binodal. For paths of constant p lying higher than the location of the wetting, the adsorption of
species 1 on the wall always remains finite, all the way to the binodal. For paths running below
the wetting point, the adsorption always diverges on the binodal and a macroscopic, thick film
of species 1 forms on the wall. If the path runs above the wetting critical point, intersecting the



Phase behavior of colloidal systems B8.21

prewetting line, then there is an adsorption jump on the latter. If not, i.e., if the path runs below
the wetting critical point, then the adsorption I'; grows smoothly as the binodal is approached
and diverges right on it.

The above discussion demonstrates both the rich variety of surface-induced phase transitions
and wetting behavior and the power of DFT to analyze these. The wetting scenarios can be
modified at wish, leading to a disappearance of the prewetting line or to its displacement on the
opposite side of the binodal, by suitable modifications of the wall potentials ve(;g (2).

4.5 Crystallization

The density inhomogeneities discussed in the preceding sections pale in comparison with the
ones arising in a crystalline solid. In this case, whereas the one-particle density is extremely
high in the neighborhood of the lattice sites, the strong localization of the particles around the
latter causes the density at the interstitial regions to be extremely low. The peak value of the
density on the lattice site, compared to its value in the mid-point between the nearest neighbors
can differ by as many as 50 orders of magnitude! It is without a doubt a most challenging task
for DFT to be able to make quantitative predictions on the structure and stability of crystalline
solids, which spontaneously form under the appropriate thermodynamic conditions (density and
temperature) and without the presence of external potentials. The prototype system for crystal-
lization is the hard-sphere fluid, for which a number of functionals that predict crystallization
have been developed [39]. Hard spheres freeze into a face-centered cubic (fcc) lattice at pack-
ing fraction n = 0.49 [60-65]. Coulomb systems, and in particular the one-component plasma
(OCP) are another common example of systems for which density functionals leading to freez-
ing have been developed [66]. Contrary to hard spheres, the OCP freezes into a body-centered
cubic (bcce) lattice at sufficiently strong Coulomb couplings.

To demonstrate the power of DFT and to stay within the realm of the RPA-functional for ultra-
soft potentials, we discuss here a recent study on the freezing transition of Yukawa systems [67].
These consist of point particles that interact by means of the purely repulsive potential:

_eexp(—Ar)

o(r) = oy (58)

where € > 0 is an energy parameter and A is the inverse decay length: for large values of A the
potential is strongly screened. Eq. (58) describes the screened Coulomb interaction of pointlike
charged entities. Evidently, the potential of Eq. (58) fulfills the condition (37).

The one-particle density p(r) of the crystals possesses evidently the discrete translational and
point symmetries dictated by the underlying Bravais lattice; the latter is spanned by the Bravail
lattice vectors set {R;}. The localization of the particles around crystal sites is adequately
parametrized by modeling the density by a sum of normalized Gaussian profiles centered around
the lattice sites, viz.

p(r) = (%)3/2 Z exp [—a(r — Ry)?]. (59)

The parameter o expresses the degree of localization of the ‘Gaussian orbitals’ around the
lattice sites: whereas for &« = 0 a uniform profile results, for & — oo the Gaussians reduce to
Dirac-delta peaks.

With the modeling of Eq. (59), the free energy becomes, at given average density and tem-
perature and for any given Bravais lattice, a function of «. The latter is used as a variational
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Fig. 10: The phase diagram of the Yukawa fluid, as predicted by the density-functional approach
described in the text. (Redrawn from Ref. [67]).

parameter and the minimum of F'[p] at fixed average density is sought. For the case of nonover-
lapping Gaussians, the ideal free energy of Eq. (33) can be extremely well approximated by the

analytical expression
3 al? 5
E = NkgT |=In|{ — | — =|. 60

The RPA-excess free energy functional of Eq. (38) has to be slightly modified for the case at
hand, in the sense that all terms with R; = R in the density products must be excluded to avoid
self-interaction terms. It then takes the form

Fux(a) = %; (27103 / d*k exp(ik - Ryj)d (k) exp[—k/(20)], (61)

where R;; = R, — R, and (k) is the Fourier transform of the pair potential. Whereas the ideal
term, Eq. (60), grows with « and thus favors delocalization, the excess term, Eq. (61), attains
its minimum for o — oo and favors localization.'?> The competition between the two gives rise
to a stable minimum at o # 0, corresponding to a machanically stable fluid.'?

Given the free energy of the crystals from DFT, one can combine it with the free energyof the
fluid, calculated, e.g., by the methods described in Sec. 3, to draw the phase diagram of the
system. A simpler (but less accurate) way is to determine from DFT the so-called Lindemann
ratio L: this is the ratio of the root-mean-square of the displacement of a particle from its lattice
site over the nearest neighbor distance and directly follows from the value of the localization
parameter ov. Empirically, crystals melt when L exceeds 10%. In this way, the phase diagram of
Fig. 10 can be obtained for the Yukawa system. Clearly, DFT can predict freezing as well as the
polymorphic fcc — bcc structural phase transformation that takes place as the density grows.

121t can be easily seen that for & — oo this term reduces to (1/2) > iz V(|Ri — Ry|), the lattice sum of the
crystal that corresponds to the internal energy of N particles lying motionless on the lattice sites.

y p gy p ymng

13Usually, this minimum occurs at a value of « large enough to justify the approximations invloled in deriving
Eq. (60).
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5 Summary and conclusions

We have presented a rather concise overview of the methods employed in modern statistical
mechanical approaches to explore and understand the properties of colloidal suspensions. The
paper has focused exclusively on theoretical approaches, putting particular emphasis on den-
sity functional theory. A host of other possibilities also exist: microscopic or coarse-grained
computer simulations are a tool that has been developed and constantly refined in the recent
years. Experimentally, scatterign methods but also direct observations in real space, as well as
manipulations of the colloids using external fields, also belong to the arsenal of tools at hand
used to explore this vast and exciting research field.

Acknowledgments

I wish to thank Andrew Archer for sending me a copy of Ref. [67] prior to publication and for
helpful discussions.

Appendices

A Functionals and functional differentiation

The notion of a function of a finite number of variables is familiar from elementary calculus.'*
A function f(z1,xs,...,x,) is a mapping or a rule that assigns a single number (or a vector) to
an ordered array of variables (x1, zo, ..., z,). The following are examples of functions of one,
two, and n variables, respectively:

f(x) = $2§ 9(1”1, Ty) = Sm(ﬁl + 5E2); h(l‘hxm . 7xn> = Zexp(mi). (62)
i=1

A functional is a generalization of this idea. The argument of a functional is an entire function
f of one or many variables and a number [[f] is assigned to it. A simple example of a functional
is

1= [ faa. (63)

Here, the result of the integration depends on the whole function f(z), hence [ is a functional of
f(z), denoted by the square brackets, /[f]. There are numerous examples of functionals already
encountered in undergraduate Physics lectures. Two particular examples are the action S[L] of
a classical particle, which is a functional of the Lagrangian £(q, ¢), which is itself a function of
the generalized coordinate ¢ and velocity q. Another is the total energy of an electromagnetic
field, W[E,B;¢] = 1/(87) [ d®[|E(r,t)|* + |B(r, t)|?], which is again a functional of the full
spatiotemporal electric and magnetic fields E(r,¢) and B(r, ) and at the same time a function
of the time ¢.

14Parts of this Appendix have been inspired by the discussion in Ref. [68].
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In statistical mechanics, functionals are again omnipresent. One known example from statistical
field theory is the famous Landau-Ginzburg free energy Fig[d]:

Ficlol = [ atr | GIVomP + 5 + o' (64

which describes the fluctuations of a coarse-grained scalar field ¢(r) in d-dimensional space
and assigns a statistical weight W[¢] o< exp{—FLg[¢]} to each particular field realization. The
free energy functional F'[p| that plays the central role in density functional theory is just another
example, for which a whole, spatially-dependent function p(r) is mapped onto a single scalar
quantity F[p|. In density functional theory (and in statistical field theory), more complicated
situations can arise, in which a functional depends not only on the density field p(r) but is also a
function of a whole collection of spatial coordinates (ry, rs, ..., r,). Indeed, the n-body direct
correlation function —kgTc™, which is defined as the n-th functional derivative of the excess
free energy functional F,[p] with respect to the density is precisely a function of n spatial
coordinates and a functional of p(r). It is customary to denote such ‘mixed’ objects as

™ =™ (ry, 1o, ... 105 [p]), ©

i.e., to use parentheses in order to emphasize their character as functions of the variables
(ri,ry,...,r,) and additional square brackets to remind their functional dependence on the
entire density field p(r). The notation in Eq. (65) above thus means: for each field p(r), ¢™ is
a different function of (ry, ro, ..., r,). A very simple, concrete example of such a mixed object
is given below:

G(s; o]) = / & f(p(x) K (r,5), (66)

which is a function of s and a functional of p(r) for a given integration kernel K (r,s). Note
that the quantity f(p(r)) appearing in the integrand is a function of p(r), in the sense that its
value depends only on the local value of the field at the position r and not on the entire density
profile. Formally, local functions of the density can still be looked upon as functionals through
the choice K (r,s) = d(r — s) in Eq. (66) above.
We now proceed with the definition of the functional derivative of a functional F'[p] with respect
to the density. This quantity ought to tell us what happens to F' if we change the profile p(r)
locally at the position ry. In analogy with the usual derivative, its functional counterpart is
defined as

5F Flp(r) + ed(r — o)) — Flp(r)]

= lim

Sp(re) =0 . = G(ro; [])- (67)

Evidently, the result of a functional differentiation depends on the entire profile p(r) and on
the position ry on which the local density variation is taken. It is, therefore, a mixed object, a
function of ry and a functional of p(r), as the notation manifests.

The simplest functionals to differentiate are the local ones mentioned above. For those, it fol-
lows directly from the definition (67) that the functional derivative is closely related to the usual
derivative, viz.

5F (o) _ 5
RZCIA

df(s)
ds

s=p(r)

(68)
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As a corollary we obtain the useful identity

=6(r —1p). (69)

Another useful rule for functional differentiation is the generalization of the chain rule of usual
differentiation. Suppose that F' is a functional of the function g, F' = F'[g|, and that the function
g is itself a functional of f, g = ¢(r;[f]). Now suppose that f changes. This will cause g to
change and this change will propagate to F. It is therefore legitimate to regard F[g] also as a
functional ﬁ’[ f] and to ask what the functional derivative of F with respect to f is. The answer
is provided by the functional chain rule below:

OF[f] _ / o OFlal dg(r;[f])
9.f(ro) dg(r; [f]) of(ro) -

Let now I[f] be the functional defined in Eq. (63) and let us additionally define two simple
functionals of the density p(r) as:

(70)

Glp]

/d?’rp(r) {ln [p(r)Aﬂ — 1} ; (71)
Fiol = 5 [ [ @sdupxo)v(ix - ) (72)

Using the rules given above, the reader is asked to prove the following relations:

L =10 o 03
L S {2 tjnics
3. gfi][r'z]) — In [p(ro)A?] . (75)
4 gf([zp)] _ / dap(x)(|x — 2|). (76)
5. 5pi;£)p(]w) = v(|z — w]). 77)
6. "kl =0 for n > 3. (78)

5p(r1)5p(rs) - - p(r.)
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