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1 Introduction
The term electron correlation methods in Quantum Chemistry comprises all methods that go
beyond the simple mean-field Hartree-Fock (HF) Self-Consistent Field model. The electronic
wavefunction which depends on the coordinates of N electrons is approximated in terms of a
Slater determinant, i.e., the antisymmetrized product of N spin-orbitals φ(r, σ) (one-electron
functions). Expanding these orbitals in terms of a limited number of spatial basis functions
times a spin function and fully optimizing the coefficients as to minimize the total electronic
energy within a given nuclear framework defines the HF method.
In the statistical sense uncorrelated electrons imply that the probability density P (r1, r2) of
finding two electrons 1 and 2 simultaneously at positions r1 and r2, respectively, is given by a
product of one-electron densities P (r)

P (r1, r2) = γP (r1)P (r2) = N−1
N

P (r1)P (r2) (1)

where γ is the renormalization factor [1]. The antisymmetry constraint imposed upon the wave-
function by the Pauli principle causes the HF model to incorporate electron correlation between
electron pairs of alike spin (Fermi correlation). Pairs of electrons with opposite spin, however,
are not correlated (Coulomb correlation).
Approximating the electronic wavefunction by a single Slater determinant, disregarding the ef-
fect of basis-set truncation, is a serious constraint and may result in a qualitatively incorrect
description of the wavefunction as compared to the exact solution. This is particularly apparent
in case of molecular dissociation into open-shell fragments which cannot be described properly
in terms of a single (closed-shell) Slater determinant. In Chemistry primarily energy differences
are of interest. Nevertheless, aiming at the so-called chemical accuracy of 1kcal/mol it is es-
sential to quantitatively account for differential electron correlation effects. This is the realm of
modern electron correlation methods.
Subsequently the basic concepts are described, followed by sketching some widely used multi-
and single-reference electron correlation methods. Electron correlation is discussed here in
terms of one- and N-electron basis set expansions, rather than in terms of a physical inter-
pretation. Density Functional Theory is explicitly excluded as it is conceptionally completely
different and well-covered in other chapters of this book.

2 Basic concepts

2.1 Hamiltonian
The standard molecular Hamiltonian used in electronic structure calculations in atomic units
contains the electronic kinetic energy Te, electron-electron repulsion Vee, electron-nuclei attrac-
tion Vne and the nuclear-nuclear repulsion energy Vnn and runs

H = −1

2

∑
i

∇2
i +

∑
i>j

1

|ri − rj| −
∑
iA

ZA

|ri −RA| +
∑
A>B

ZAZB

|RA −RB| (2)

= Te + Vee + Vne + Vnn. (3)

Z denotes the nuclear charge, R and r are nuclear and electronic position vectors, respectively.
Summations run over all electrons (index i, j) and nuclei (index A, B). This equation implies
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several simplifications: (i) the particles interact non-relativistically solely through Coulombic
interaction (ii) the (clamped-nucleus) Born-Oppenheimer Approximation and (iii) the particles
are described as point charges neglecting the finite size of the nuclei.
Relativistic contributions to the total energy, which scale as Z4/c2 with c the speed of light
(≈ 137 a.u.), must be included for the heavier elements in at least some approximate manner
(e.g. relativistic effective core potentials [2, 3], scalar relativistic effects). The impact of spin-
orbit coupling may be of similar importance as electron correlation for the heavier elements and
cannot be straightforwardly ignored.
The Born-Oppenheimer approximation [4, 5], sometimes referred to as adiabatic approxima-
tion [6], decouples electron motion from the motion of the nuclei. It works well wherever
the gradient of the electronic wavefunction with respect to the nuclear coordinates is small.
This assumption may be violated close to avoided crossings between different electronic states
where the characteristics of the participating states rapidly change. Proper treatment of these
regions, which are of great importance for the understanding of the dynamics of photochemical
reactions, invariably require the inclusion of non-adiabatic coupling terms [7].

2.2 Wave function expansion

The eigenvalues and eigenfunctions of the time-independent Schrödinger equation

HΨ = EΨ (4)

are sought. As analytical solutions are unavailable except for the one-electron case an expansion
in an N-particle basis set {Φ} offers a solution. For an initial trial wavefunction Ψ̂(α) which
depends on a set of parameters {α} the energy functional runs

Ê(α) =
〈Ψ̂(α)|H|Ψ̂(α)〉
〈Ψ̂(α)|Ψ̂(α)〉 . (5)

By virtue of the variation theorem the approximation Ê(α) is an upper bound to the exact energy
of eqn. 4 and the wavefunction Ψ̂(α) will converge on average to the exact wavefunction Ψ.
Using a linear expansion in terms of α

Ψ =
∑

i

αiΦi (6)

a generalized eigenvalue problem results from making the energy stationary with respect to α

Hc = ESc (7)
Hij = 〈Φi|H|Φj〉 (8)
Sij = 〈Φi|Φj〉 (9)

Hij and Sij denote the hamiltonian and overlap matrix elements with respect to the basis func-
tions Φi and Φj . The Dirac notation implies 〈Φi|O|Φj〉 =

∫
Φ∗

iOΦjdτ . As the N-particle basis
is usually chosen orthonormal, the overlap matrix is replaced by the unit matrix. For a complete
N-particle basis set this approach yields the exact solution of eqn. 4. However, such a basis
would be infinite in size and rather impractical to use.
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Practical guidelines for the construction of the N-particle basis are the efficient representation
of the N-particle space and the rapid evaluation of the respective matrix elements, i.e., the com-
putation of a vast number of multi-dimensional N-electron integrals appearing in eqn. 8. Con-
ventionally, the N-electron basis is constructed from antisymmetrized products of orthonormal
spinorbitals φki(ri), denoted Slater determinants Φ.

Φi = A
N∏

k

φki(ri) (10)

The spinorbitals φki(ri) are in turn constructed from linear combinations of spatial atom-centered
one-electron basis functions χµ times a spin function σ. The favourable mathematical proper-
ties of Gaussian Type Orbitals (GTOs) for integral evaluation make them the preferred choice
for χµ(r).

φi = σi

∑
µ

Cµiχµ(ri) = σiφ̃i (11)

χµ(r) = xlµymµznνe−αµr2

(12)

6
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Fig. 1: Schematic construction of closed-shell ground-state (Φ0), singly (Φa
i ), doubly (Φab

ij ),
triply (Φabc

ijk) and quadruply (Φabcd
ijkl ) excited determinants.

Fig. 1 schematically depicts the construction of the N-particle basis set. The spatial orbital
coefficients Cµi (molecular orbital coefficients) are usually obtained from HF or MCSCF wave-
function optimizations. The molecular orbitals (MOs) {φ̃} are ordered according to their eigen-
values (orbital energies ε). The ground (or reference) state is constructed by filling the energet-
ically lowest-lying orbitals with electrons. Singly, doubly, triply and quadruply excited deter-
minants are obtained by ”exciting” electrons from some occupied orbitals in the reference state
to unoccupied orbitals. Continuing up to N-fold excitations generates the full N-particle basis.
Slater determinants are in general no eigenfunctions to S2. This gives potentially rise to spin-
contamination problems. However, spin-adapted configurations (CSFs) may be constructed by
taking the appropriate linear combinations of Slater determinants.
Since a molecule is built from atoms and the chemical binding energy is much smaller than
the total electronic energy of the individual atoms this choice of atom centered basis functions
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allows for a compact representation of the electronic wavefunction. The Restricted Hartree-
Fock (RHF) model constraints each MO to be doubly occupied so that pairs of spin-orbitals
with unlike spin share the same spatial function. This constraint is lifted in the spin-polarized
or unrestricted HF method. Hence, UHF calculations yield in general no eigenfunctions of
S2 and thereby give rise to unphysical solutions of the Schrödinger equations. The additional
flexibility, however, allows UHF to include some Coulomb correlation. PUHF calculations
correspond to their UHF counterparts with the undesired contamination by higher multiplicities
is approximately removed by projection.
The atom-centered basis sets {χ} are composed of sets of atom-specific GTOs with their free
parameters lµ,mµ, nµ, αµ optimized by HF and/or electron correlation methods as to mini-
mize the total energy for the ground state or an average of several low-lying excited states.
For efficiency reasons instead of using primitive GTOs, fixed linear combinations of prim-
itive GTOs located on one center (CGTOs) are used. It is advisable to use systematically
constructed basis set sequences so that switching to larger basis sets yields a balanced and
uniform improvement of the one-electron basis. This property forms the basis for the extrap-
olation of the computed properties to the limit of a complete basis set {χ}. Popular basis
sets with this property are e.g. atomic natural orbitals (ANO) [8, 9] and correlation consis-
tent basis sets (cc-pVXZ, cc-pCVXZ X=D,T,Q,5,6)[10]. Many basis sets are available from
http://www.emsl.pnl.gov/forms/basisform.html. For electron correlation methods
basis sets of triple zeta quality are the minimum requirement - smaller basis sets are not flexible
enough to describe electron correlation reasonably well.
The number of CSFs that can be constructed from n molecular orbitals and N electrons subject
to a spin-multiplicity of S = b/2 [11] is given by:

Ncsf =
b + 1

n + 1

(
n + 1

a

)(
n + 1

n− a− b

)
where N = 2a + b S = b/2 (13)

Table 1 collects some representative numbers for the size of a full N-particle basis for singlet
states (S = 0). The case n = N corresponds typically to a basis set of cc-pVDZ quality,
whereas n = 2N comes close to cc-pVTZ quality basis sets suitable for electron correlation
methods. Evidently, using the linear expansion of the wavefunction (eqn. 6) in terms of all
possible CSFs in a given basis set {φ} (denoted full configuration interaction (FCI)) is ruled
out by the factorial growth of the N-particle space, except for the very smallest systems with
at most 10 to 20 electrons in small basis sets (see e.g. [12]). The truncation of the one- and

Table 1: Total size of the N-particle basis for singlet states as function of the number of electrons
N and molecular orbitals n: Ncsf = 1

n+1

(
n+1
N/2

)2
.

n=N n=2N
N Ncsf Ncsf

4 20 336
8 1 764 866 320
12 226 512 3 405 278 800
16 34 763 300 16 226 413 117 200
20 5 924 217 936 86 391 974 193 251 584
24 1 081 724 803 600 494 452 245 428 329 102 096
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N-particle basis are the most important errors in quantum chemical calculations.

2.3 Non-dynamical versus dynamical electron correlation

Truncating the N-electron wavefunction expansion to a single determinant and variational op-
timization of the remaining parameters, the MO coefficients, defines the Hartree-Fock method.
Since the Hartree-Fock solution forms the basis for most advanced electron correlation methods,
the electron correlation energy is defined as the difference between the exact non-relativistic en-
ergy and its HF counterpart in a complete basis {Φ}:

Ecorr = Eexact − EHF∞ (14)

By itself Eexact is ill-defined and must be obtained from experimental data corrected for rela-
tivistic effects. Considering electron correlation as the inadequacy of the N-electron wavefunc-
tion expansion in terms of a single Slater determinant (or a single CSF) by the HF method two
different effects can be identified.
The HF wavefunction by itself may be even qualitatively incorrect because low-lying configu-
rations strongly interact with each other resulting in large off-diagonal elements of H (eqn. 7),
so that the wavefunction is of multi-configurational nature. This effect is termed non-dynamical
electron correlation. It is frequently of no importance for closed-shell molecules close to their
equilibrium geometries but rapidly gains importance for open-shell systems, in excited states,
transition metal compounds, for molecular systems at strained structures as well as a conse-
quence of bond disrupture or bond breaking.
Dynamical electron correlation arises because - even though qualitatively correct - the HF mean-
field model cannot catch the instantaneous electron-electron interaction correctly. The mathe-
matical structure of the Hamiltonian enforces Katos cusp condition [13]: there is a singularity
in the Hamiltonian close to the coalescence point where the interelectronic distance of a pair
of electrons |ri − rj| = rij → 0 vanishes. To cancel this singularity the wave function must
contain linear terms rij so that there is a cusp at the coalescence point. To describe this cusp in
terms of products one-electron functions requires high-angular momentum basis functions (an-
gular correlation). Dynamical correlation effects may be accounted for by a variety of methods.
Single-reference methods imply a qualitatively correct HF reference state whereas more general
multi-reference methods can cope with any multi-configurational reference wavefunction.

3 Electron correlation methods

Electron correlation methods aim at approximating the FCI result, i.e., expanding the wave-
function in the full N-electron basis at a given one-electron basis set. Different methods can be
classified by the way the FCI space is truncated. Fig. 2 schematically depicts the situation.
To account for non-dynamical electron correlation the most important spin-adapted configura-
tions are included into the SCF procedure (multi-configurational SCF (MCSCF)). The coeffi-
cients of the CI expansion as well as the MO coefficients are optimized simultaneously. This
requires an optimization of a non-linear function of redundant parameters so that the MCSCF
method (cf. [14]) is more complex than HF and is occasionally plagued by convergence prob-
lems.
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Fig. 2: Schematic representation of basis set truncation effects. The dotted line indicates the
reference configuration space dimension and the dashed line the dimension of the FCI space.
Given a fixed basis set {φ} various methods are points along a vertical line.

Electron correlation methods usually require the integrals in the {φ} basis. They are initially
computed in the {χ} basis and must be transformed

〈ij|ab〉 =
∑

µνκλ

CµiCνjCκaCλb〈µν|κλ〉 (15)

〈µν|κλ〉 =

∫
χµ(r1)χν(r2)

1

|r1 − r2|χκ(r1)χλ(r2)dτ (16)

which formally requires O(n8) floating point operations. Splitting it up into four separate partial
summations it reduces to O(4n5). Further reductions occur for methods which require a subset
of all integrals, only. Due to this AO-MO transformation of the integrals ”non-local” electron
correlation methods scale as O(n5) or worse.

3.1 Multi-configurational self consistent field (MCSCF)
To set up a MCSCF calculation the configuration space must be specified. This can become
very tedious in case of large molecules or a complex bonding situation. Here the complete
active space (CAS) approach and its modifications are fairly robust (cf. Fig. 3): specifying the
number of active orbitals and electrons, a FCI expansion within this space is defined taking
care of the non-dynamical electron correlation effects. Due to the factorial dependence of FCI
expansions on the number of orbitals (cf. Table 1) , CASSCF expansions are mostly limited
to about 12 electrons in 12 orbitals (CASSCF(12,12)) corresponding to 226512 spin-adapted
configurations for a singlet state. Consequently, restricted active space (RAS) expansions use a
rather small RAS2 space along with typically at most 2 holes and electrons in RAS1 and RAS3,
respectively (cf. Fig. 3). Such choice includes the most important electron correlation effects
within RAS1 and RAS3 as well as the coupling between the subspaces. The choice of 1 hole
and electron, respectively, corresponds to including polarization effects for coupling the RAS
spaces. Thus, CASSCF and RASSCF calculations are usually limited by the size of the active
space, which cannot be choosen arbitrary small in case, e.g., of transition metal compounds and
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Fig. 3: Configuration and orbital space selection for non-dynamical electron correlation treat-
ment. Frozen core orbitals remain unoptimized, inactive orbitals are kept doubly occupied,
external orbitals are unoccupied throughout. For MCSCF calculations the configuration space
in the active orbital subspace is arbitrary, CASSCF uses a FCI expansion, and RASSCF ex-
tends the active space by RAS1 orbitals kept doubly occupied with at most n holes and RAS3
orbitals kept empty except for at most n electrons and RAS2 accomodating a FCI expansion
plus excitations from RAS1 to RAS2 and RAS2 to RAS3.

compounds with largely delocalized electrons. To set up these kind of calculations cannot be
automated although there are practical guide lines that work in many cases. Yet, it is not a black
box procedure.
In most cases MCSCF calculations do not provide even semi-quantitatively correct results due
to the lack of dynamical electron correlation. They solely provide a qualitatively correct and
well-balanced zeroth order description of wavefunction and are thus invariably followed by
multi-reference configuration interaction or perturbation theory. Note, that the redundancy of
CI and MO coefficients causes the MO coefficients to be not completely defined. This must
be fixed prior to starting the separate dynamic electron correlation treatment by resolving the
orbitals with the eigenvectors of the matrix representation of some operator (usually the one-
electron density or a generalized Fock operator).
Occasionally it may be difficult to construct a configuration space yielding a qualitatively cor-
rect zeroth order wavefunction and thereby reasonably unbiased one-electron basis (MOs). It
must be stressed that any optimization of the MO coefficients independent of the method results
in bias towards the selected wavefunction expansion. As dynamical and non-dynamical elec-
tron correlation treatment constitute separate stages, it is very important to avoid an erroneous
bias at the MCSCF level. Any substantial bias can be corrected for at the subsequent dynamical
electron correlation treatment with large effort, only (e.g. [15]).
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3.2 Møller-Plesset perturbation theory to nth Order (MPn)
The Hamilton operator is split into a reference H0 and a perturbation H′. It is assumed that
the unperturbed system can be solved with all eigenvalues and eigenvectors available while the
perturbation is small in some sense. The standard procedure to derive Rayleigh-Schrödinger
perturbation theory introduces an ordering parameter λ, expands the exact eigenvalues and
eigenfunctions in a Taylor series in λ and inserts these terms into the Schrödinger equation.
To hold for all values of λ one equation for each order is obtained. This finally yields in inter-
mediate normalization, i.e., 〈Ψ0|Ψ0〉 = 1

Ψ = Ψ0 +
n∑
i

Ψi (17)

E = Ẽ0 +
n∑
i

Ẽi (18)

Ẽn = 〈Ψ0|H′|Ψn−1〉 (19)

The Møller-Plesset partitioning employs the effective one-electron Fock operator F as H0 and
the perturbation becomes the difference between H0 and the exact Hamilton operator (fluctua-
tion potential). The zeroth order wavefunction is the HF wavefunction and the full set of eigen-
vectors and eigenvalues is given by all possible Slater determinants that can be constructed from
{φ} and the sum of the energies of the occupied orbitals, respectively.

H0 =
N∑
i

Fi, Ẽ0 =
N∑
i

εi, Ψ0 = Φ0 (20)

Ẽ0 is not the HF energy. Adding the first order correction Ẽ1 = 〈Ψ0|H′|Ψ0〉 reproduces the HF
energy. Expanding Ψ1 in terms of the eigenvectors of H0 and reinserting into eqn. 19 finally
yields Ẽ2 in terms of two-electron integrals and orbital energies

Ẽ2 =
∑
i<j

∑

a<b

|〈Φab
ij |H′|Φ0〉|2

〈Φab
ij |H0 − E0|Φab

ij 〉
=

∑
i<j

∑

a<b

|〈ij|ab〉 − 〈ij|ba〉|2
εi + εj − εa − εb

(21)

The computational cost for the evaluation of the MP2 energy is solely determined by the AO-
MO integral transformation step. A variant thereof employing the resolution of identity ap-
proximation, which amounts to expanding orbital products in terms of a single atom centered
auxiliary basis, succeeds in reducing the computational effort substantially compared to the
standard approach though still of O(n5) albeit with a smaller prefactor [22].
MPn requires that the HF wavefunction is a good approximation to the fully perturbed system.
Investigating the convergence properties of the series up to MP48 for H2O and NH2 [23] indi-
cates that the MP series is rapidly convergent close to equilibrium geometries but either erratic
(RHF reference) or extremely slowly convergent (UHF reference) away from the equilibrium.
A study on Ne indicates [24], that even in this perfect single-reference case the MPn series may
diverge(!) if the basis set contains diffuse functions. In practice the MPn series to low order
does not show a monotonic convergence and going to higher orders, it will presumably often
diverge. However, it has been found as well that in particular MP2 benefits largely from error
cancelation with medium sized basis sets and yields amazingly good results at rather low cost.
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3.3 Coupled cluster theory (CC)
Coupled cluster theory comprises the most accurate method to deal with dynamical electron
correlation treatment for single-reference states. Whereas perturbation methods include all ex-
citation levels with respect to the reference wavefunction to a given order, CC methods incor-
porate all excitations up to a given level to infinite order. There is a close connection between
CC methods, Møller-Plesset perturbation theory and the configuration interaction method [16].
CC methods are most conveniently expressed in terms of the second-quantization formalism,
which goes quite beyond this introductory lecture, so that details are omitted.
In CC theory the wavefunction (intermediate normalization) is expanded exponentially

ΨCC = exp(T )Ψ0 = exp(T )Φ0 (22)

eT = 1 + T + 1/2T 2 + . . . =
∞∑

k=0

T k

k!
(23)

T =
∑

i

Ti (24)

T1Φ0 =
∑
ia

tai τ
a
i Φ0 =

∑
ia

tai Φ
a
i (25)

T2Φ0 =
∑

ijab

tab
ij τab

ij Φ0 =
∑

ijab

tab
ij Φab

ij (26)

The cluster operators Tn are linear combinations of excitation operators τ weighted with cluster
amplitudes t. Applied to a reference state (here a closed shell Slater determinant) they generate
all nth excited Slater determinates with respect to the reference state Ψ0. Equation 22 expands
thus to

ΨCC = (1 + T1 + T2 + T 2
1 + T1T2 + T 2

2 + T3 . . .)Ψ0 (27)

Inserting 22 into the Schrödinger equation, multiplying from the left with e−T and projecting
against {Φ} such as Φ0, Φ

a
i . . . yields the ground state energy and cluster equations, respectively.

〈Φ0|e−T (H− E0)e
T |Φ0〉 = 〈Φ0|e−THNeT |Φ0〉 = Ecc − E0 (28)

〈Φa
i |e−T (HN + E0)e

T |Φ0〉 = 0 (29)

Ecc solely depends upon singly and doubly excited determinants. However, the equations for
the amplitudes form a coupled system of non-linear equations connecting all excitation levels.
Still, due to the Hamiltonian containing at most two-electron terms, e−THNeT contains at most
four-fold products of T . The equations for the amplitudes are solved iteratively. There is an
important distinction between a truncated linear CI expansion and the truncated CC expansion
of the wavefunction: since the operator Tn is implicitly included up to infinite order, up to
N-fold excited determinants are included, their coefficients are given by products of the n-
fold excitations. This feature makes CC size-extensive, i.e., the energy scales linearly with the
number of indepenent subsystems as required. Truncated CI in contrast recovers zero electron
correlation energy per subsystem in the limit of an infinite system size.
Different CC models can be obtained by either limiting the expansion of T to a maximum
excitation level (CCSD: T = 1 + T1 + T2, CCSDT: T = 1 + T1 + T2 + T3, etc.) and possibly
additionally neglecting some terms in the resulting equations (CC2[17], CC3[18]). Since the
resulting non-linear equations must be solved iteratively, additional variants are conceivable by
sticking to a perturbative solution for a subset of amplitudes (CCSD(T)[16]). As the resulting
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amplitude equations for CC methods of high order are nasty – to put it nicely – it is solely
by recently developed contraction engines (e.g. [19]), which constitute programs that write
optimized (and correct!) code for terms arising in coupled cluster expansions up to arbitrary
order getting their input at much higher abstraction level. The computational effort increases
with CC2, CCSD, CC3, CCSDT, CCSDTQ as O(n5), O(n6), O(n7), O(n8), O(n10).
Although CC theory is essentially a single-reference treatment, by inclusion of higher excita-
tions it is becoming increasingly robust against multi-reference character, although treatment
of bond breaking is out of question. Its prime advantage over CI is its size-extensivity, which
makes it the method of choice for electron-rich molecules. Excited states and properties are
available through linear response theory [20] connecting the response of the density to time-
dependent external fields in order to derive frequency-dependent properties whose poles are
located at the excitation energies. An efficient implementation of the CC2 method exploiting
the resolution of identity approximation for integral evaluation provides ground and excited
state properties including ground state gradients [21]. CC2 is in terms of computational effort
and quality of ground state properties similar to MP2 though in contrast to the latter applicable
as well to excited states dominated by single excitations with respect to the ground state.

3.4 Multi-reference singly and doubly excited configuration interaction
(MR-SDCI)

In the MR-SDCI method the N-electron wavefunction is linearly expanded in terms of the ref-
erence configurations and all singly and doubly excited CSFs thereof

ΨMRCI =

ref∑
i

cref
i Ψref

i +
∑
ia

ca
i Ψ

a
i +

ab∑
ij

Ψab
ij (30)

Continuing this expansion up to N-fold excitations finally yields the FCI expansion. The CIS
expansion corresponds to a truncation after single excitations with solely a single reference
configuration. Single excitations incorporate the effect of orbital relaxation with respect to the
orbital generation step, whereas the double excitations account for the dynamical correlation
effect. The energetic contributions decrease in the order D-Q-T-S. Since the Hamilton operator
contains at most two-particle terms, all matrix elements between configurations differing by
more than double excitations vanish (Slater-Condon-Rules). Variants of this method include
MRD-CI [25], treating only a small part of the entire configuration space variationally whereas
the remainder is treated as perturbation. Internally contracted MR-SDCI [26] applies single and
double excitations to the reference state as a single entiety only, thereby making the size of the
MR-SDCI expansion independent of the size of the reference space. Whereas the unrestricted
MR-SDCI method can be applied to any excited state at any nuclear geometry, this does not
necessarily apply to all its variants. The lack of size-extensivity can be overcome by using
the approximately size-extensive variants MR-AQCC or MR-ACPF [27, 28], which work by
renormalization of the wavefunction. Analytical gradients and spin-orbit coupling available as
well [29].

3.5 Complete active space perturbation theory to second order (CASPT2)
The CASPT2 method [30] aims at the quantitative description of ground and excited multi-
reference states by using single-reference perturbation theory with respect to a multi-reference
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zeroth order CASSCF wavefunction. H0 is choosen as a generalized Fock operator such that
for a closed-shell reference wavefunction the MP2 results are reproduced. Solving for the first-
order correction Ψ1 =

∑
i ciΦi amounts to solving a linear equation system in the N-electron

basis
[H0 − Ẽ0I]~c = −~v′ with vi = H′

0i (31)

In contrast to MP2 H0 is not diagonal for a general CASSCF wavefunction. Choosing H0

as to decouple the triply and higher excited determinants from the remainder ensures that the
first-order correction of the wavefunction can be solely expanded within all singly and doubly
excited determinants. As any element of H0 can be written as a linear combination of elements
of an effective (orbital) Fock matrix f , further simplifications arise by transforming the orbital
basis such as to minimize the off-diagonal elements of f . Yet, the left hand side matrix of
eqn. 31 contains many off-diagonal elements and requires – in contrast to MP2 – an iterative
solution, which might be difficult to converge.
This approach has been very successfully applied to ground and excited states [31]. A weak
point is the sensitivity to so-called intruder states, i.e., matrix elements with respect to H0 of
configurations outside the CASSCF space that lie energetically rather close to those included
in the variational CASSCF treatment cause the energy expression to diverge similar to MP2
(eqn. 21). This situation has much improved upon the introduction of imaginary level shift
[32]. However, if intruder states arise from strong coupling with the exact Hamiltonian, there is
no way but to enlarge the CASSCF space. As Møller-Plesset perturbation theory, the CASPTn
series potentially diverges. Regions close to avoided crossings must be treated by the multi-state
variant [33].

3.6 Møller-Plesset perturbation theory with explicit r12 terms (MP-R12)
Owing to the mathematical form of the Hamiltonian containing the singular term 1

|r1−r2| = 1
r12

the wavefunction must behave close to the interelectronic coalescence point as

∂Ψ(r12)

∂r12

|r12=0 =
1

2
Ψ(r12 = 0) (32)

implying that the unnormalized wavefunction contains terms linear in the interelectronic dis-
tance (Kato’s cusp condition [13]). However, products of one-electron basis functions (GTOs)
contain no terms of odd order in r12, thereby being responsible for the slow convergence with
respect to basis set size. This angular correlation depends on the angular momentum l of the
basis functions. For He it has been found that the correlation energy error δEcorr behaves as

δEcorr ≈ 1

(l + 1)3
(33)

Introducing terms linear in r12 therefore aims at improving basis set convergence and in the
limit of a complete basis set r12 variants of quantum chemical methods should give the same
results as their conventional counterparts. Using the ansatz [34, 35]

Ψ(1) =
∑

ijab

cab
ij Φab

ij +
∑
ij

dijΦ̃ij (34)

for the first-order wavefunction. Φ̃ij denotes linear combinations of products in rij times the HF
wavefunction appropriately antisymmetrized and orthogonal to all {Φ0, Φ

ab
ij }. Evaluating the
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second-order energy by minimizing the Hylleraas functional requires the evaluation of three-
and four-electron integrals which are not only difficult to evaluate but also numerous (up to
O(n8)). Introducing approximations based upon the resolution of identity allows to get rid
of the most difficult and numerous three- and four-electron integrals. The approximations are
chosen such as to become exact in the limit of a complete basis and to guarantee that the basis
set limit is reached much faster than in conventional calculations. Still, reliable results require
somewhat larger basis sets with high-angular momentum functions (including up to at least f
type functions) thereby limiting the range of applicability of this method. This approach has
also extended to the more complex Coupled Cluster [36] method. The excellent results of MP-
R12, which converges as (l + 1)−7 to the basis set limit, are frequently used as benchmark data
for basis set convergence studies (e.g. [37]). Recent work is directed to removing the restriction
to large basis sets by introducing an auxiliary basis set to evaluate the intermediate terms so that
the resolution of identity approximation holds independently of the size of the actual basis set
used.

3.7 Local Møller-Plesset perturbation theory (LMP2)

Local electron correlation methods aim at linear scaling with the size of the molecule. Con-
ventional implementations scale unfavourably as ≥ O(n5). The basic idea is to exploit the
short-range character of dynamic electron correlation. Conventional single-reference electron
correlation methods expand the configuration space in terms of the canonical and mostly delo-
calized HF orbitals obviating this aim. However, the HF wavefunction does not change upon
unitary transformation of the MOs mixing solely occupied and unoccupied orbitals separately.
Thus, the LMP2 method [38] localizes the occupied orbitals (LMOs) and spans the orthogonal
complement by non-orthogonal projected atom centered basis functions (PAOs). From orbital
domains, comprised of those PAOs spatially close to a given LMO, pair domains composed of
products of two orbital domains are constructed. The size of an orbital domain is independent
of the molecular size. In addition, by grouping O(n2) pair domains into different classes de-
pending upon the spatial distance of the respective orbital domains, the number of pairs which
significantly contribute to the energy scales only linearly with system size. Again, like CASPT2,
due to the orbital basis H0 is not diagonal and an iterative procedure based on optimizing the
Hylleraas functional is used to obtain Ψ1. The number of terms Ψ1 is expanded into scales only
linearly with system size. The evaluation of the matrix elements of H0 and H′ can be substan-
tially sped up by local density fitting [39]. Density-Fitting LMP2 calculations are reported for
medium sized systems to be faster than the corresponding HF calculation.

4 Conclusions
For states qualitatively well-described by the HF method, there are several different methods
available to incorporate electron correlation. Whereas CCSDT is rather robust and accurate
albeit applicable to small systems, only, the cheaper CC2 and CCSD methods are also applicable
to excited states (dominated by single excitations) and far less limited in system size. MP2 is
restricted to ground states and more prone to failure although it seems to largely benefit from
error cancelation. MP2-R12 is the method of choice to go for the one-electron basis set limit.
Local MP2 on the other hand, seems to be ultimatively promising for dealing with large systems
– the main difficulty here is to construct the HF wavefunction which is going to be (much) more



A10.14 Th. Müller

expensive than the electron correlation treatment.
For multi-configurational states there are few methods available notably perturbation theory
CASPT2 and MR-SDCI/MRAQCC. Whereas the latter is completely generally applicable the
perturbational approach faces problems close to avoided crossings and might suffer from in-
truder states. CASPT2 is primarily limited by the size of the CAS but otherwise widely appli-
cable to ground and excited states. MRSDCI/MRAQCC is confronted by the polynomial growth
of the configuration space which reaches easily 109 configurations even for small molecules.

Further reading
T. Helgaker, P. Jørgensen, J. Olsen, Molecular Electronic Structure Theory
John Wiley & Sons, New York, 2000.
J. Grotendorst (ed.), Modern Methods and Algorithms of Quantum Chemistry
Central Institute of Applied Mathematics, FZ Jülich GmbH, 2000.
F. Jensen, Introduction to Computational Chemistry, John Wiley & Sons, New York, 1999.
A. Szabo, N.S. Ostlund Modern Quantum Chemistry, Dover Publications Inc., New York, 1996.
D.R. Yarkony (ed.), Modern Electronic Structure Theory, World Scientific, Singapore, 1995.

References
[1] W. Kutzelnigg, G. Del Re, G. Berthier, Phys. Rev. 172, 49 (1968)

[2] Y.S. Lee, W.C. Ermler, K.S. Pitzer, J. Chem. Phys. 87, 2847 (1987)
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[22] F. Weigend, M. Häser, Theor. Chim. Acc. 97, 331 (1997).

[23] N.C. Handy, P.J. Knowles, K. Somasundram, Theor. Chim. Acta 68, 87 (1985).

[24] O. Christiansen, J. Olsen, P. Jørgensen, H. Koch, P.-Å. Malmqvist, Chem. Phys. Lett. 261
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[30] K. Andersson, P.-Å. Malmqvist, B.O. Roos, J. Chem. Phys. 96, 1218 (1992).

[31] B.O. Roos, K. Andersson, M.P. Fülscher, P.-Å. Malmqvist, K. Serrano-Andres, K. Pier-
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