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1 Introduction

The physics of strongly correlated quantum systems continues to pose major challenges in ex-
perimental and theoretical physics, ranging from phenomena such as Kondo physics, Luttinger
liquid physics, spin chains and ladders through frustrated quantum magnets and high-Tc super-
conductivity to bulk materials with strong correlations such as transition metal and rare earth
compounds. In this context, the so-called density-matrix renormalization group (DMRG) [1, 2]
has emerged as the most powerful method for one-dimensional strongly correlated systems.
This lecture is concerned with outlining the basics of this method – for a more detailed discus-
sion and also a complete overview over all its many fields of application, I refer to [3].

Among these applications, one stands out, however. While both experiment and theory have
focused on static, thermodynamic or at most linear-response quantities in the past, recently
questions which explicitly involve the out-of-equilibrium time-dependence of such quantum
systems have come to the foreground. These questions arise in the context of transport far from
equilibrium or of decoherence, particularly as for very small devices mesoscopics and correla-
tion physics merge. However, perhaps the most striking example is provided by the progress in
preparing dilute ultracold bosonic and also fermionic alkali gases. Subjected to an optical lat-
tice, these gases are arguably the purest realization of the typical model Hamiltonians of strong
correlation physics, such as the Hubbard model [4,5]. More importantly, the interaction param-
eters can be tuned experimentally on quantum mechanically relevant time-scales over a huge
range, while being known precisely from microscopic calculations. From a theoretician’s point
of view, this situation is almost ideal, and has stimulated great interest in the development of
time-dependent methods.

In this lecture, the emphasis is therefore also on recent extensions of DMRG into the real-
time domain which make it the currently most powerful (and almost only) method for such
problems: Following up on early attempts to extend DMRG to real-time, input from quantum
information theory has led to the formulation of two DMRG algorithms for real-time evolutions
[6–9]. As a “real-life” application, I focus on the real-time observation of the quintessential 1D
phenomenon, spin-charge separation.

2 Density-matrix renormalization group

Let us start from the fundamental observation that key to the simulation of quantum systems
is the mandatory and desirable compression of information: while the diverging number of de-
grees of freedom makes compression necessary on finite computing devices, compression also
leads to the emergence of macroscopically meaningful concepts such as temperature and pres-
sure which do not have microscopic counterparts. Yet, this divergence of degrees of freedom
is of a different type for classical and quantum many-body systems: considering N spins on a
lattice, the number of degrees of freedom diverges as 2N (2 angles per spin) for a classical vec-
tor spin, which is polynomial in N , whereas it diverges as 2N , i.e. exponentially, for quantum
spin-1/2. This is of course due to the presence of superpositions in quantum physics, making
simulation exponentially harder.
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Fig. 1: Quasi-one-dimensional arrangement of energy levels along the energy axis.
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Fig. 2: Local lattice degrees of freedom for a one-dimensional system.

2.1 Decimation of state spaces
As quantum computers and simulators are not likely to be available in the immediate future,
we are stuck to classical computers for the simulation of quantum systems. Essentially three
strategies of dealing with the exponentially large state space are being followed: exact diago-
nalization deliberately limits itself to the exact study of small quantum systems, being limited
to roughly 40 spins and 20 electrons. Stochastic techniques try to sample the state space effi-
ciently; this is the realm of the quantum Monte Carlo methods, which however run into serious
trouble for frustrated spins or fermionic systems due to the negative-sign problem. The last
group of methods attempts a systematic choice of a subspace which is hoped to contain the
physically most relevant states. This implies a physically driven process of discarding states,
which I will refer to as decimation. All variational and renormalization group techniques are in
this group, and the essential question is of course to identify the best decimation strategy which
will depend both on the system and the question asked.
Let me focus on one particular, rather general decimation setup, “one-dimensional” decimation.
Let us assume that the degrees of freedom can be arranged on a 1D axis, e.g. an energy axis,
on which we place all levels, either empty or occupied, or a real-space axis, on which we place
lattice sites (Figs. 1 and 2).
Imagine we grow the system iteratively towards the thermodynamic limit, adding site by site
(whatever the physical interpretation of such a site will be) - Fig. 3. The original system, which I
refer to as a block, is assumed to be effectively described within a state space {|α〉} of dimension
M , the new site within a state space {|σ〉} of dimension N . Obviously, the state space {|β〉}
of the new block will have dimension MN , and for prevention of exponential growth it will be
decimated down to dimension M . Whatever the physical decimation prescription will be, the
states of the new block will be a linear combination of the old states,

|β〉 =
∑

α

∑
σ

〈ασ|β〉|α〉|σ〉. (1)

+

dim M dim N* dim MN       M

Fig. 3: Growing a system: a local state space of dimension N is added to a block state space
of dimension M .
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For later purposes, I will rewrite this expression as

|β〉 =
∑

α

∑
σ

Aαβ[σ]|α〉|σ〉, (2)

where N matrices A of dimension M×M have been introduced, one for each |σ〉, such that the
matrix entries encode the expansion coefficients: Aαβ[σ] = 〈ασ|β〉. From the orthonormality
of the |β〉 it follows that the A-matrices obey

∑
σ

A†[σ]A[σ] = 1. (3)

Finding these matrix entries (i.e. decimating) in the optimal way is of course desirable; but be-
fore we try to formulate this as a well-posed problem, it is convenient to observe the following:
the states of the block of length, say, ` − 1 serving as “input” to produce as “output” the states
of the block of length ` via the matrices A`[σ`], are of course themselves the “output” for the
construction of the block of length ` − 1 from that of ` − 2, and so forth. We can therefore
recursively write |β〉 for a block of length ` as

|β〉 =
∑

σ1...σ`

[A1[σ1]A
2[σ2] . . . A

`[σ`]]β|σ1 . . . σ`〉. (4)

Obviously, for very short blocks, there are less than M states in a block, and the dimensions of
the first A-matrices will be 1×N , N×N2, . . . till M is exceeded. This turns the matrix product
into a vector.
It is now convenient to consider also what happens if we start growing a chain from its right end
(site L). Obviously, similar expressions emerge: for a block of length ` the states are given as

|γ〉 =
∑

σL−`+1...σL

[ÃL−`+1[σL−`+1]Ã
L−`+2[σL−`+2] . . . Ã

L[σL]]γ|σL−`+1 . . . σL〉. (5)

Again, at the chain end the Ã matrices (defined in analogy to the A) have reduced dimensions
instead of M ×M ; there is also a slightly modified orthonormality constraint,

∑
σ

Ã[σ]Ã†[σ] = 1. (6)

We may now choose a “left” and a “right” block to join them to the generic description of a
quantum state of the system of length L, matching them directly,

|ψ〉 =
∑

σ1...σL

A1[σ1] . . . A
`[σ`]ΨÃ`+1[σ`+1] . . . Ã

L[σL]|σ1 . . . σL〉, (7)

where Ψ is a M ×M matrix, or with one site explicitly in between,

|ψ〉 =
∑

σ1...σL

A1[σ1] . . . A
`[σ`]Ψ[σ`+1]Ã

`+2[σ`+2] . . . Ã
L[σL]|σ1 . . . σL〉, (8)

where there is a Ψ-matrix for each |σ`+1〉, or with two sites explicitly in between,

|ψ〉 =
∑

σ1...σL

A1[σ1] . . . A
`[σ`]Ψ[σ`+1σ`+2]Ã

`+3[σ`+3] . . . Ã
L[σL]|σ1 . . . σL〉. (9)
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As it turns out, Eqns. (8) and (9) are the useful ones – both of them highlighting different aspects
of DMRG, leading to what is called single-site and (more conventional) two-site DMRG.
Considering Eq. (7), obviously the junction can be shifted freely, even ficticiously to the right
end of the chain, with all Ã-matrices disappearing. The generic description of a quantum state
emerging from a decimation procedure is therefore given by

|ψ〉 =
∑

σ1...σL

A1[σ1]A
2[σ2] . . . A

L[σL]|σ1 . . . σL〉. (10)

In fact, there is no need to worry about this product of matrices yielding a scalar factor be-
cause of the dimension of the matrices at the right end: manipulations introduced further down
(namely the Schmidt decomposition) can be used to show that without any loss the A-matrices
shrink to dimensions mirroring those at the left end, e.g. N2 × N and N × 1 for the last two.
The generic decimation state encoded as in Eq. (10) is referred to as a matrix product state;
such states have been studied for a long time [10–12].
Again, the A-matrices encode the physical decimation prescription, and we may now specify
our question, what is the optimal decimation prescription, for the case of finding the ground
state of a Hamiltonian. Clearly the answer is to find the prescription yielding those A that
minimize 〈ψ|Ĥ|ψ〉 assuming normalization. Working out this expression yields a highly non-
linear expression for the energy in A, which is numerically close on useless.
Can we find a method that does turns this into a linear problem in A, which would be much
easier to implement in a stable way on a computer? In fact, we can, and this has already
been done in the past in the form of the density-matrix renormalization group [1–3]. Its link
to matrix product states has been pointed out by various authors [13–16]. As there are many
reviews of DMRG following a traditional way of understanding (e.g. [3]), going to more depth
than possible here, I want to present a different viewpoint of the method as an answer to the
question above.
A way of turning the problem linear would consist, roughly speaking, in providing some starting
set of matrices in a warm-up procedure, preferably close to the true solution, and then to proceed
iteratively: keeping all elements (i.e. matrices) in |ψ〉 fixed, with one exception, 〈ψ|Ĥ|ψ〉 turns
quadratic in the free matrix, and extremizing this expression with respect to the free matrix is
a linear procedure. Varying one element after another repeatedly, one may hope to get a very
good, even optimal, approximation of the ground state within the state class expressable as
above.
In standard DMRG language, the first warm-up part of the procedure would correspond to the
so-called infinite-system algorithm, the second to the finite-system algorithm, which is the true
cornerstone of the method. As the infinite-system algorithm is described very well in many
references, and one may even imagine starting from random matrices, I will focus on the finite-
system algorithm.

2.2 Finite-system DMRG procedures

Two-site DMRG. Let us consider we have our quantum state in the representation of Eq. (9).
In that case, the left block of length ` formed from A-matrices would be described by a M -
dimensional Hilbert space with states {|mS

` 〉} defined as in Eq. (4); similarly the right block of
length L − ` − 2 by states {|mE

L−`−2〉}. In both cases, we assume that we know all necessary
operators on the blocks in these effective bases. We can therefore construct the Hamiltonian
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acting on

|ψ〉 =
M∑

mS=1

N∑

σS=1

N∑

σE=1

M∑

mE=1

ΨmSmE [σSσE]|mSσS〉|mEσE〉

≡
NS∑
i

NE∑
j

Ψij|i〉|j〉; 〈ψ|ψ〉 = 1, (11)

where ΨmSmE [σSσE] = 〈mSσS; σEmE|ψ〉. {|mSσS〉} ≡ {|i〉} and {|mEσE〉} ≡ {|j〉}. The
state spaces {|i〉} and {|j〉} have dimensions NS = MN and NE = MN . Using some large
sparse matrix solver one may minimize the energy of |ψ〉 with respect to Ψij .
In order to make progress, we now have to shift the position of the two active sites, to improve
our wave function everywhere. If we shift it by one site to the right, the shrinking right block
may easily be constructed from Ã-matrices; for the growing left block, we have to provide A-
matrices for the left of the two sites (states |σS〉). If one has a suitable truncation of the basis
{|i〉} down to M states, their expansion in |mS〉 and |σS〉will just define the desired A-matrices.
To find that truncation, a useful concept is that of a Schmidt decomposition: Consider a quan-
tum state |ψ〉 =

∑
ij ψij|i〉 ⊗ |j〉 as introduced before, with NS states |i〉 and NE states |j〉.

Assuming without loss of generality NS ≥ NE , we form the (NS×NE)-dimensional matrix A
with Aij = ψij . Singular value decomposition guarantees A = UDV T , where U is (NS×NE)-
dimensional with orthonormal columns, D is a (NE × NE)-dimensional diagonal matrix with
non-negative entries Dαα =

√
wα, and V T is a (NE × NE)-dimensional unitary matrix; |ψ〉

can be written as

|ψ〉 =
NS∑
i=1

NE∑
α=1

NE∑
j=1

Uiα

√
wαV T

αj|i〉|j〉 (12)

=
NE∑
α=1

√
wα




NS∑
i=1

Uiα|i〉






NE∑
j=1

Vjα|j〉

 .

The orthonormality properties of U and V T ensure that |wS
α〉 =

∑
i Uiα|i〉 and |wE

α 〉 =
∑

j Vjα|j〉
form orthonormal bases of system and environment respectively, in which the Schmidt decom-
position

|ψ〉 =

NSchmidt∑
α=1

√
wα|wS

α〉|wE
α 〉 (13)

holds. NSNE coefficients ψij are reduced to NSchmidt ≤ NE non-zero coefficients
√

wα, w1 ≥
w2 ≥ w3 ≥ . . .. Relaxing the assumption NS ≥ NE , one has

NSchmidt ≤ min(NS, NE). (14)

Upon tracing out environment or system the reduced density matrices for system and environ-
ment are found to be

ρ̂S =

NSchmidt∑
α

wα|wS
α〉〈wS

α|; ρ̂E =

NSchmidt∑
α

wα|wE
α 〉〈wE

α |. (15)
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Analyzing reduced density matrices or the Schmidt decomposition therefore yield exactly the
same information. This fact was understood from the very beginning of DMRG, although
DMRG people were not aware of the term “Schmidt decomposition”. In fact, the singular value
decomposition representation of the wavefunction was understood before the density matrix
representation. How can we put this information to good use? Interestingly enough, it allows
us to define several physically motivated truncation criteria, that lead to the identical truncation
prescription.
Optimization of the wave function: Quantum mechanical objects are completely described by
their wave function. It is thus a reasonable demand for a truncation procedure that the approxi-
mative wave function |ψ̃〉 where the system space has been truncated to be spanned by only M
orthonormal states |α〉 =

∑
i uαi|i〉,

|ψ̃〉 =
M∑

α=1

NE∑
j=1

aαj|α〉|j〉, (16)

minimizes the distance in the quadratic norm

‖ |ψ〉 − |ψ̃〉 ‖ . (17)

Using Eq. (13), one finds that this distance is minimized if one retains the M eigenstates of ρ̂S

with the largest eigenvalues wα. This is the key truncation prescription.
One could also ask for maximizing the retained bipartite entanglement between system and
environment under truncation. As bipartite entanglement is defined as S = −∑

α wα log2 wα,
and that typically one has a large number of relatively small eigenvalues, this again leads to the
same truncation prescription, and the method preserves entanglement as well as it can.
Interestingly enough, one can show that the (additional) error introduced by truncation on
some generic bounded operator Â acting on the system, such as the energy per lattice bond,
‖Â‖ = maxφ |〈φ|Â|φ〉/〈φ|φ〉| ≡ cA, is minimized by the above procedure. This error for 〈Â〉
is bounded by

|〈Â〉approx − 〈Â〉| ≤
(

MN∑
α>M

wα

)
cA ≡ ερcA, (18)

neglecting a small normalization correction. For local quantities, such as energy, magnetization
or density, errors are of the order of the truncated weight

ερ = 1−
M∑

α=1

wα, (19)

which emerges as the key estimate. Careful extrapolation of results in M (better ερ) is therefore
highly recommended.
Collecting these ideas, the so-called finite-system DMRG algorithm can now be formulated (Fig.
4). For a one-dimensional lattice of total length L:

1. Consider a (left) system block S of length `. S lives on a Hilbert space of size M with
states {|mS

` 〉}; the Hamiltonian ĤS
` and the operators acting on the block are assumed to

be known in this basis. Similarly, we have a (right) environment block E of size L−`−2.
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Fig. 4: Finite-system DMRG algorithm. Block growth and shrinkage. For the adaptive time-
dependent DMRG, ground state optimization in this setup will be replaced by a local time
evolution on the two sites.

2. Build the total system (superblock) of length L from S, E and two sites in between. S
and the left site live on a Hilbert space of size NS = MN , with a basis of product states
{|mS

` σS〉}. Similarly, environment and the right site are joined. The total Hilbert space is
of size NSNE , and a total Hamiltonian can be constructed.

3. Find by large sparse-matrix diagonalization of the total Hamiltonian the ground state |ψ〉.
This is the most time-consuming part of the algorithm. For better performance, there is
a simple, but powerful “prediction algorithm” [17], which cuts down calculation times
in finite-system DMRG by more than an order of magnitude. Using the A-matrices, it
transforms |ψ〉 from the last step approximatively into the new basis and uses it as guess
for the next, improved |ψ〉.

4. Form the reduced density-matrix ρ̂ = TrE|ψ〉〈ψ| and determine its eigenbasis |wα〉 or-
dered by descending eigenvalues (weight) wα. Form a new (reduced) basis for S and the
left site by taking the M eigenstates with the largest weights, defining the A-matrices for
this site. Proceed likewise for the environment.

5. Form a new system block from S and one added site. As environment block, use the one
shorter than E by one site. This effectively shifts the free sites by one to the right.

6. Carry out the reduced basis transformations of needed operators onto the new MS-state
basis. Restart with step (2) with block size `+1 until the right end of the chain is reached.

7. Continue the above procedure with system and environment in reversed roles, the free
sites being shifted left, until the left end is reached, and so forth, until results are con-
verged. A complete shrinkage and growth sequence for both blocks is called a sweep.

DMRG practitioners usually adopt a quite pragmatic approach when applying DMRG to study
some physical system. They consider the convergence of DMRG results under tuning the stan-
dard DMRG control parameters, system size L, size of the reduced block Hilbert space M , and
the number of finite-system sweeps, and judge DMRG results to be reliable or not.
Single site DMRG. In practical applications one observes that even for translationally invariant
systems with periodic boundary conditions and repeated applications of finite-system sweeps
the position dependency of the matrix-product state (or of observables) does not go away com-
pletely as it strictly should, indicating room for further improvement. Also, the method cannot
be strictly variational: the ansatz (9) generates (after the Schmidt decomposition and before
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truncation) ansatz matrices of dimension MN at the two local sites due to Eq. (14), whereas
they are of dimension M at all other sites; as the position of these two sites is shifting, this
anomaly changes place such that one is not really optimizing within one fixed variational ansatz
throughout the algorithm.
Several authors [14,15] have pointed out and numerically demonstrated that DMRG results can
be improved by switching, after convergence is reached, from the S••E scheme for the finite-
system algorithm to a S•E scheme as in ansatz (8) and to carry out some more sweeps. This is
now a truly variational ansatz [14–16]:
In the new scheme the ansatz matrix Ψ can be projected down to finding M states for defin-
ing the A-matrix without truncation or loss of information or change in energy, because the
Schmidt number of non-zero contributions to the density matrix cannot exceed M , which is the
dimension of the environment in Eq. (14) for the single-site setup. Shifting the “active” site
then does not change the energy, and the next minimization can only decrease the energy (or
keep it constant). This setup is therefore truly variational in the space of the states generated by
the matrices A, Ã and reaches a minimum of energy within that space. It is important to note
that in this setup there is therefore no truncation error as diagnostic tool.
There is of course no guarantee to reach the global minimum: in fact, it turns out that an
immediate application of the formally superior single site DMRG may fail quite drastically by
trapping, but this can be mended by suitable modifications to the state selection scheme, taking
the state out of false minima [18].

2.3 When and why does DMRG work?
Obviously, the ordered eigenvalue spectrum wα of the reduced density-matrix ρ̂ should de-
cay as quickly as possible to minimize the truncated weight ερ = 1 − ∑M

α=1 wα for optimal
DMRG performance. The optimal case is of course when the state to be approximated is a
one-dimensional M ×M matrix-product state, which can be modelled exactly. More generally,
in one dimension, density-matrix spectra of gapped one-dimensional quantum systems exhibit
roughly system-size independent exponential decay of wα; at criticality, this decay slows down
with increasing system size, leading to DMRG failure for L → ∞. In two dimensions, in re-
duced density-matrix spectra for states of systems both at and away from criticality, the number
of eigenvalues to be retained to keep a fixed truncation error grows exponentially with system
size, restricting DMRG to very small system sizes (typically, the two-dimensional lattice is
mapped to a one-dimensional snake with long-ranged interactions).
These empirical observations can be understood from examining the growth of bipartite entan-
glement between system and environment for various dimensions. Consider the entanglement
SL for systems of length L embedded in a thermodynamic limit universe. One finds [19] that
SL → ∞ for L → ∞ at criticality, but saturates as SL → S∗L for L ≈ ξ in the non-critical
regime. At criticality the entanglement can be linked [19, 20] to the geometric entropy [21] of
associated conformal field theories,

Sgeo
L =

c + c

6
log2 L, (20)

where c (c) are the central charges. As examples, for the anisotropic XY model c = c = 1/2
and for the Heisenberg model and isotropic XY model c = c = 1.
Geometric entropy arguments for (d + 1)-dimensional field theories use a bipartition of d-
dimensional space by a (d − 1)-dimensional hypersurface, which is shared by system S and



A15.10 Ulrich Schollwöck

environment E. By the Schmidt decomposition, S and E share the same reduced density-matrix
spectrum, hence entanglement entropy, which is now argued to reside essentially on the shared
hypersurface; see also [22]. Taking the thermodynamic (infrared) limit, entropy scales as the
hypersurface area,

SL ∝
(

L

λ

)d−1

, (21)

where λ is some ultraviolet cutoff which in condensed matter physics we may fix at some lattice
spacing; critical systems will have logarithmic corrections to (21).
SL is the number of qubits corresponding to the entanglement information. To code this infor-
mation in DMRG, one needs a system Hilbert space of size M ≥ 2SL , we may therefore expect,
in perfect agreement with empirical results, that in 1D quantum systems away from critical-
ity, DMRG yields very precise results for the TD limit for some finite number of states kept,
M ∼ 2S∗L . At criticality, the number of states that has to be kept, will diverge as

M(L) ∼ Lk, (22)

with k inferred from Eq. (20). This explains the failure of DMRG for critical one-dimensional
systems as L → ∞. As k is small, this statement has to be qualified; DMRG still works for
rather large finite systems.
In higher-dimensional quantum systems, however, the number of states to be kept will diverge
as

M(L) ∼ 2Ld−1

, (23)

rendering the understanding of thermodynamic limit behavior by conventional DMRG quite
impossible. In any case, even for higher-dimensional systems, DMRG may be a very useful
method as long as system size is kept resolutely finite, such as in nuclear physics or quan-
tum chemistry applications. Recent proposals [23] also show that it is possible to formulate
generalized DMRG ansatz states in such a way that entropy shows correct size dependency in
two-dimensional systems.

3 Time-dependence in quantum systems
Even though the methods described in the previous section provide high-quality linear-response
quantities, they fail in truly out-of-equilibrium situations or for time-dependent Hamiltonians.
It has therefore been of high interest to find DMRG approaches dealing with state evolution in
real-time.
To see the advantages of such an approach, consider the following. Essentially all physical
quantities of interest involving time can be reduced to the calculation of either equal-time n-
point correlators such as the (1-point) density

〈ni(t)〉 = 〈ψ(t)|ni|ψ(t)〉 = 〈ψ|eiĤtnie
−iĤt|ψ〉 (24)

or unequal-time n-point correlators such as the (2-point) real-time Green’s function

Gij(t) = 〈ψ|c†i (t)cj(0)|ψ〉 = 〈ψ|e+iĤtc†ie
−iĤtcj|ψ〉. (25)

This expression can be cast in a form very close to Eq. (24) by introducing |φ〉 = cj|ψ〉 such
that the desired correlator is then simply given as an equal-time matrix element between two
time-evolved states,

Gij(t) = 〈ψ(t)|c†i |φ(t)〉. (26)
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If both |ψ(t)〉 and |φ(t)〉 can be calculated, a very appealing feature of this approach is that
Gij(t) can be evaluated in a single calculation for all i and t as time proceeds. Frequency-
momentum space is then reached by a double Fourier transformation. Obviously, finite system-
sizes and edge effects as well as algorithmic constraints will impose physical constraints on the
largest times and distances |i−j| or minimal frequency and wave vectors resolutions accessible.
Nevertheless, this approach might emerge as a very attractive alternative to the current very
time-consuming calculations of G(k, ω) using the dynamical DMRG [24, 25].
The fundamental difficulty of obtaining the above correlators becomes obvious if we examine
the time-evolution of the quantum state |ψ(t = 0)〉 under the action of some (for simplicity)
time-independent Hamiltonian Ĥ|ψn〉 = En|ψn〉. If the eigenstates |ψn〉 are known, expanding
|ψ(t = 0)〉 =

∑
n cn|ψn〉 leads to the well-known time evolution

|ψ(t)〉 =
∑

n

cn exp(−iEnt)|ψn〉, (27)

where the modulus of the expansion coefficients of |ψ(t)〉 is time-independent. A sensible
Hilbert space truncation is given by a projection onto the large-modulus eigenstates. In strongly
correlated systems, however, we usually have no good knowledge of the eigenstates. Instead,
one uses some orthonormal basis with unknown eigenbasis expansion, |k〉 =

∑
n akn|ψn〉. The

time evolution of the state |ψ(t = 0)〉 =
∑

k dk(0)|k〉 then reads

|ψ(t)〉 =
∑

k

(∑
n

dk(0)akne
−iEnt

)
|k〉 ≡

∑

k

dk(t)|k〉, (28)

where the modulus of the expansion coefficients dk(t) is time-dependent. For a general or-
thonormal basis, Hilbert space truncation at one fixed time (i.e. t = 0) will therefore not ensure
a reliable approximation of the time evolution. Also, energy differences matter in time evolution
due to the phase factors e−i(En−En′ )t in |dk(t)|2. Thus, a good approximation to the low-energy
Hamiltonian alone (as provided by DMRG) is of limited use.

4 Early attempts in DMRG
Cazalilla and Marston [26] were the first to exploit DMRG to systematically calculate time-
dependent quantum many-body effects. They studied a time-dependent Hamiltonian Ĥ(t) ≡
Ĥ(0) + V̂ (t), where V̂ (t) encodes the time-dependent part of the Hamiltonian. After applying
a standard DMRG calculation to the Hamiltonian Ĥ(t = 0), the time-dependent Schrödinger
equation was numerically integrated forward in time. The effective Hamiltonian in the reduced
Hilbert space was built as Ĥeff(t) = Ĥeff(0) + V̂eff(t), where Ĥeff(0) was taken as the last
superblock Hamiltonian approximating Ĥ(0). V̂eff(t) as an approximation to V̂ was built using
the representations of operators in the final block bases. The initial condition was obviously to
take |ψ(0)〉 as the ground state obtained by the preliminary DMRG run. This procedure amounts
to working within a static reduced Hilbert space, namely that optimal at t = 0, and projecting
all wave functions and operators onto it.
In this approach the hope is that an effective Hamiltonian obtained by targeting the ground state
of the t = 0 Hamiltonian is capable to catch the states that will be visited by the time-dependent
Hamiltonian during time evolution. This approach must however break down after relatively
short times as the full Hilbert space is explored, as became quickly obvious.
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Dynamic time-dependent DMRG. Several attempts have been made to improve on static time-
dependent DMRG by enlarging the reduced Hilbert space using information on the time-evolution,
such that the time-evolving state has large support on that dynamic Hilbert space for longer
times. Whatever procedure for enlargement is used, the problem remains that the number of
DMRG states m grows with the desired simulation time as they have to encode more and more
different physical states. As DMRG calculation time scales as M3 (due to the matrix-matrix
multiplications involved), this type of approach will meet its limitations somewhat later in time.
All enlargement procedures rest on the ability of DMRG to describe – at some numerical ex-
pense – small sets of states (“target states”) very well instead of just one.
The first approach has been demonstrated by Luo, Xiang and Wang [27]. They use a den-
sity matrix that is given by a superposition of states |ψ(ti)〉 at various times of the evolution,
ρ̂ =

∑Nt

i=0 αi|ψ(ti)〉〈ψ(ti)| with
∑

αi = 1 for the determination of the reduced Hilbert space.
Of course, these states are not known initially; it was proposed by them to start within the
framework of infinite-system DMRG from a small DMRG system and evolve it in time. For a
very small system this procedure is exact. For this system size, the state vectors |ψ(ti)〉 are used
to form the density matrix. This density matrix then determines the reduced Hilbert space for
the next larger system, taking into account how time-evolution explores the Hilbert space for
the smaller system. One then moves on to the next larger DMRG system where the procedure
is repeated. This is of course very time-consuming.
Schmitteckert [28] has computed the transport through a small interacting nanostructure using
an Hilbert space enlarging approach, based on the time evolution operator. To this end, he splits
the problem into two parts: By obtaining a relatively large number of low-lying eigenstates
exactly (within time-independent DMRG precision), one can calculate their time evolution ex-
actly. For the subspace orthogonal to these eigenstates, he implements the matrix exponential
|ψ(t+∆t)〉 = exp(−iĤ∆t)|ψ(t)〉 using the Krylov subspace approximation. For any block-site
configuration during sweeping, he evolves the state in time, obtaining |ψ(ti)〉 at fixed times ti.
These are targeted in the density matrix, such that upon sweeping forth and back a Hilbert space
suitable to describe all of them at good precision should be obtained. For numerical efficiency,
he carries out this procedure to convergence for some small time, which is then increased upon
sweeping, bringing more and more states |ψ(ti)〉 into the density matrix. Again, this is a very
time-consuming approach.

5 Adaptive time-dependent DMRG
Decisive progress came from an unexpected corner, namely quantum information theory, when
Vidal proposed an algorithm for simulating quantum time evolutions of one-dimensional sys-
tems efficiently on a classical computer [6, 29]. His algorithm, known as TEBD [time-evolving
block decimation] algorithm, is based on matrix product states [11, 12]; as it turned out, it is
so closely linked to DMRG concepts, that his ideas could be implemented easily into DMRG,
leading to an adaptive time-dependent DMRG [7, 8], where the DMRG state space adapts it-
self in time to the time-evolving quantum state. One immediately profits from all the DMRG
development for exploiting good quantum numbers and other speed-ups.
If we consider a nearest-neighbor Hamiltonian, such as the conventional Hubbard Hamiltonian,
we can split the infinitesimal global time evolution operator into a product of infinitesimal local
time evolution operators [30]:

e−iĤ∆t = e−ih1∆te−ih2∆te−ih3∆t . . . e−ihL−1∆t + O(∆t2). (29)
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The hi are the local Hamiltonians acting on bonds i; in general only odd and even bond Hamil-
tonians will commute in their groups, giving rise to an error in the decomposition. The idea
is now simply to use finite-system DMRG in the two-site setup: at each step, one carries out
the local infinitesimal time evolution exactly on the two adjacent local sites. This will lead to a
new state, a new Schmidt decomposition carried is out in which the system is cut between the
two local sites, as before, leading to a new truncation and new reduced basis transformations
(2 matrices A adjacent to this bond), which are the choice optimally representing the new state.
By doing this for all bonds, one infinitesimal time step is completed.
To do this, one needs the wave function |ψ〉 in a two-block two-site configuration such that
the bond that is currently updated consists of the two free sites. This implies that |ψ〉 has to
be transformed between different configurations. As mentioned above, in finite-system DMRG
such a transformation, which was first implemented by White [17] (“state prediction”) is rou-
tinely used to predict the outcome of large sparse matrix diagonalizations, which no longer
occur during time evolution. Here, it merely serves as a basis transformation.
The adaptive time-dependent DMRG algorithm which incorporates the TEBD simulation algo-
rithm in the DMRG framework is therefore set up as follows:

0. Set up a conventional finite-system DMRG algorithm with state prediction using the
Hamiltonian at time t = 0, Ĥ(0), to determine the ground state of some system of length
L using effective block Hilbert spaces of dimension M . At the end of this stage of the
algorithm, we have for blocks of all sizes l reduced orthonormal bases spanned by states
|ml〉, which are characterized by good quantum numbers. Also, we have all reduced basis
transformations, corresponding to the matrices A.

1. For each Trotter time step, use the finite-system DMRG algorithm to run one sweep with
the following modifications:

i) For each even bond apply the local time evolution Û at the bond formed by the free
sites to |ψ〉. This is a very fast operation compared to determining the ground state,
which is usually done instead in the finite-system algorithm.

ii) As always, perform a DMRG truncation at each step of the finite-system algorithm,
hence O(L) times.

iii) Use White’s prediction method to get the representation of the time-evolved state in
the setup with the free sites shifted by one.

2. In the reverse direction, apply step (i) to all odd bonds.

3. As in standard finite-system DMRG evaluate operators when desired at the end of some
time steps. Note that there is no need to generate these operators at all those time steps
where no operator evaluation is desired, which will, due to the small Trotter time step, be
the overwhelming majority of steps.

Note that one can also perform every bond evolution operator at each half-sweep, in order. This
does not worsen the Trotter error, since in the reverse sweep the operators are applied in reverse
order.
The calculation time of adaptive time-dependent DMRG scales linearly in L, as opposed to
the static time-dependent DMRG which does not depend on L. The diagonalization of the
density matrices (Schmidt decomposition) scales as N3M3; the preparation of the local time
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evolution operator as N6, but this may have to be done only rarely e.g. for discontinuous changes
of interaction parameters. Carrying out the local time evolution scales as N4M2; the basis
transformation scales as N2M3. As M À N typically, the algorithm is of order O(LN3M3) at
each time step.
The performance of this method has been tested in various applications in the context of ultra-
cold atom physics [7, 31–33], but also for far-from-equilibrium dynamics [34] and for spectral
functions [8]; some of these applications will serve as examples in the following.
Before we move on, it should be mentioned that this method for time evolution, while very fast,
has weaknesses due to its usage of the Trotter decomposition: first and not so important, there is
the Trotter decomposition error depending on the time step. The Trotter error is small and can
be reduced to neglible levels by using higher order Trotter decompositions – we are currently
using mostly 4th order. More importantly, they are limited to systems with nearest neighbor
interactions on a single chain; this problem can be circumvented by introducing larger unit cells
such that interactions become nearest neighbor again - given the scaling in N , this is not very
feasible. A better approach in such cases is to use the time-step targetted method [9] which,
at quite some algorithmic cost in time, does not have these limitations. The main idea is to
produce a basis which targets the states needed to represent one small but finite time step. Once
this basis is complete enough, the time step is taken and the algorithm proceeds to the next
time step. This targetting is intermediate to the other approaches: the Trotter methods target
precisely one instant in time at any DMRG step, while Luo, Xiang, and Wang’s approach [27]
considered the entire range of time to be studied. For the subtle details, I refer to [9].

6 Error analysis: magnetization dynamics
In this section, we consider the dynamics of a system far from equilbrium using adaptive time-
dependent DMRG [34]. The following example, for which an exact solution is available, shows
that time-dependent DMRG can also perform in situations where dynamical DMRG must surely
fail. The exact solution allows us DMRG-independent error analysis.
The initial state |ini〉 = | ↑ . . . ↑↓ . . . ↓〉 on a one-dimensional spin-1/2 chain is subjected to
the dynamics of the Heisenberg model

H =
∑

n

Sx
nSx

n+1 + Sy
nSy

n+1 + JzS
z
nSz

n+1 ≡
∑

n

hn. (30)

We set ~ = 1, defining time to be 1/energy with the energy unit chosen as the Jxy interaction.
The case Jz = 0 describes equivalently free fermions on a lattice, and can be solved exactly. In
the following we will focus on this case. Note that in that case the initial state with two large
ferromagnetic domains separated by a domain wall in the center is a highly excited state; the
ground state exhibits power-law decaying antiferromagnetic correlations.
The time evolution delocalizes the domain wall over the entire chain; the magnetization profile
for the initial state |ini〉 reads [35]:

Sz(n, t) = 〈ψ(t)|Sz
n|ψ(t)〉 = −1/2

n−1∑
j=1−n

J2
j (t), (31)

where Jj is the Bessel function of the first kind. n = . . . ,−3,−2,−1, 0, 1, 2, 3, . . . labels chain
sites with the convention that the first site in the right half of the chain has label n = 1. As the
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total energy of the system is conserved, the state cannot relax to the ground state. The exact
solution reveals a nontrivial behaviour with a complicated substructure in the magnetization
profile, which is a good benchmark for DMRG.
Possible errors. Two main sources of error occur in the adaptive t-DMRG:
(i) The Trotter error due to the Trotter decomposition. For an nth-order Trotter decomposition
[30], the error made in one time step dt is of order Ldtn+1. To reach a given time t one has to
perform t/dt time-steps, such that in the worst case the error grows linearly in time t and the
resulting error is of order L(dt)nt.
(ii) The DMRG truncation error due to the representation of the time-evolving quantum state in
reduced (albeit “optimally” chosen) Hilbert spaces and to the repeated transformations between
different truncated basis sets. While the truncation error ε that sets the scale of the error of
the wave function and operators is typically very small, here it will strongly accumulate as
O(Lt/dt) truncations are carried out up to time t. This is because the truncated DMRG wave
function has norm less than one and is renormalized at each truncation by a factor of (1−ε)−1 >
1. Truncation errors should therefore accumulate roughly exponentially with an exponent of
εLt/dt, such that eventually the adaptive t-DMRG will break down at too long times. The
accumulated truncation error should decrease considerably with an increasing number of kept
DMRG states M . For a fixed time t, it should decrease as the Trotter time step dt is increased,
as the number of truncations decreases with the number of time steps t/dt.
At this point, it is worthwhile to mention that our subsequent error analysis should also be
pertinent to the very closely related time-evolution algorithm introduced by Verstraete et al.
[44], which also involves both Trotter and truncation errors.
We remind the reader that no error is encountered in the application of the local time evolution
operator Un to the state |ψ〉.
Error analysis. We use two main measures for the error:
(i) As a measure for the overall error we consider the magnetization deviation, the maximum
deviation of the local magnetization found by DMRG from the exact result,

err(t) = maxn|〈Sz
n,DMRG(t)〉 − 〈Sz

n,exact(t)〉|. (32)

(ii) As a measure which excludes the Trotter error we use the forth-back deviation FB(t), which
we define as the deviation between the initial state |ini〉 and the state |fb(t)〉 = U(−t)U(t)|ini〉,
i.e. the state obtained by evolving |ini〉 to some time t and then back to t = 0 again. If we
Trotter-decompose the time evolution operator U(−t) into odd and even bonds in the reverse
order of the decomposition of U(t), the identity U(−t) = U(t)−1 holds without any Trotter
error, and the forth-back deviation has the appealing property to capture the truncation error
only.
As the DMRG setup used in this particular calculation did not allow easy access to the fidelity
|〈ini|fb(t)〉| (a calculation which is not a problem in principle, see [33]), the forth-back devia-
tion was defined to be the L2 measure for the difference of the magnetization profiles of |ini〉
and |fb(t)〉,

FB(t) =

(∑
n

(〈ini|Sz
n|ini〉 − 〈fb(t)|Sz

n|fb(t)〉)2

)1/2

. (33)

In order to control Trotter and truncation error, two DMRG control parameters are available,
the number of DMRG states M and the Trotter time step dt.
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Fig. 5: Magnetization deviation err(t) as a function of time for different numbers M of DMRG
states. The Trotter time interval is fixed at dt = 0.05. Again, two regimes can be distinguished:
For early times, for which the Trotter error dominates, the error is slowly growing (essentially
linearly) and independent of M (regime A); for later times, the error is entirely given by the
truncation error, which is M -dependent and growing fast (almost exponential up to some sat-
uration; regime B). The transition between the two regimes occurs at a well-defined “runaway
time” tR (small squares). The inset shows a monotonic, roughly linear dependence of tR on M .
From [34].

The dependence on dt is twofold: on the one hand, decreasing dt reduces the Trotter error by
some power of dtn exactly as in QMC; on the other hand, the number of truncations increases,
such that the truncation error is enhanced. It is therefore not a good strategy to choose dt as
small as possible. The truncation error can however be decreased by increasing M .
Consider the dependence of the magnetization deviation err(t) on the number M of DMRG
states. In Fig. 5, err(t) is plotted for a fixed Trotter time step dt = 0.05 and different values of
M . One sees that a M -dependent “runaway time” tR separates two regimes: for t < tR (regime
A), the deviation grows essentially linearly in time and is independent of M , for t > tR (regime
B), it suddenly starts to grow more rapidly than any power-law as expected of the truncation
error. In the inset of Fig. 5, tR is seen to increase roughly linearly with growing M . As M →∞
corresponds to the complete absence of the truncation error, the M -independent bottom curve
of Fig. 5 is a measure for the deviation due to the Trotter error alone and the runaway time can
be read off very precisely as the moment in time when the truncation error starts to dominate.
That the crossover from a dominating Trotter error at short times and a dominating truncation
error at long times is so sharp may seem surprising at first, but can be explained easily by
observing that the Trotter error grows only linearly in time, but the accumulated truncation
error grows almost exponentially in time.
To see that nothing special is happening at tR, consider also Fig. 6, where the Trotter-error free
FB(t) is plotted as a function of M , for t = 30 and t = 50. An approximately exponential
increase of the accuracy of the method with growing M is observed for a fixed time. Our
numerical results that indicate a roughly linear time-dependence of tR on M (inset of Fig. 5)
are the consequence of some balancing of very fast growth of precision with M and decay of
precision with t.
The runaway time thus indicates an imminent breakdown of the method and is a good, albeit
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dt = 0.05. From [34].

very conservative measure of available simulation times. We expect the above error analysis
for the adaptive t-DMRG to be generic for other models. The truncation error will remain also
in approaches that dispose of the Trotter error; maximally reachable simulation times should
therefore be roughly the similar. Even if for high precision calculation the Trotter error may
dominate for a long time, in the long run it is always the truncation error that causes the break-
down of the method at some point in time.

7 Spin-charge separation in ultracold atoms

Following the seminal work of Haldane [36], it has been understood that the low-energy be-
haviour of 1D quantum liquids is universally described by the Luttinger liquid (LL) picture
[37, 38]. A remarkable prediction is spin-charge separation for Fermions: at low energy the
excitations of charge and spin completely decouple and propagate with different velocities. The
first unequivocal observation was obtained in experiments on the tunneling between two quan-
tum wires [39]. A drawback of condensed-matter setups such as this is that the microscopic
interactions strongly influence spin-charge separation, but are neither tunable nor known to
some precision. Here, as in other condensed matter problems, the fact that in ultracold gases in
optical lattices strong correlations can be studied with unprecedented control and tunability of
the parameters might turn out to be very helpful. In fact, an ’atomic quantum wire’ configura-
tion in an array of thousands of parallel atom waveguides was realized in ultracold Fermi gases
by the application of a strong two dimensional optical lattice [40]. Previous proposals to use
cold atoms for studying spin-charge separation [41, 42] were limited by necessary analytical
approximations, which do not hold for the strong and localized perturbations that would have
to be created experimentally in current, relatively small systems. For a quantitative description
of spin-charge separation one needs a microscopic description, which here is given almost per-
fectly by the Hubbard model. It is an essential new feature of cold atoms in optical lattices that
parameters can be changed dynamically and the resulting time evolution can be studied. This
gives direct access to the real-time dynamics of strongly correlated systems, an ideal testbed for
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Fig. 7: A snapshot of the time-evolution of the charge and spin densities of a single particle
excitation created at time t = 0 at site j = 37 is shown at t = 0.2 and t = 7.4. Adapted
from [32].

real-time DMRG: numerical results of the real-time dynamics of a 1D Hubbard model of up to
128 sites can be obtained easily [32].
We start from the standard Hubbard model

H = −J
∑
j,σ

(
c†j+1,σcj,σ + h.c.

)
+ U

∑
j

nj,↑nj,↓

+
∑
j,σ

εj,σn̂j,σ (34)

for Fermions in 1D, where we call the hopping matrix element J , to avoid confusion with time
t. Setting J = 1 and ~ = 1 time is measured in units of ~/J = 1. Special for the cold atom
setup is a spin-dependent local on-site energy εj,σ, describing both a possible smooth harmonic
confinement potential and time-dependent local potentials which allow to perturb the system.
One introduces a ’charge’ density nc = n↑ + n↓ and a ’spin’ density ns = n↑ − n↓; in a
realization with cold gases, where the spin degrees of freedom are represented by two different
hyperfine levels, and ’charge’ density is particle density. The ratio u = U/J can easily be
changed experimentally by varying the depth of the optical lattice.
Experimentally, the density perturbations may be generated by a blue- or red-detuned laser beam
tightly focused perpendicular to an array of atomic wires, which generates locally repulsive or
attractive potentials for the atoms in the wires. In practice, the perturbations due to an external
laser field are quite strong, typically of the order of the recoil energy Er and thus clearly require
a nonperturbative treatment.
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Fig. 8: Snapshots of the evolution of the density distribution are shown at different times. At
t = 0, a wave packet is present in the center of the system in both the spin and the charge
density. Each of these splits up into two packets which move with the same velocity in opposite
directions. The velocity of the charge wave and the spin wave are different. u = U/J = 4,
background density is n0 = 0.78. Cf. [32].

In all following calculations system length was up to L = 128 sites: several hundred DMRG
states were kept. DMRG error analysis reveals that all density distributions shown are exact for
all practical purposes, with controlled errors of less than O(10−3).
In order to study the behaviour of a single particle excitation, the time evolution of the system
with one additional particle with spin up added at time t = 0 on site j to the ground state, was
calculated numerically. In Fig. 7 a snapshot of the resulting evolution of the densities is shown
for time t = 7.4. Remarkably, even after a such a short time separate wave packets in spin and
charge can be seen.
In ultracold atom experiments, adding a single particle is not possible. Rather, spin-specific
density perturbations can be created as discussed above. We therefore start with a homogeneous
system which is perturbed by a potential εj,↑ localized at the chain center which couples only to
the ↑-Fermions, i.e.

εj,↑(t) ∝ exp {−[j − (L− 1)/2]2/8} θ(−t) (35)

The potential is assumed to have been switched on slowly enough for equilibration, and is then
switched off suddenly at time t = 0. In Fig. 8 (a) the density distribution of the state at an early
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Fig. 9: Exact results for the charge velocity obtained by the Bethe ansatz are (lines) compared
to the numerical results of the adaptive t-DMRG. The numerical results correspond to different
heights of the perturbations at various charge background densities n0. nc is the charge density
at the maximum/minimum of the charge density perturbation. The uncertainties are of the order
of the size of the symbols and stem mainly from the determination of the velocity. From [32].

time is shown as obtained by DMRG. The external potential (35) generates a dominant pertur-
bation in the ↑-Fermion distribution by direct coupling and, indirectly, a smaller perturbation
in the ↓-density due to the repulsive interaction between the different spin species. The wave
packets in ↑ and ↓-density hence perform a complicated time evolution (Fig. 8). In contrast, the
perturbations in the spin and charge density split into two wave packets each moving outwards.
Their respective velocities are found to be different as indicated by the arrows in Fig. 8 (b),
separating spin and charge.
In the limit of an infinitesimal perturbation much broader than the average interparticle spacing,
both spin and charge velocities are known analytically from the Bethe ansatz [43]. To compare
our numerical findings to the exact charge velocity, we create pure charge density perturba-
tions, by applying the potential of Eq. (35) to both species, i.e. εj,↑ = εj,↓, and calculate their
time-evolution after switching off the potential. The charge velocity is determined from the
propagation of the maximum (minimum) of the charge density perturbation for bright (ampli-
tude ηc > 0) and grey (ηc < 0) perturbations, respectively. In Fig. 9 the charge velocities
for various background densities n0 and perturbation amplitudes ηc are shown. We find good
agreement, if we plot the charge velocity versus the charge density at the maximum (minimum),
i.e. nc = n0 + ηc. The velocity of the maximum (minimum) of the wave packet is therefore
determined by the value of the charge density at the maximum (minimum), not the background
density.
This stays true even for strong perturbations ηc ≈ ±0.1 which corresponds to 20% of the charge
density. The charge velocity is thus robust against separate changes of the background density
n0 and the height of the perturbation ηc.
The previous results indicate that adaptive time-dependent DMRG is a highly performing method,
able to answer complicated questions of dynamics in strongly correlated systems. To actually
connect to experiments in the context of ultracold atoms, one has to take into account also the
harmonic trapping potential, which may lead to a coexistence between a liquid (charge conduct-
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ing) phase at the edges and a Mott-insulating phase in the center of the trap. Also, experiments
can only measure quantities averaged over ∼ 10 lattice sites. These questions can be addressed
in detail by DMRG; as they are not pertinent here, I refer to the literature [32].

8 Finite temperature
After the previous discussion on the difficulties of simulating the time-evolution of pure states
in subsets of large Hilbert spaces it may seem that the time-evolution of mixed states (density
matrices) is completely out of reach. It is however easy to see that a thermal density matrix
ρ̂β ≡ exp[−βĤ] can be constructed as a pure state in an enlarged Hilbert space and that Hamil-
tonian dynamics of the density matrix can be calculated considering just this pure state (dissi-
pative dynamics being more complicated). In the DMRG context, this has first been pointed
out by Verstraete, Garcia-Rı́poll and Cirac [44] and Zwolak and Vidal [45], using essentially
information-theoretical language; it has also been used previously in pure statistical physics
language in e.g. high-temperature series expansions [46].
To this end, consider the completely mixed state ρ̂0 ≡ 1. Let us assume that the dimension of
the local physical state space {|σi〉} of a physical site is N . Introduce now a local auxiliary
state space {|τi〉} of the same dimension N on an auxiliary site. The local physical site is thus
replaced by a rung of two sites, and a one-dimensional chain by a two-leg ladder of physical
and auxiliary sites on top and bottom rungs. Prepare now each rung i in the Bell state

|ψi
0〉 =

1√
N

[
N∑

σi=τi

|σiτi〉
]

. (36)

Other choices of |ψi
0〉 are equally feasible, as long as they maintain in their product states max-

imal entanglement between physical states |σi〉 and auxiliary states |τi〉. Evaluating now the
expectation value of some local operator Ôi

σ acting on the physical state space with respect to
|ψi

0〉, one finds

〈ψi
0|Ôi

σ|ψi
0〉 =

∑
σi=τi

∑

σ′i=τ ′i

1

N

[
〈σiτi|Ôi

σ ⊗ 1i
τ |σ′iτ ′i〉

]
.

The double sum collapses to

〈ψi
0|Ôi

σ|ψi
0〉 =

1

N

n∑
σi=1

〈σi|Ôi
σ|σi〉,

and we see that the expectation value of Ôi
σ with respect to the pure state |ψi

0〉 living on the
product of physical and auxiliary space is identical to the expectation value of Ôi

σ with respect
to the completely mixed local physical state, or

〈Ôi
σ〉 = Trσρ̂

i
0Ô

i
σ (37)

where
ρ̂i

0 = Trτ |ψi
0〉〈ψi

0|. (38)

This generalizes from rung to ladder using the density operator

ρ̂0 = Trτ |ψ0〉〈ψ0|, (39)
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where

|ψ0〉 =
L∏

i=1

|ψi
0〉 (40)

is the product of all local Bell states, and the conversion from ficticious pure state to physical
mixed state is achieved by tracing out all auxiliary degrees of freedom.
At finite temperatures β > 0 one uses

ρ̂β = e−βĤ/2 · 1 · e−βĤ/2 = Trτe
−βĤ/2|ψ0〉〈ψ0|e−βĤ/2,

where we have used Eq. (39) and the observation that the trace can be pulled out as it acts on
the auxiliary space and e−βĤ/2 on the physical space. Hence,

ρ̂β = Trτ |ψβ〉〈ψβ|, (41)

where |ψβ〉 = e−βĤ/2|ψ0〉. Similarly, this finite-temperature density matrix can now be evolved
in time by considering |ψβ(t)〉 = e−iĤt|ψβ(0)〉 and ρ̂β(t) = Trτ |ψβ(t)〉〈ψβ(t)|. The calculation
of the finite-temperature time-dependent properties of, say, a Hubbard chain, therefore corre-
sponds to the imaginary-time and real-time evolution of a Hubbard ladder prepared to be in a
product of special rung states. Time evolutions generated by Hamiltonians act on the physi-
cal leg of the ladder only. As for the evaluation of expectation values both local and auxiliary
degrees of freedom are traced on the same footing, the distinction can be completely dropped
but for the time-evolution itself. Code-reusage is thus almost trivial. Note also that the initial
infinite-temperature pure state needs only M = 1 block states to be described exactly in DMRG
as it is a product state of single local states. Imaginary-time evolution (lowering the tempera-
ture) will introduce entanglement such that to maintain some desired DMRG precision M will
have to be increased.

9 Conclusion
Already the most powerful method for 1D statics and thermodynamics, DMRG is currently
undergoing a second revolution. Beyond time-evolution in 1D, which was the main focus of
this lecture, I expect DMRG to also have large impact on 2D quantum systems in the near
future, as well as on the physics of quantum impurities [47]. The latter might have important
implications for techniques such as the dynamical mean-field theory [48] for the modelling of
realistic solids, which is limited by the need for highly efficient and precise quantum impurity
solvers.
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[31] C. Kollath, U. Schollwöck, J. von Delft and W. Zwerger: Phys. Rev. A 71, 053606 (2005)
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