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1 Introduction

Classical statistical mechanics is formulated in terms of the probability that interacting particles
attain certain positions and velocities. Each given set of positions and velocities is referred to
as microstate. The probability for the occurrence of such microstates can be expressed in terms
of the interaction potential between the particles. In that sense, statistical mechanics is a micro-
scopic theory. In principle, equations of motion for macroscopic variables can be derived from
statistical mechanics. In this way, a microscopic basis can be given to many phenomenological
theories. In particular, microscopic expressions can be derived for phenomenological transport
coefficients in terms of correlation functions. Examples of such transport coefficients are diffu-
sion coefficients and the shear viscosity of a fluid. These correlation functions can be measured
by computer simulations, which then allows the determination of numerical values for transport
coefficients once the inter-particle potential is specified.
The aim of this chapter is to introduce the fundamental concepts and theories of classical (non-
quantum mechanical) statistical mechanics. The emphasis is on dynamics and response to small
external perturbations. Both atomic/molecular and colloidal systems will be treated. In section
2, the fundamental concepts in terms of which statistical mechanics is formulated are intro-
duced. The central quantity here is the probability density function, which specifies the prob-
ability of microstates. In section 3, time-correlation functions are introduced, which charac-
terize the dynamics of particles. These correlation functions can be formulated in terms of the
so-called time-evolution operator, which is defined through the equation of motion of proba-
bility density functions, as shown in section 4. Explicit forms for time evolution operators are
derived in terms of inter-particle potentials in the same section. Two cases are considered :
atomic/molecular systems and colloidal systems. Colloidal systems are solutions of very large
particles, so-called colloidal particles. Here, the interest is in the properties of the subset of these
colloidal particles. The solvent is considered as a continuous background on the length scale
set by the size of the colloidal particles. The most fundamental equation of motion within clas-
sical mechanics is the Liouville equation for atomic/molecular systems. For colloidal particles,
the so-called Smoluchowski equation is the relevant equation of motion. The latter equation of
motion involves only the position coordinates of the colloidal particles. The derivation of this
equation of motion relies on a separation of time scales on which the solvent molecules and the
momenta of the colloidal particles evolve, and on which the positions of the colloids evolve.
The Smoluchowski equation involves interaction contributions between colloidal particles me-
diated via the solvent, so-called hydrodynamic interactions. These interactions can be described
on the basis of phenomenological equations of motion for fluid flow. Such a phenomenological
description of hydrodynamic interactions is the subject of section 5. In section 6, the explicit
forms of the time evolution operators are used to calculate the response of observables to small,
conservative external fields. This theory is known as ”linear response theory”. On the basis
of this theory, linear transport coefficients are expressed in terms of current-current correlation
functions in section 7. These expressions are known as ”the Green-Kubo formulas”. Explicit
expressions for the self-diffusion coefficient and the sedimentation coefficient of colloids are
derived from the general Green-Kubo formula. Such formulas can be used to obtain numer-
ical values for transport coefficients by measuring the appropriate current-current correlation
functions in a simulation. For non-conservative external fields, like a shear flow, or for trans-
port coefficients where the driving force is proportional to gradients of observables, like the
collective-diffusion coefficient, the general Green-Kubo formula can not be applied. Here, an
intuitively appealing Ansatz as formulated by Onsager can be employed to obtain Green-Kubo-
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like relations. This so-called ”Onsager’s regression hypothesis” is formulated in section 8. Two
transport coefficients are worked out explicitly : the collective-diffusion coefficient of colloids
and the shear viscosity of a molecular fluid.

2 Probability Density Functions (pdf’s)

It is not feasible nor meaningful to solve Newton’s equations of motion for a collection of many
particles : the problem is too complicated and the initial values for the position coordinates
and momenta that must be specified are not known when an experiment is performed. This is
where statistical approaches are useful, where one asks for the probability that, for example, the
position coordinates and momenta take certain specified values at some specified time.

2.1 Phase space, pdf’s and ensemble averages

Imagine a collection of macroscopically identical systems containingN molecules. Thermody-
namic variables for each system are the same, but of course microscopically each of the systems
is generally in a different state, that is, the position coordinates and momenta of the molecules in
each system at a certain instant in time are generally different. Such a collection of macroscop-
ically identical systems is referred to as anensemble. Thephase spacefor spherical molecules
is defined as the6N -dimensional space spanned by the position coordinatesr1, · · · rN and mo-
mentap1, · · · ,pN of all N molecules in each system. The instantaneous values of positions
and momenta specify themicrostateof a system, and is represented by a single point in phase
space. The evolution of positions and momenta in a system is described by a curve in phase
space. Now suppose that we made a photograph of the entire ensemble, and that the microstate
of each system in the ensemble is determined from that photograph.1 In this way a single point
in phase space is assigned to each of the systems, resulting in a point distribution for the en-
semble. The density of points is proportional to the probability of finding a single system in
that microstate at that particular time. Theprobability density function(abbreviated hereafter
aspdf) P (X, t) of the phase space variable,

X ≡ (r1, · · · , rN ,p1, · · · ,pN) , (1)

is now defined as,

P (X, t)dX = the probability that positions and momenta

are in (X,X + dX) at time t . (2)

Here,(X,X + dX) denotes an infinitesimal neighbourhood ofX of extent,

dX = dr1 · · · drN dp1 · · · dpN . (3)

The pdf is normalized in the sense that,
∫

dXP (X, t) = 1 , (4)

which expresses the fact that the probability to find a system in some state is unity. Consider
a functionf ≡ f(X) of position coordinates and momenta. Such functions are referred to as

1For the determination of the momenta one should actually make two subsequent photographs.
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phase functions, and may be scalar functions or vector fields. Phase functions are the micro-
scopic, thermally fluctuating counterparts of macroscopic variables. Frequently, phase func-
tions, and also (a subset of) the phase space coordinates themselves, are alternatively referred to
asstochastic variables. The macroscopic variable corresponding to a phase function is obtained
by ensemble averaging, and is given by,

< f > =

∫
dXP (X, t) f(X) . (5)

The brackets< · · · > are nothing but a short-hand notation for the integral on the right hand-
side. This average is theensemble averageof f . Alternatively one may introduce the pdfP (f, t)
for a stochastic variablef instead ofX, by rewriting the above equation as,

< f > =

∫
df P (f, t) f . (6)

This pdf forf is equal to (withδ the delta distribution),

P (f, t) =

∫
dXP (X, t) δ(f − f(X)) , (7)

as is easily verified by substitution into eq.(6), noting that
∫

df δ(f−f(X))f= f(X). The
above expression forP (f, t) is simply a counting of the extent of the subset in phase space
wheref(X) attains a particular numerical valuef , weighted with the local point density.
Other more complicated pdf’s can be defined. For example,P (X, t,X0, t0) is the pdf forX to
occur at timet andX0 at some earlier timet0, or more precisely,

P (X, t,X0, t0)dXdX0 = the probability that positions and momenta

are in (X,X + dX) at time t

and in (X0,X0 + dX0) at time t0 < t . (8)

By definition, the connection with the earlier defined pdf is,

P (X, t) =

∫
dX0 P (X, t,X0, t0) . (9)

Equivalently, one may define pdf’s likeP (f, t, g, t0) wheref andg are phase functions. Just as
above, we have that,P (f, t) =

∫
dg P (f, t, g, t0).

Two stochastic variablesf andg are said to bestatistically independentwhen,

P (f, t, g, t0) = P (f, t) P (g, t0) . (10)

An ensemble average like<f g> is then simply equal to the product of the averages<f > and
<g>.

2.2 Conditional probability density functions

Consider again the photograph taken of the ensemble at timet as discussed earlier, which allows
for the determination of the microstate of each of the systems in the ensemble. Now consider
only those systems which at a certain earlier timet0 < t were in a particular microstateX0.
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Fig. 1: Three possible realizations of the time evolution of the phase functionf , given that
at timet0 the phase function had a particular valuef0. The smooth curve is the conditional
ensemble average< f >f0.

This subset of systems in the ensemble is an ensemble itself, and pdf’s may be defined as above
for this new ensemble. This new ensemble is an ensemble of systems which are prepared in
a specified microstateX0 at timet0. The pdf’s forX are pdf’s with the constraint that at an
earlier timet0 the system was in the microstateX0. Such pdf’s are calledconditional pdf’s, and
are denoted asPc(X, t |X0, t0), where the subscript ”c” stands for ”conditional”. Hence,

Pc(X, t |X0, t0)dX = the probability that positions and momenta

are in (X,X + dX) at time t , given

that their values were X0 at time t0 < t . (11)

Similarly, conditional pdf’s of phase functionsf , given that the phase function had a particular
valuef0 at an earlier time may be defined as,

Pc(f, t |f0, t0)df = the probability that the phase function is

in (f, f + df) at time t ,

given that its value was f0 at time t0 < t . (12)

By definition, the connection between conditional pdf’s and the earlier discussed (uncondi-
tional) pdf’s reads,

Pc(X, t |X0, t0) =
P (X, t,X0, t0)

P (X0, t0)
, (13)

and similarly for pdf’s of phase functions. The conditional ensemble average of a phase function
f , given thatf = f0 at some earlier timet0, is denoted as< f >f0,

< f >f0 =

∫
df Pc(f, t |f0, t0) f . (14)
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This ensemble average is in general a function of the timet. The phase function evolves in time
for each system in the ensemble differently, since there are many different microstatesX0 that
satisfyf0 = f(X0). Two such different realizations are depicted in Fig.2.2. The conditional
ensemble average is the average of all those possible realizations.
One can define time-independent conditional pdf’s. For example, one may ask for the proba-
bility that particles3, 4, · · · , N have positionsr3, r4, · · · , rN , given that particles1 and2 have
prescribed positionsr1 andr2, respectively. That conditional pdf is, in analogy with eq.(13),
equal to,

Pc(r3, · · · , rN |r1, r2) =
P (r1, · · · , rN)

P2(r1, r2)
, (15)

whereP2(r1, r2) is the pdf for(r1, r2), which pdf will be discussed in more detail in the subse-
quent section.
To determine an ensemble average experimentally, there is no need to actually construct a col-
lection of many macroscopically identical systems. When an experiment on a single system
is repeated independently many times, the average of the outcome of these experiments is the
ensemble average. In many cases only a single experiment is already sufficient to obtain the en-
semble average. When the system is so large that the quantity of interest has many independent
realizations within different parts of the system, an ensemble average is measured in a single
experiment.

2.3 Reduced probability density functions

According to eq.(5), the ensemble average of a phase function of just two position coordinates,
r1 andr2 say, can be written as,

< f > =

∫
dr1 · · ·

∫
drN P (r1, · · · , rN , t) f(r1, r2) =

∫
dr1

∫
dr2 P2(r1, r2, t) f(r1, r2) , (16)

where,

P2(r1, r2, t) =

∫
dr3 · · ·

∫
drNP (r1, · · · , rN , t) , (17)

is referred to asthe reduced pdf of order2 or the two-particle pdf. Similarly, ensemble aver-
ages of phase functions of just one position coordinate are averages with respect the first order
reduced pdf or the single particle pdf,

P1(r1, t) =

∫
dr2 · · ·

∫
drNP (r1, · · · , rN , t) . (18)

Higher order reduced pdf’s (such asP3(r1, r2, r3, t) ) are similarly defined.
The probability of finding a particle at some positionr at timet is proportional to the macro-
scopic number densityρ(r, t), which is the average number of particles per unit volume atr and
at timet. Normalization sets the proportionality constant,

P1(r, t) =
1

N
ρ(r, t) . (19)

A similar relation forP2 will be discussed later, when the pair-correlation function is introduced.
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When the system is in thermal equilibrium, the time-independent pdf for the position coordi-
nates is proportional to the Boltzmann exponential of the total potential energyΦ(r1, · · · , rN)
of the assembly ofN particles,

P (r1, · · · , rN) =
exp {−βΦ(r1, · · · , rN)}

Q(N, T, V )
, (20)

with β = 1/kBT (kB is Boltzmann’s constant andT is the absolute temperature) andQ(N, T, V )
is theconfigurational partition function,

Q(N, T, V ) =

∫
dr1 · · ·

∫
drN exp{−βΦ(r1, · · · , rN)} . (21)

When the total potential energyΦ is known, the reduced pdf’s can thus be calculated in prin-
ciple for systems in equilibrium, except that the integrals in eqs.(17,18) are too complicated.
Finding good approximations for the first few reduced pdf’s for systems in equilibrium, either
from eqs.(17,18) or by other means, is the principle goal of equilibrium statistical mechanics.
These equilibrium pdf’s are often a necessary input for explicit evaluation of non-equilibrium
ensemble averages also.

2.4 The pair-correlation function

When particles do not interact with each other, all reduced pdf’s are products ofP1’s. In par-
ticular, P2(r1, r2, t) = P1(r1, t) P1(r2, t). Interactions can formally be accounted for by an
additional factorg(r1, r2, t), the so-calledpair-correlation function,

P2(r1, r2, t) ≡ P1(r1, t) P1(r2, t) g(r1, r2, t) =
1

N2
ρ(r1, t) ρ(r2, t) g(r1, r2, t) . (22)

Similarly, thethree-particle correlation functiong3 ”corrects” for the effect of interactions for
the third order pdfP3,

P3(r1, r2, r3, t) = P1(r1, t) P1(r2, t) P1(r3, t) g3(r1, r2, r3, t) (23)

=
1

N3
ρ(r1, t) ρ(r2, t) ρ(r3, t) g3(r1, r2, r3, t) .

For large distances|r1−r2 | between two particles, the pair-correlation function attains its value
without interactions, which is1 by definition. The three-particle correlation function becomes
equal to1 when all three particles are well separated.
In case of homogeneous and isotropic fluids in equilibrium, the pair-correlation function is a
function of r =| r1 − r2 | only, and can be expanded in a power series of the number density
ρ̄ = N/V as,

g(r) = g0(r) + ρ̄ g1(r) + ρ̄2 g2(r) + · · · . (24)

The leading termg0 describes interactions between two particles without the intervening effects
of other particles. This is nothing but the pair-correlation function for a system containing
just two particles. It is the relevant pair-correlation function for systems which are so dilute
that events where three or more particles interact simultaneously are unlikely. According to
eqs.(20-22), withP1 ≡ 1/V , we thus obtain,

g0(r =|r1 − r2 |) = V 2 exp{−βU(r)}∫
dr1

∫
dr2 exp{−βU(r)} ,
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Fig. 2: (a) The pair-correlation function in eq.(27) for a volume fractionϕ = 0.1. (b) A sketch
of the pair-correlation function of hard spheres at large concentrations. (c) A sketch of the
pair-correlation function for charged spheres. In all three figures, the horizontal line indicates
whereg = 1.

whereU(r) is the potential energy of an assembly of just two particles, the pair-interaction
potential. Now noting that,

∫
dr1

∫
dr2 exp{−βU(r)} =

∫
dr2

∫
d(r1 − r2) exp{−βU(r)}

= V

{∫
dr [exp{−βU(r)} − 1] + V

}
≈ V 2 ,

since the integral in the last equation is of the orderR3
V , with RV the range of the pair-interaction

potential, it is found that,

g0(r) = exp{−βU(r)} . (25)

The phrase ”on the pair-level” is generally used whenever interactions between three or more
molecules simultaneously are disregarded. Hence, eq.(25) is the pair-correlation function on
the pair-level, and can be used to calculate ensemble averages for dilute systems. In general, the
pair-correlation function includes ”higher order interactions”, that is, it includes the intervening
effects of the remaining particles on the interaction between two given particles. The next
higher order contribution∼ g1 in eq.(24) can be expressed in terms of so-calledMayer-functions
f(r) = exp{−βU(r)} − 1 as,

g1(r =|r1 − r2 |) = exp{−βV (|r1 − r2 |)}
∫

dr3 f(|r1 − r3 |) f(|r2 − r3 |) , (26)

This term describes the intervening effect of a single molecule on the effective interactions
between two given molecules. The derivation of this result can be found in most standard texts
on statistical mechanics.
For hard-sphere spheres, that is, for spherical molecules which do not interact when their cores
do not overlap and where the pair-potential is infinite when the cores overlapg1 is found to be
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equal to (the subscript ”hs” stands for ”hard-spheres”),

ghs(r) = g0(r) + ρ̄g1(r) = 1 , for r ≥ 4a ,

= 1+ϕ

[
8− 3

r

a
+

1

16

(r

a

)3
]

, for r∈ [2a, 4a) ,

= 0 , for r < 2a , (27)

wherea is the radius of the hard-core andϕ = 4π
3

a3ρ̄ is the fraction of the total volume that is
occupied by the cores of the particles, the so-calledvolume fraction. This pair-correlation func-
tion is plotted in Fig.2.4a forϕ = 0.1. At larger concentrations, the pair-correlation function
develops a large contact value (defined as the value ofg at r = 2a + ε with ε arbitrary small),
and peaks appear at larger distances, as depicted in Fig.2.4b. A ”layered structure” of spheres
is formed around the central sphere. The pair-correlation function behaves quite differently in
case of long ranged and strongly repulsive interacting particles, such as charged molecules, as
depicted in Fig.2.4c. In this case the contact value ofg is essentially zero, since the probability
that two particles touch is small due to their strong repulsive interaction. The peak position
shifts to smaller distances for higher concentrations. This is due to the tendency of the particles
to remain far apart from each other so as to minimize their (free) energy. The peak position
varies approximately as1/ρ̄ 1/3 for such systems. For the hard-core systems, the peak position
is essentially independent of concentration.
Consider a molecule at the origin. One may ask about the average density around that particle,
which density is a function of the distance from the particle due to interactions. This density is
N P1, as in eq.(19), with the additional condition that there is a particle in the origin. According
to eq.(11) (witht = t0, X0 = 0 = the position of the particle at the origin andX = r) this
conditional probability is equal toP2(r, r

′ = 0, t)/P1(r
′ = 0, t). Hence, from the definition

(22) of the pair-correlation function,

Number density at r with a particle at the origin =

N
P2(r, r

′ = 0, t)

P1(r′ = 0, t)
= ρ(r, t) g(r, r′ = 0, t) . (28)

Well away from the origin, where interaction with the particle at the origin is lost, so that
g(r, r′ = 0, t) = 1, this is simply the macroscopic densityρ(r, t), as it should. The peaks in
the Figs.2.4 thus imply enhanced concentrations around a given particle at those distances. For
hard-core interactions there is also an enhanced concentration close to contact. This enhance-
ment is due to depletion : particles are expelled from the gap between two nearby particles
leaving an uncompensated repulsive force from particles outside the gap that drives the two
particles together. Each molecule in a dense liquid, charged or uncharged, is thus surrounded
by a ”cage” of other particles.
The ”effective interaction potential”U eff (r) can be defined for isotropic and homogeneous
systems in equilibrium as,

g(r) ≡ exp{−βU eff (r)} . (29)

According to eq.(25), this effective potential is equal to the pair-interaction potential on the
pair-level. From the definition of the pair-correlation function and the expressions (20-22), the
average forceFeff (r) between two particles for arbitrary concentrations can be shown to be
equal to−∇U eff (r), provided the system is in equilibrium. The effective force includes the
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effects of intervening particles on the interaction between two given molecules. Hence, by
definition,

Feff (r) = β−1∇ ln{g(r)} = β−1 r̂ d ln{g(r)}/dr , (30)

so that there is an attraction for those distances wheredg(r)/dr < 0. For hard-spheres near
contact there is thus attraction due to depletion as already explained above. Around the peak
in the pair-correlation function the effective force changes from strongly repulsive to attractive.
Multi-particle interactions may thus lead to attractions even if the pair-interaction potential is
purely repulsive.

3 Time-Correlation Functions

Dynamics of many-body systems can be characterized in terms of so-calledtime-correlation
functions. In order to define these correlation functions, consider first the conditional ensemble
average,

< g >f0 =

∫
dg Pc(g, t |f0, t0) g . (31)

This ensemble average is a time dependent function, also for systems in equilibrium. It de-
scribes the average evolution of the phase functiong, given that at timet0 < t the value
of the phase functionf was f0. When this conditional average is subsequently averaged
with respect tof0, the result is simply the unconditional ensemble average< g > : since
P (g, t |f0, t0) = P (g, t, f0, t0)/P (f0, t0) we have,

<< g >f0> =

∫
df0 P (f0, t0)

∫
dg Pc(g, t |f0, t0) g

=

∫
dg

∫
df0 P (g, t, f0, t0)

︸ ︷︷ ︸
=P (g,t)

g = < g > .

The second pair of brackets< · · · > on the left hand-side denotes ensemble averaging with
respect to the initial conditionf0. This ensemble average is time independent for systems in
equilibrium. The most simple unconditional ensemble average that contains information con-
cerning the dynamics of stochastic variables, also for systems in equilibrium, is thecorrelation
function off andg, defined as,

<< g >f0 f0 > =

∫
df0 P (f0, t0)

∫
dg Pc(g, t |f0, t0) g f0 . (32)

In an experiment one usually measures such an unconditional ensemble average, since the sys-
tem is not prepared in a certain state before the experiment is started. Alternatively, the correla-
tion function may be written in terms of pdf’s of phase space coordinatesX. Using that,

P (g, t, f0, t0) =

∫
dX

∫
dX0 P (X, t,X0, t0) δ(g − g(X)) δ(f0 − f(X0)) , (33)
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which is an alternative formulation of eq.(7), it is easily shown that,

< f(X(t0)) g(X(t)) > =

∫
dX

∫
dX0 f(X0) g(X) P (X0, t0) Pc(X, t |X0, t0)

=

∫
dX

∫
dX0 f(X0) g(X) P (X, t,X0, t0) , (34)

where the left hand-side is just a more transparent, alternative notation for the correlation func-
tion<< g >f0 f0 >. The correlation function is a function oft andt0. For equilibrium systems,
however, in which there is no preferred instant in time, the correlation function in eqs.(32,34)
depends only on the differencet−t0.
For very large time differencest−t0, the dynamics ofg becomes independent of whatever value
f had at timet0. Formally this means that

P (X0, t) Pc(X, t |X0, t0) = P (X, t,X0, t0) → P (X, t) P (X0, t0) .

The correlation function is thus seen to tend to<f ><g> ast− t0 →∞. The time required to
renderf andg statistically independent, to within some degree, is referred to asthe correlation
time forf andg.

4 Equations of Motion for Probability Density Functions

In order to calculate time-correlation functions analytically, an equation of motion for the appro-
priate pdf needs be derived. Before formulating the two most important fundamental equations
of motion, let us first see how to calculate time-correlation functions from such equations of
motion.
Equations of motion for pdf’s are of the form,

∂

∂t
P (X, t) = L̂P (X, t) , (35)

whereL̂ is the time evolution operator(mostly a differential operator) that acts on the phase
space variablesX. Depending on the type of system under consideration, the operatorL̂ takes
different forms, two of which will be discussed at the end of this section. At timet0 the phase
space variables are supposed to be equal toX0. The pdf is thus infinitely sharply peaked around
X = X0 at timet= t0. From the normalization condition (4) it thus follows that,

P (X, t = t0) = δ(X−X0) , (36)

with δ the delta distribution. Note that the solution of the equation of motion (35) with this initial
condition is actually the conditional pdfP (X, t | X0, t0). The formal solution of eqs.(35,36)
reads,

P (X, t |X0, t0) = exp{L̂(t− t0)} δ(X−X0) , (37)

where theoperator exponentialis defined by the Taylor series of the exponential function,

exp{L̂(t− t0)} ≡
∞∑

n=0

(t− t0)
n

n!
L̂n . (38)
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Here, forn > 0, L̂n = L̂ L̂ · · · L̂︸ ︷︷ ︸
n×

, while L̂0 ≡ Î is the identity operator which leaves phase

functions unaltered, that is,̂If =f for any phase functionf . That the formal expression (37) is
indeed the solution of eqs.(35,36) follows from differentiating term by term,

∂

∂t
exp{L̂(t− t0)} =

∞∑
n=1

(t− t0)
n−1

(n− 1)!
L̂n

= L̂
∞∑

n=0

(t− t0)
n

n!
L̂n = L̂ exp{L̂(t− t0)} .

Substitution of eq.(37) into eq.(34) and integrating with respect toX0 yields,

< f(X(t0)) g(X(t)) > =

∫
dX g(X) exp{L̂(t− t0)} [ f(X) P (X, t0) ] . (39)

For systems in equilibrium, whereP is time independent, this expression shows explicitly that
the correlation function is a function of the time differencet−t0 only. The advantage of this
expression as compared to eq.(34) is that the conditional pdf does not appear explicitly. In
principle this expression can be evaluated once the operatorL̂ in the equation of motion (35) is
specified. A drawback on the expression (39) is that each term in eq.(38) for the operator ex-
ponential must be evaluated to obtain the correlation function, and this is in general technically
not feasible. Since thenth term in the definition (38) of the operator exponential is∼ (t−t0)

n,
evaluation of the first few terms in the expansion leads to an expression that is valid for short
times, wheret is not much larger thant0. Such expansions are referred to asshort-time ex-
pansions. An explicit example for such a short time expansion will be given at the end of the
present section.

4.1 The Liouville equation

The most fundamental equation of motion is theLiouville equation, which is the equation
of motion for the pdf of the position coordinates and the translational momenta of spherical
atoms/molecules. Consider an arbitrary volumeW in the 6N -dimensional phase space. The
total numberN of systems within the ensemble with a microstate inside this volume is propor-
tional to,

N (t) =

∫

W
dXP (X, t) . (40)

The rate-of-change of the number of systems with a microstate withinW is due to in- and out-
flow through the surface∂W of W. Since only the component of the velocitydX/dt in phase
space that is orthogonal to the surface normalX̂ leads to in- and out-flow, we have,

dN (t)

dt
=

∫

W
dX

∂P (X, t)

∂t
= −

∮

∂W
dS X̂ ·

[
dX

dt
P (X, t)

]
, (41)

wheredS is an infinitesimal surface area. The minus sign in front of the surface integral ac-
counts for the fact thatN decreases in time whendX/dt is alongX̂. Using Gauss’s integral
theorem to convert the surface integral into a volume integral leads to,

∫

W
dX

{
∂P (X, t)

∂t
+∇X ·

[
dX

dt
P (X, t)

]}
= 0 , (42)
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Here,∇X is the gradient operator with respect to the6N -dimensional phase space variableX.
Since the volumeW is an arbitrary volume, the integrand in eq.(42) is equal to zero. This can
be seen as follows. Suppose that the integrand is positive at some pointX0. When the integrand
is a continuous function ofX, there is by definition a neigbourhood of the pointX0 where
the integrand is strictly positive. TakingW equal to this neighbourhood shows that eq.(42) is
violated. Hence,

∂P (X, t)

∂t
= −∇X ·

[
dX

dt
P (X, t)

]

= −
N∑

j=1

{
∇rj

·
[

drj

dt
P (X, t)

]
+∇pj

·
[

dpj

dt
P (X, t)

]}
, (43)

whererj andpj are the position and momentum of particlej, and∇rj
and∇pj

are the respective
gradient operators. Since,

drj

dt
=

pj

m
and

dpj

dt
= Fj = −∇rj

Φ(r1, · · · , rN) , (44)

with m the mass of the particles,Fj the force on particlej andΦ the total potential, which is
due to interactions between the particles and possible due to an external field. Substitution of
eq.(44) into eq.(43) thus leads to,

∂P (X, t)

∂t
= L̂P (X, t) , (45)

whereL̂ is the Liouville operator,

L̂ (· · · ) =
N∑

j=1

{
− pj

m
· ∇rj

(· · · ) + [∇rj
Φ ] · ∇pj

(· · · )
]

. (46)

Sometimes the imaginary uniti =
√−1 is introduced as a prefactor in eqs.(45,46) to render the

Liouville operator Hermitian with respect to the un-weighted inner product. The brackets[· · · ]
in eq.(46) are used to indicate that the action of the gradient operator is limited to the potential
Φ.
One implication of the Liouville equation is that the pdf remains unchanged in time when fol-
lowing a point along its trajectory in phase space, which is sometimes referred to asLiouville’s
theorem. This can be seen as follows. The temporal changeDP/Dt of the pdf when one moves
along with a point in phase space is equal to,

DP (X, t)

Dt
≡ dP (X(t), t)

dt
=

dX(t)

dt
· ∇XP (X, t) +

∂P (X, t)

∂t

=
N∑

j=1

{ pj

m
· ∇rj

P (X, t)− [∇rj
Φ ] · ∇pj

P (X, t)
}

+
∂P (X, t)

∂t

= −L̂P (X, t) +
∂P (X, t)

∂t
, (47)

where eqs.(44,46) have been used. According to the Liouville equation (45) this is indeed equal
to zero. Since trajectories in phase space can not cross each other, Liouville’s theorem implies
that the volume of an arbitrary volume element does not change in time during its motion
through phase space.
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4.2 The Smoluchowski equation

In very asymmetric mixtures of different kinds of particles, there can be a pronounced separa-
tion of time scales associated with the various phase space variables of the different species. In
that case one can consider the fast species as being always in equilibrium with the instantaneous
configuration of the slower species. The fast variables can then be eliminated from the equation
of motion by averaging with respect to the equilibrium distribution of these variables in the
instantaneous field imposed by the remaining slow species. Such a procedure is referred to as
coarse graining. Important examples are solutions of large particles, such as colloids and poly-
mers. For suchsuspensions, the dynamics of the large particles is much slower as compared to
the relatively small solvent molecules. The solvent molecules are always in instantaneous equi-
librium with the field imposed by the slowly moving large particles. In addition, the momentum
coordinates of the big particles, hereafter referred to ascolloidal particlesor simply colloids,
are also fast variables in comparison to their position coordinates. This can be seen as follows.
Newton’s equation of motion of a single colloidal sphere with massM can be written as,

M
dv(t)

dt
= −ζ v + f(t) . (48)

The first term on the right-hand side is the average interaction force of the colloidal sphere with
the solvent molecules once it attains a certain velocityv. Since the colloids are much larger
than the solvent molecules, this interaction force can be described as a friction force, where
ζ is the friction coefficient of the colloid with the solvent. In addition to this friction force
there is a fluctuating forcef due to random collisions of the solvent molecules with the surface
of the colloid. Equations of motion with a fluctuating contribution are commonly referred to
asLangevin equations. Since the systematic force is included in the friction contribution, the
ensemble average of the fluctuating force is0. Hence, averaging of the Langevin equation (48)
leads to,

M
d < v(t) >

dt
= − ζ < v > , (49)

the solution of which is,

v(t) = v0 exp{−t/τB} with τB = M/ζ , (50)

wherev0 is the initial velocity. Using thatζ = 6πη0a, with η0 the shear viscosity of the solvent
anda the radius of the spherical colloidal particle (typically of the order of10 − 1000 nm),
the momentum relaxation timeτB is found to be of the order of1 ns. If the interest is in time-
dependent phenomena in colloidal dispersion on time scales much larger than typically1 nm,
one can regard the momenta as fast variables. The time scale that is larger thanτB, but still small
enough to probe the position coordinates of the colloidal particles is referred to asthe diffusive
time scaleτD. The minimum resolution in length scaleλD after coarse graining to the diffusive
time scale is equal to the distance that a colloid traverses during the timeτD. Integration of the
velocity in eq.(50) over a time much larger thanτB gives,

λD = v0

∫ τD>>τB

0

dt′ exp{−t′/τB} = v0 τB . (51)

A typical value for the initial velocity can be found from the equipartition theorem as,

v0 ≈
√

3 kBT/M . (52)
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Substitution of typical values leads toλD ≈ 10−3 a. The length resolution after coarse graining
to times much larger thanτB in eq.(50) is thus much smaller than the radiusa of the colloid.
One should thus be able to coarse grain the Liouville equation for a mixture of solvent molecules
and colloidal particles to obtain an equation of motion for the pdf of just the position coordinates
of the colloidal particles. This equation of motion is commonly referred to asthe Smoluchowski
equation. Integration of the Liouville equation for such a mixture with respect to the solvent
phase space coordinates and the momenta of the colloids [1, 2] is technically quite involved
and will not be discussed here. The Smoluchowski equation can be obtained alternatively as
follows. First, repeating the arguments leading to the first expression in eq.(43), where now
X = (r1, · · · , rN) ≡ R specifies the configuration of the colloids, gives,

∂P (R, t)

∂t
= −∇R ·

[
dR

dt
P (R, t)

]
= −

N∑
j=1

∇rj
· [vcg

j P (R, t)
]

, (53)

where∇R is the3N -dimensional gradient operator with respect to the position coordinates of
the colloidal particles. Here, the superscript ”cg” on the velocities indicates that these velocities
are coarse grained to the diffusive time scale, that is, velocities averaged over a time interval
equal to the diffusive time scaleτD. Secondly, an explicit expression for the velocitiesdR/dt =
(vcg

1 , · · · ,vcg
2 ) can be obtained, noting that on the diffusive time scale the momenta are long

relaxed. Relaxation of momenta implies that inertial forces are very small in comparison to all
other forces acting on a colloidal particle. These other forces are :
(i) The force due todirect interactionsbetween colloids, which is equal to−∇rj

Φ with Φ the
total potential energy of an assembly ofN colloids averaged over to the phase space coordinates
of the solvent molecules with respect to the equilibrium pdf of the solvent degrees of freedom
in the instantaneous field imposed by the colloids.
(ii) The force due to friction with the solvent. When a colloidal sphere moves, it induces a
fluid flow which affects other colloids in their motion (see Fig.4.3). These interaction forces are
referred to ashydrodynamic interactions. Since the hydrodynamic equations that describe the
induced fluid flow (as will be discussed in the next section) are linear, the hydrodynamic force
Fh

j on spherej is linearly related to the velocities of all other spheres,

Fh
j = −

N∑
j=1

Υij · vcg
j , (54)

where the friction tensorsΥij are referred to ashydrodynamic friction tensors, which are com-
plicated functions of all colloid positions. With the neglect of hydrodynamic interactions these
tensors reduce to (withδij the Kronecker delta and̂I the identity tensor),

Υij = ζ Î δij no hydrodynamic interactions, (55)

that is,Fj = −ζ vcg
j , whereζ is the friction coefficient of a sphere with an otherwise quiescent

fluid (which was already introduced in connection with the Langevin equation (48).
(iii) Due to coarse graining, a third force is of importance which is of an entropic nature and
is referred to asthe Brownian forceFBr

j . We will specify this force in terms of positions
coordinates later.
These forces add up to0 on the diffusive time scale, as discussed above,

−∇rj
Φ−

N∑
j=1

Υij · vcg
j + FBr

j = 0 , (56)
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or equivalently in3N -vector notation,

−∇RΦ−Υ · vcg + FBr = 0 , (57)

where,

Υ =




Υ11 Υ12 · · · Υ1N

Υ21 Υ22 · · · Υ2N

...
... · · · ...

ΥN1 ΥN2 · · · ΥNN


 , (58)

is the3N × 3N -dimensional hydrodynamic friction tensor. Furthermore,vcg = (vcg
1 , · · · ,vcg

N )
andFBr = (Fh

1 , · · · ,Fh
N). Inverting theforce balance equation(57) leads to the following

expression for the velocities (withβ = 1/kBT ),

vcg = D · {−β∇RΦ + β FBr
}

, (59)

where themicroscopic diffusion tensoris defined as,

D ≡ kBT Υ−1 , (60)

with Υ−1 the inverse of the tensorΥ. This tensor can be written analogously to eq.(58) in
terms of3 × 3-dimensional tensorsDij, where the indices are colloidal particles numbers, so
that eq.(59) can be written as,

vcg
i =

N∑
j=1

Dij ·
{−β∇rj

Φ + β FBr
j

}
, (61)

Substitution into eq.(53) gives,

∂P (R, t)

∂t
=

N∑
i,j=1

∇ri
·Dij(R) · { β P (R, t)∇rj

Φ(R)− β P (R, t)FBr
j

}
. (62)

The Brownian force can now be specified, noting thatP ∼ exp{−βΦ} ast → ∞. According
to the above equation of motion, this is the case when,

FBr
j = −kBT ∇rj

ln{P (R, t) } . (63)

Substitution into eq.(62) finally leads tothe Smoluchowski equation,

∂P (R, t)

∂t
= Ô P (R, t) , (64)

where,

Ô(· · · ) =
N∑

i,j=1

∇ri
·Dij(R) · { β (· · · )∇rj

Φ(R) +∇rj
(· · · ) }

, (65)

is the Smoluchowski operator. The Smoluchowski operator is denoted here asÔ to distinguish
it from the Liouville operator. This is the fundamental equation of motion for colloidal and
polymeric systems. The equation of motion for the pdf of the positions of the beads for a single
polymer chain is obtained from this equation by introducing an appropriate potentialΦ that
connects the beads to each other. The resulting equation of motion is referred to asthe Zimm
or Rouse equation, depending on whether hydrodynamic interactions are accounted for.
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4.3 The dynamic structure factor for non-interacting colloids

As a simple example, let us evaluate the dynamic structure factor for non-interacting colloids,
which is valid for very dilute suspensions. Without hydrodynamic interactions, according to
eqs.(55,60), the microscopic diffusion tensors reduce to,

Dij = D0 Î δij (66)

where,

D0 =
kBT

ζ
, (67)

which is theEinstein diffusion coefficient. The Smoluchowski equation (64,65) thus reduces to,

∂P (r, t)

∂t
= D0∇2 P (r, t) . (68)

wherer is the position coordinate of a single colloidal sphere and∇ is the gradient operator with
respect tor. This equation of motion is known asFick’s equation. It should be noted, however,
that this equation is also valid for high concentrations of colloids, provided that gradients in
concentration are small on the length scale set by the range of the direct interactions between the
colloids. The diffusion coefficient is then different from the Einstein diffusion coefficientD0.
Fick’s law for higher concentrations can actually be derived from the Smoluchowski equation
(64,65) by means of a gradient expansion. The dynamic structure factor is defined as (with
i =

√−1),

S(k, t) ≡ < exp{ ik · (r(t)− r(t = 0) } > , (69)

where the wave vectork measures the length scale on which the motion of the colloidal sphere
is probed. This structure factor is typically measured by means of scattering experiments (light,
X-ray and neutron scattering), where the wave vector is connected to the scattering angle, that
is, the angle between the incident beam and the detection direction. The dynamic structure
factor is a time-correlation function of the form (39), witht0 = 0, X ≡ r, f = exp{−ik · r}
andg = exp{ik · r}. Hence,

S(k, t) =
1

V

∫

V

dr exp{ik · r} exp{tD0∇2} exp{−ik · r} , (70)

where it is used that the pdfP (r, t) = 1/V , with V the volume of the system under considera-
tion. It is easily verified that∇2 exp{−ik · r} = −k2 exp{−ik · r}, and hence, from eq.(38),

exp{tD0∇2} exp{−ik · r} = exp{−D0 k2 t} exp{−ik · r} . (71)

Substitution into eq.(70) thus gives,

S(k, t) = exp{−D0 k2 t} . (72)

The explicit evaluation of the full time dependence is possible due to the fact thatf = exp{−ik·
r} is an eigenfunction of the time-evolution operatorL̂. In more general cases this is of course
not true, and approximations must be made to evaluate correlation functions. For example, the
calculation ofS(k, t) for interacting systems, where the Smoluchowki operator in eq.(65) is the
relevant time-evolution operator, can not be done exactly.



Statistical Mechanics B1.19

1

2

1

2

Fig. 3: Hydrodynamic interactions : when sphere1 moves it creates a fluid flow that affects
sphere2 in its motion.

5 Hydrodynamics

In this section we shall consider hydrodynamic interactions between spherical colloids. First
of all, the equations which govern fluid flow, the continuity and Navier-Stokes equations, are
derived. Inertial terms in the Navier-Stokes equation are then shown to be small for colloids,
to leading in the so-called creeping flow equations. The Green’s functions of the creeping flow
equations are calculated, and from that, the hydrodynamic diffusion tensorDij is determined to
leading order in an expansion with respect toa/R, with a the radius of the spheres andR the
distance between the spheres.

The mechanical state of the solvent is characterized by the local velocityv(r, t) at positionr at
time t, the pressurep(r, t) and the mass densityρ(r, t). All these fields are averages over small
volume elements that are located at the various positionsr. These volume elements must be so
small that the state of the fluid hardly changes within the volume elements. At the same time,
the volume elements should contain many fluid molecules, to be able to properly define such
averages. In particular we wish to define the thermodynamic state of volume elements, which is
possible when they contain a large amount of solvent molecules, and when they are in internal
equilibrium, that is, when there islocal equilibrium. In this way the temperature fieldT (r, t)
may be defined. The temperature dependence of, for example, the mass density is then described
by thermodynamic relations. These thermodynamic relations are an important ingredient in a
general theory of hydrodynamics. For our purposes, however, the temperature and mass density
may be considered constant. Temperature variations due to viscous dissipation in the solvent
are assumed to be negligible. At constant temperature, the only mechanism to change the mass
density of the solvent is to vary the pressure. For fluids, however, exceedingly large pressures
are needed to change the density significantly, that is, fluids are quiteincompressible. Brownian
motion is not so vigorous to induce such extreme pressure differences, so that the density will
also be assumed constant. The assumption of constant temperature and density is also a matter
of time scales. Relaxation times for local temperature and pressure differences in the solvent
are much faster than typical time scales relevant for Brownian motion.

Assuming constant temperature and mass density leaves just two variables which describe the
state of the fluid : the fluid flow velocityv(r, t) and the pressurep(r, t). Thermodynamic
relations need not be considered in this case, simplifying the phenomenological analysis con-
siderably.
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5.1 The continuity equation

The rate of change of the mass of fluid contained in some arbitrary volumeW is equal to the
mass of fluid flowing through its boundary∂W. The local velocity at surface elements on
∂W can be written as the sum of its component parallel and perpendicular to the surface. The
parallel component does not contribute to in and out flux of mass through the boundary∂W (see
also the discussion that lead to eq.(41)). Only the componentv · n̂ of the flow perpendicular to
the surface gives rise to in and out flux of mass, wheren̂ is the unit normal of the corresponding
surface element. Hence,

d

dt

∫

W
dr ρ(r, t) = −

∮

∂W
dS · {ρ(r, t)v(r, t)} ,

wheredS = n̂ dS, with dS an infinitesimal surface area. The minus sign on the right hand-side
is added, because the mass inW decreases whenv is along the outward normal. Using Gauss’s
integral theorem, this leads to,

∫

W
dr

[
∂

∂t
ρ(r, t) + ∇ · {ρ(r, t)v(r, t)}

]
= 0 ,

where∇ is the gradient operator with respect tor. Since the volumeW is an arbitrary volume,
the integrand must be equal to zero, so that,

∂

∂t
ρ(r, t) + ∇ · {ρ(r, t)v(r, t)} = 0 . (73)

This equation expresses conservation of mass, and is referred to as thecontinuity equation.
For a fluid with a constant mass density, the continuity equation reduces to,

∇ · v(r, t) = 0 . (74)

Fluids with an essentially constant mass density are referred to asincompressible fluids, and
eq.(74) is therefore sometimes referred to as theincompressibility equation. Being nothing
more than the condition to ensure conservation of mass, this single equation is not sufficient to
calculate the fluid flow velocity. It must be supplemented by Newton’s equation of motion to
obtain a closed set of equations.

5.2 The Navier-Stokes equation

The Navier-Stokes equation is Newton’s equation of motion for a small amount of mass con-
tained in a volume element within the fluid. Consider such a mathematically infinitesimally
small volume element, the volume of which is denoted asδr. The positionr of that volume
element as a function of time is set by Newton’s equation of motion. The momentum that is
carried by the mass element is equal toρ(r, t) (δr)v(r, t), so that Newton’s equation of motion
reads,

ρ(r, t) δr
dv(r, t)

dt
= f ,

wheref is the total force that is exerted on the mass element. Since in Newton’s equations of
motionr is the time dependent position coordinate of the volume element, anddr/dt = v is the
velocity of the volume element, the above equation can be written as,

ρ(r, t) δr

[
∂v(r, t)

∂t
+ v(r, t) · ∇v(r, t)

]
= f .



Statistical Mechanics B1.21

x

y

z
dS

),( trSdforce
r

tr

S·=

r
r

dSnSd ˆ=

r

x

y

z
dS

),( trSdforce
r

tr

S·=

r
r

dSnSd ˆ=

r

Fig. 4: Definition of the stress tensorΣ.

Here,∇v is a dyadic product, that is, it is a tensor of which theijth component is equal to∇ivj,
with ∇i the differentiation with respect tori, theith component ofr.
The total forcef on the volume element consists of two parts. First of all, there may be external
fields which exert forces on the fluid. These forces are denoted by(δr) f ext(r), that is,f ext is
the external force on the fluid per unit volume. The second part arises from interactions of the
volume element with the surrounding fluid.
The forces due to interactions with the surrounding fluid are formally expressed in terms of the
stress tensorΣ(r, t), which is defined as follows. Consider an infinitesimally small surface area
in the fluid, with surface areadS and a normal unit vector̂n. The force per unit area exerted by
the fluid located at the side of the surface area to which the unit normal is directed, on the fluid
on the opposite side of the surface area, is by definition equal todS · Σ, with dS=n̂ dS (see
fig.4).
Hence, by definition, the force of surrounding fluid on the volume elementδr is equal to,

∮

∂δr

dS′ ·Σ(r′, t) =

∫

δr

dr′∇′ ·Σ(r′, t) = δr ∇ ·Σ(r, t) ,

where∂δr is the boundary of the volume element. We used Gauss’s integral theorem to rewrite
the surface integral as a volume integral. The last equation is valid due to the infinitesimal size
δr of the volume element at positionr. The forcefh on the volume element due to interaction
with the surrounding fluid is thus given by,

fh(r, t) = (δr)∇ ·Σ(r, t) . (75)

There are two contributions to the stress tensor : a contribution resulting from gradients in the
fluid flow velocity, and a contribution due to pressure gradients.
Consider first the forces due to pressure gradients. Let us take the volume elementδr cubic,
with sides of lengthδl. The pressurep is a force per unit area, so that the force on the volume
element in thex-direction is equal to,

(δl)2

(
p(x− 1

2
δl, y, z, t)− p(x +

1

2
δl, y, z, t)

)
= −(δl)3 ∂

∂x
p(x, y, z, t),

where(δl)2 is the area of the faces of the cube. The force on the volume element is thus
−(δr)∇p(r, t). We therefore arrive at,∇ ·Σ =−∇p. The contribution of pressure gradients to
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the stress tensor is thus easily seen to be equal to,

Σ(r, t) = −p(r, t) Î ,

with Î the3 × 3-dimensional unit tensor. This contribution to the stress tensor is referred to as
the isotropic part of the stress tensor, since it is proportional to the unit tensor and therefore
does not have a preferred spatial direction.
Next, consider the forces on the volume element due to gradients in the fluid flow velocity.
When the fluid flow velocity is uniform, that is, when there are no gradients in the fluid flow
velocity, the only forces on the volume element are due to pressure and possibly external forces.
There are friction forces in addition, only in case the volume element attains a velocity which
differs from that of the surrounding fluid. The contribution to the stress tensor due to friction
forces is therefore a function of spatial derivatives of the flow velocity, not of the velocity itself.
This contribution to the stress tensor can be formally expanded in a power series with respect to
the gradients in the fluid flow velocity. For not too large gradients (such that the fluid velocity
is approximately constant over distances of many times the molecular dimension) the leading
term in such an expansion suffices to describe friction forces. The contribution of gradients
in the fluid flow velocity to the stress tensor is thus a linear combination of the derivatives
∇ivj(r, t), where∇i is the derivative with respect to theith component ofr, andvj(r, t) is the
jth component ofv(r, t).
There are also no friction forces when the fluid is in uniform rotation, in which case the flow
velocity is equal tov = Ω × r, with Ω the angular velocity. Such a fluid flow corresponds to
rotation of the vessel containing the fluid, relative to the observer. Linear combinations of the
form,

∇ivj(r, t) +∇jvi(r, t) , (76)

are easily verified to vanish in casev = Ω × r. The stress tensor is thus proportional to such
linear combinations of gradients in the fluid velocity field.
For incompressible isotropic fluids, with no preferred spatial direction, the most general expres-
sion for the componentsΣij of the stress tensor as a result of friction is therefore,

ΣD,ij = η0 {∇ivj +∇jvi } , (77)

where the subscript ”D ” stands forthe deviatoric part of the stress tensor. The terms∼ ∇ ·
v(r, t) on the right hand-side arising from the linear combinations (76) withi = j are zero for
incompressible fluids (see eq.74)). For incompressible fluids, the Navier-Stokes equation thus
reads,

ρ
∂v(r, t)

∂t
+ρv(r, t)·∇v(r, t) = ∇·Σ(r, t)+f ext(r, t) = η0∇2v(r, t)−∇p(r, t)+f ext(r). (78)

Together with the continuity equation (74) for incompressible fluids, this equation fully deter-
mines the fluid flow and pressure once the external force and boundary conditions are specified.

5.3 The creeping flow equations

The different terms in the Navier-Stokes equation (78) can be very different in magnitude,
depending on the problem at hand. In the present case we are interested in fluid flow around
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small sized objects (the colloidal spheres). Let us estimate the magnitude of the various terms
in the Navier-Stokes equation for this case. A typical value for the fluid flow velocity is the
velocity v of the colloidal objects. The fluid flow velocity decreases from a valuev, close to a
colloidal particle, to a much smaller value, over a distance of the order of the colloid-radiusa.
Hence, typically,| ∇2v |≈ v/a2. Similarly, | v · ∇v |≈ v2/a. The rate of change ofv is v
divided by the time it takes the colloidal particle to loos its velocity due to friction with the fluid.
This time interval is equal to a few timesM/ζ, as was discussed in section 4 in connection with
the derivation of the Smoluchowski equation. Introducing the rescaled variables,

v′ = v/v , r′ = r/a and t′ = t/(M/ζ) ,

transforms the Navier-Stokes equation (78) to,

ρ
a2ζ

Mη0

∂v′

∂t′
+ Re v′ · ∇′v′ = ∇′ 2v′ −∇′p′ + f ′ ext . (79)

where∇′ is the gradient operator with respect tor′. Furthermore, the dimensionless pressure
and external force are defined here as,

p′ =
a

η0v
p and f ′ ext =

a2

η0v
f ext ,

The dimensionless numberRe is the so-calledReynolds number, which is equal to,

Re =
ρ a v

η0

. (80)

Using typical values for the various quantities shows thatRe ≈ 10−3 − 10−2. By construction
we have,

| v′ · ∇′v′ | ≈ | ∇′ 2v′ | ≈ 1.

Hence, for very small values of the Reynolds number, the term proportional tov ·∇v in the left
hand-side in eq.(79) may be neglected. Furthermore, for spherical particles we haveζ = 6πη0a
so thatρ a2ζ/Mη0 = 9ρ/2ρp ≈ 9/2, with ρp the mass density of the colloidal particle. The
prefactor of∂v′/∂t′ is thus approximately equal to9/2. The time derivative should generally be
kept as it stands, also for small Reynolds numbers. Now suppose, however, that one is interested
in a description on the diffusive time scaleτD À M/ζ (the significance of the diffusive time
scale has been be discussed in section 4). For such times, the time derivative∂v′/∂t′ is long
zero, sincev goes to zero as a result of friction during the time intervalM/ζ. One may then
neglect the contribution to the time derivative which is due to relaxation of momentum of the
colloidal sphere as a result of friction with the solvent. The remaining time dependence ofv
on the diffusive time scale is due to the possible time dependence of the external force and
to interactions with other colloidal particles, which vary significantly only over time intervals
larger than the diffusive time scale. The value of the corresponding derivative∂v/∂t can now
be estimated as above : the only difference is that the time should not be rescaled with respect
to the timeM/ζ, but with respect to the diffusive time scaleτD. We now have,t′ = t/τD,
v′ = v/v, and|∂v′/∂t′ |≈ 1. The transformed Navier-Stokes equation in this case reads,

9

2

ρ

ρp

M/ζ

τD

∂v′

∂t′
+ Re v′ · ∇′v′ = ∇′ 2v′ −∇′p′ + f ′ ext ,
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where all derivatives of the fluid flow velocityv′ are of the order1. SinceτD À M/ζ, the time
derivative due to changes of the fluid flow velocity as a result of the time varying external force
and interactions with other colloidal particles may now be neglected.
For small Reynolds numbers and on the diffusive time scale, the Navier-Stokes equation (81),
written in terms of the original unprimed quantities, therefore simplifies to,

∇p(r, t)− η0∇2 v(r, t) = f ext(r) . (81)

This equation, together with the incompressibility equation (74), are thecreeping flow equa-
tions. ”Creeping” refers to the fact that the Reynolds number is small, which is the case when
the typical fluid flow velocityv is small.

5.4 The Oseen tensor

An external force acting only in a single pointr′ on the fluid is mathematically described by a
delta distribution,

f ext(r) = f0 δ(r− r′) . (82)

The prefactorf0 is the total force
∫

dr′ f ext(r′) acting on the fluid. Since the creeping flow
equations are linear, the fluid flow velocity at some pointr in the fluid, due to the point force in
r′, is directly proportional to that point force. Hence,

v(r) = T(r− r′) · f0 .

The tensorT is commonly referred to as theOseen tensor, named after the scientist who first
derived an explicit expression for this tensor [3]. The Oseen tensor connects the point force at
a pointr′ to the resulting fluid flow velocity at a pointr. Note thatT is only a function of the
difference coordinater− r′ due to translational invariance for a homogeneous fluid. Similarly,
the pressure at a pointr is linearly related to the point force,

p(r) = g(r− r′) · f0 . (83)

The vectorg is referred to here as thepressure vector.
Consider an external force which is continuously distributed over the entire fluid. Due to the
linearity of the creeping flow equations, the fluid flow velocity at some pointr is simply the
superposition of the fluid flow velocities resulting from the forces acting in each point on the
fluid. Hence,

v(r) =

∫
dr′T(r− r′) · f ext(r′) . (84)

The same holds for the pressure,

p(r) =

∫
dr′ g(r− r′) · f ext(r′) . (85)

In mathematical language, the Oseen tensor and the pressure vector are the Green’s functions
of the creeping flow equations for the fluid flow velocity and pressure, respectively. Once these
Green’s functions are known and the external force is specified, the resulting fluid velocity and
pressure can be calculated through the evaluation of the above integrals. The calculation of the
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Green’s functions is thus equivalent to solving the creeping flow equations, provided that the
external forces are known.
Let us calculate the Oseen tensor and pressure vector. To this end, substitute eqs.(84,85) into
the creeping flow equations (74,81). This leads to,

∫
dr′ [∇ ·T(r− r′)] · f ext(r′) = 0 ,

∫
dr′

[
∇g(r− r′)− η0∇2T(r− r′)− Î δ(r− r′)

]
· f ext(r′) = 0 ,

where, as before,̂I is the3× 3-dimensional unit tensor. Since the external force is arbitrary, the
expressions in the square brackets must be equal to zero, so that the Green’s functions satisfy
the following differential equations,

∇ ·T(r) = 0 ,

∇g(r)− η0∇2T(r) = Î δ(r) . (86)

A single equation for the pressure vector is obtained by taking the divergence of the second
equation, with the use of the first equation,

∇2 g(r) = ∇ · Î δ(r) = ∇δ(r) .

Using that∇2(1/r) = −4π δ(r), it follows thatg(r) = −(1/4π)∇(1/r) + G(r), whereG is a
vector for which∇2G = 0, while G → 0 asr → ∞. It can be shown that such a vector is0.
Hence,

g(r) = − 1

4π
∇1

r
=

1

4π

r

r3
. (87)

The differential equation to be satisfied by the Green’s function for the fluid flow velocity (the
Oseen tensor), is found by substitution of eq.(87) into eq.(86),

∇2

[
1

4π

1

r
Î− η0T(r)

]
=

1

4π

[
3
r r

r5
− 1

r3
Î

]
.

An obvious choice for the term between the square brackets on the left hand-side of the above
expression is of the form,

1

4π

1

r
Î− η0T(r) = α0

1

rn
Î + α1

1

rm

r r

r2
,

with α0,1, n andm constants. These constants can indeed be chosen such that this Ansatz is the
solution of the differential equation (with the boundary condition thatT(r) → 0 asr →∞). A
somewhat lengthy, but straightforward calculation yields,

T(r) =
1

8πη0

1

r

[
Î +

r r

r2

]
. (88)

This concludes the determination of the Green’s functions for the creeping flow equations.
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5.5 Hydrodynamic interactions

The starting point for the calculation of the microscopic diffusion matrices that appear in the
Smoluchowski operator (65) is the Green’s function representation (84) of the creeping flow
equations. In the present situation, the external forcef ext is due to forces that surface elements
of the colloidal spheres exert on the fluid. For the multi-sphere problem considered here, the
integral in eq.(84) is now a sum of integrals ranging over the surfaces∂Vj , j = 1, · · · , N of
theN spherical Brownian particles,

v(r) =
N∑

j=1

∮

∂Vj

dS ′T(r− r′) · f j(r
′) , (89)

p(r) =
N∑

j=1

∮

∂Vj

dS ′ g(r− r′) · f j(r
′) , (90)

wheref j is the force per unit area that a surface element with positionr′ of colloidal spherej
exerts on the fluid.
We shall assume stick boundary conditions, that is, the velocity of the fluid at the spheres surface
is assumed to be equal to the velocity of the corresponding surface element. Hence,

vi + Ωi × (r− ri) =
N∑

j=1

∮

∂Vj

dS ′T(r− r′) · f j(r
′) , r ∈ ∂Vi , (91)

wherevi andΩi are the translational- and rotational velocity of theith sphere, respectively.
Since this equation is valid foranypositionr on the surface∂Vi of particlei, both sides can be
integrated over that surface. Due to symmetry, the rotational component on the left hand-side
drops out, and we have,

vi =
1

4πa2

∮

∂Vi

dS

∮

∂Vi

dS ′T(r− r′) · f i(r
′) +

1

4πa2

N∑

j 6=i

∮

∂Vi

dS

∮

∂Vj

dS ′T(r− r′) · f j(r
′) .

(92)
Since, ∮

∂Vi

dS T(r− r′) = Î
2a

3η0

, for r′ ∈ ∂Vi , (93)

the first term on the right hand-side of eq.(92) is thus equal to,

1

4πa2

∮

∂Vi

dS

∮

∂Vi

dS ′T(r− r′) · f i(r
′) = − 1

6πη0a
Fh

i ,

where the total force that the fluid exerts on theith Brownian particle is equal to,

Fh
i (t) = −

∮

∂Vi

dS ′ f i(r
′) . (94)

The double surface integrals in the second line on the right hand-side of eq.(92) can be ap-
proximated, in case the distance between the colloidal spheres is large, as follows. First, the
integrations are performed with respect to the translated coordinatesR = r−ri andR′ = r′−rj

(see Fig.5).
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Fig. 5: Definition of the positionsR andR′ on the surface of Brownian particles relative to
their position coordinatesri andrj, respectively.

Let ∂V 0 denote the spherical surface∂Vi with its center at the origin. The integrals on the right
hand-side of eq.(92) are written as,

1

4πa2

∮

∂V 0

dS

∮

∂V 0

dS ′T(R−R′ + ri − rj) · f j(R
′ + rj) .

Now suppose that the distance| ri − rj | between the Brownian particlesi andj is much larger
than| R −R′ |≤ 2a, with a the radius of the sphere. The Oseen tensorT(R −R′ + ri − rj)
may then be replaced, to a good approximation, byT(ri−rj). With eq.(94) it then follows that,

1

4πa2

∮

∂Vi

dS

∮

∂Vj

dS ′T(r− r′) · f j(r
′) ≈ −T(ri − rj) · Fh

j .

For these large separations between the Brownian spheres, eq.(92) can thus be approximated as,

vi = − 1

6πη0a
Fh

i −
N∑

j 6=i

T(ri − rj) · Fh
j . (95)

We thus find the following leading order expansion of the microscopic diffusion tensors with
respect toa/rij,

Dii = D0 Î , (96)

Dij = kBT T(ri − rj) =
3

4
D0

a

rij

[
Î + r̂ij r̂ij

]
, i 6= j , (97)

whererij = ri − rj is the distance between the spheresi andj, and r̂ij = rij/rij is a unit
vector. Furthermore,D0 = kBT/6πη0a is the same Stokes-Einstein diffusion coefficient that
we encountered before.
The above expressions,the Oseen approximation for the microscopic diffusion matrices, are
valid for large distances between the Brownian particles, that is, for small values ofa/rij.
These results are the leading terms in an expansion with respect toa/rij.
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On the two-particle level, where only two particles interact simultaneously, the general form of
the diffusion matrices reads,

Dii = D0Î + D0

N∑
j = 1 , j 6= i

{
As(rij) r̂ij r̂ij + Bs(rij)

[
Î− r̂ij r̂ij

]}
,

Dij = D0

{
Ac(rij) r̂ij r̂ij + Bc(rij)

[
Î− r̂ij r̂ij

]}
, i 6= j . (98)

The summation in the expression for the ”self” diffusion matrixDii accounts for the fact that
all particles in suspension reflect the field of theith particle back to that particle. The scalar
functionsAs , Bs , Ac andBc are referred to asmobility functions. These functions depend
only on the scalar distancerij between the two spheresi andj. The mobility functions with
i = j are sometimes calledself-mobility functions, and those withi 6= j, distinct- or cross-
mobility functions. The subscriptss andc refer to ”self” and ”cross”, respectively. The mobility
functions can be calculated as a Taylor expansion with respect to the inverse distance between
two colloidal spheres. The first few terms in such an expansion read,

As = −15

4

(
a

rij

)4

+
11

2

(
a

rij

)6

+ O
(
(a/rij)

8
)

,

Bs = −17

16

(
a

rij

)6

+ O
(
(a/rij)

8
)

,

Ac =
3

2

a

rij

−
(

a

rij

)3

+
75

4

(
a

rij

)7

+ O
(
(a/rij)

9
)

,

Bc =
3

4

a

rij

+
1

2

(
a

rij

)3

+ O
(
(a/rij)

9
)

, (99)

where the leading terms correspond to our result in eq.(96). Nowadays, the numerical values
of many hundreds of coefficients are known [4]. There are analytical expression for the hydro-
dynamic interaction tensors for very close approach of two spheres. This so-calledlubrication
contribution to hydrodynamic interactions[5] is not accounted for in the above mentioned ex-
pansions. The expansions allow the calculation of transport coefficients up to leading order in
concentration, although for attractive interactions lubrication contributions should be taken into
account. For higher concentrations, when simultaneous hydrodynamic interactions between
more than two particles are important, one should derive expressions involving three and more
particles. So far, only the leading order expressions for three particle hydrodynamic interactions
are known. Alternatively one can perform simulations to take hydrodynamic interactions into
account.

6 Linear Response Theory

Equations of motion for ensemble averaged, macroscopic quantities can be obtained in principle
from the equations of motion for probability density functions. LetF (X) be a phase function.
The corresponding macroscopic variable that can be measured in an experiment is the ensemble
average< F >, which is referred to as an observable. Multiplying both sides of eq.(35) with
F (X) and integrating with respect to the phase-space variablesX leads to,

∂

∂t
< F > =

∫
dXF (X) L̂P (X, t) . (100)
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The right-hand side should now be expressed in terms of relevant observables to obtain a de-
scription on the macroscopic level. Such a microscopic derivation of equations of motion for
macroscopic, observable quantities is the main challenge of statistical mechanics. As a special
case we shall consider the response of observables to a (possibly time-dependent) external field,
which is assumed to be weak enough to linearize appropriate equations of motion with respect
to the external perturbation. Such a theory is called ”linear response theory”.

6.1 Derivation of the linear response equations

Let L̂eq be the time evolution operator in the absence of the external field andL̂ext(t) the (pos-
sibly time-dependent) contribution due to the external field, that is,L̂ = L̂eq + L̂ext(t). The
equation of motion (35) is thus written as,

∂

∂t
P (X, t) =

{
L̂eq + L̂ext(t)

}
P (X, t) . (101)

Since the external field is supposed to be weak, the deviation from the probability density func-
tion (pdf) Peq ∼ exp{−βΦ} without the external field will be small as well. Hence, we shall
write,

P (X, t) = Peq(X) + ∆P (X, t) , (102)

where∆P is the small contribution due to the external field. Substitution into eq.(101), using
that∂Peq/∂t = L̂eqPeq = 0 and neglecting a term̂Lext(t)∆P , which is of second order in the
strength of the external field, it is found that,

∂

∂t
∆P (X, t) = L̂ext(t) Peq(X) + L̂eq ∆P (X, t) . (103)

The solution of this equation can be found by variation of constants, leading to,

∆P (X, t) = exp{L̂eqt}∆P (X, t = −∞) +

∫ t

−∞
dt′ exp{L̂eq (t− t ′} L̂ext(t ′) Peq(X) . (104)

To make further progress, we have to specify the operatorL̂ext due to the external field. We
shall consider the time evolution according to the Smoluchowski equation (64,65). Liouville
dynamics can be treated along similar lines. We chose here to consider Smoluchowski dynam-
ics, since this is not treated in most standard textbooks, contrary to Liouville dynamics. As
before, the operators on the diffusive time scaleτD are denoted aŝO.
In this section we shall consider conservative external fields. By definition, a conservative
external field can be incorporated in the time-evolution operator through an additional potential.
According to eq.(65), the operator̂Oext is thus equal to (here,X = R = (r1, · · · , rN)),

Ôext(· · · ) = β

N∑
i,j=1

∇rj
·Dij ·

[∇rj
Φext(R, t)

]
(· · · ) , (105)

whereΦext is the external potential. As an example, consider an external electric field. In that
case,

Φext(R, t) =
N∑

j=1

qj ϕext(rj, t) , (106)
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whereqj is the charge of particlej andϕext(rj, t) is the external electric potential. This can be
written as,

Φext(R, t) =

∫
dr ρ(r |R) ϕext(r, t) , (107)

where (withδ the delta distribution),

ρ(r |R) =
N∑

j=1

qj δ(r− rj) . (108)

This is the phase function that complies with the charge density at pointr : integration of
ρ(r | R) over a volume∆V gives the charge within that volume at the particular timet. In
analogy with eq.(107), the general form of the external potential is written as,

Φext(R, t) =

∫
dr B(r |R) ϕext(r, t) , (109)

whereϕext is the external fieldand,

B(r |R) =
N∑

j=1

Bj δ(r− rj) , (110)

is the phase function that specifies the microscopic density of a variableB. This phase function
describes how the external field couples to the total potential energy. Substitution of eq.(109)
into eq.(105) thus leads to,

Ôext(t) (· · · ) = β

∫
dr ϕext(r, t)

{
N∑

i,j=1

∇rj
·Dij · (· · · )∇rj

B(r |R)

}
. (111)

We shall assume that the external field is absent att = −∞. In that case,

∆P (R, t = −∞) = 0 . (112)

The response of the density of a variableA, defined similarly as the variableB in eq.(110), thus
follows from eq.(104) (withX equal toR),

< ∆A > (r, t) ≡
∫

dRA(r |R) ∆P (R, t) = β

∫ t

−∞
dt′

∫
dr′ Ξ(r− r′, t− t′) ϕext(r′, t′) , (113)

wherethe response functionΞ is equal to, withτ = t− t′,

Ξ(r− r′, τ) =

∫
dRA(r |R) exp{Ôeqτ}

N∑
i,j=1

∇rj
·Dij · Peq(R)∇rj

B(r′ |R) , (114)

whereÔeq is the equilibrium Smoluchowski operator. SincePeq ∼ exp{−βΦ}, it is readily
verified that,

N∑
i,j=1

∇rj
·Dij · Peq(R)∇rj

B(r |R) = Ôeq [ Peq(R) B(r |R) ] , (115)
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where the form (65) for the Smoluchowski operator has been used. Substitution into eq.(114)
for the response function thus leads to,

Ξ(r− r′, τ) =
∂

∂τ

∫
dRA(r |R) exp{Ôeqτ} [ Peq(R) B(r′ |R) ] , (116)

and hence, according to eq.(39), in obvious notation,

Ξ(r− r′, τ) =
∂

∂τ
< B(r′, 0)A(r, τ) >0 , (117)

where the subscript ”0” is used to indicate that the ensemble average is to be taken in the equilib-
rium system, without the external field. Note that since the equilibrium system is translationally
invariant, the response function is a function ofr andr′ only through their differencer − r′.
The response to an external field is thus expressed in terms of correlations in the equilibrium
system, in the absence of the external field. This is of course only valid for small external fields.
Also note that in the integral in eq.(113), the time-argument ofΞ is always positive. We could
extend the upper time-integration range in eq.(113) to+∞, demanding that,

Ξ(r, t) = 0 , for t < 0 . (118)

This expresses causality : the effect of an external field at timet can not be affected by future
events at timest′ > t.
The time-integration in eq.(113) for the response of an observableA reflects the fact that the
response depends on earlier states. This ”memory-effect” extends over times on which the
variablesA andB in the expression eq.(117) become statistically independent. The spatial
integration in eq.(113) reflects the effect on the response at a given point from neighbouring
points. The range of these ”non-local” effects is set by the range of the interactions between
particles.

6.2 Static and dynamic response of the number density

As an example, let us consider the response of the number density of colloidal particles due to
an external potential. In this case, bothA andB are equal to the microscopic density,

ρ(r |R) =
∑
j=1

δ(r− rj) , (119)

and hence, according to eq.(117)

Ξ(r− r′, t− t′) =
∂

∂t

N∑
i,j=1

< δ(r′ − ri(t
′)) δ(r− rj(t) >0 . (120)

The response is most conveniently expressed in terms of Fourier transforms. The spatial Fourier
transform of a functionf(r) is defined here as,

f(k) ≡
∫

dr f(r) exp{−ik · r} , (121)

wherek is referred to as a wave vector. The magnitude off(k) measures the relative contri-
bution of variations off(r) on a length scale∼ 1/k. If, for example,f(k) is relatively small
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for large k, the spatial variations off(r) are predominantly smooth. The temporal Fourier
transform of a functionh(t) is defined here as,

h(ω) ≡
∫ ∞

−∞
dt h(t) exp{−iω t} , (122)

whereω is the frequency. Again, the magnitude ofh(ω) measures the relative contributions
to h(t) which vary on a time scale∼ 1/ω. Fourier transformation of eq.(113), using eq.(118),
gives,

< ∆ρ > (k, ω) = β Ξ(k, ω) ϕext(k, ω) . (123)

¿From eq.(120) for the example under consideration we have,

Ξ(k, ω) = i ω ρ̄ S(k, ω) , (124)

whereρ̄ = N/V is the mean number density andS(k, t) is the time-Fourier transform ofthe
dynamic structure factorS(k, t), which is defined as,

S(k, t) =
1

N

N∑
i,j=1

< exp{−ik · ( ri(t)− rj(t = 0) )} >0 , for t ≥ 0 , (125)

while S(k, t) = 0 for t < 0. This function can be measured by scattering experiments, where
the wave vector is related to the scattering angle. It has been evaluated for non-interacting
colloids in subsection 4.3. In the derivation of eq.(124) we used that,

S(k, t = ∞) =
1

N
|

N∑
i=1

< exp{−ik · ri} > | 2 , (126)

and,

< exp{−ik · ri} > =
1

V

∫
dr exp{−ik · r} ∼ δ(k) , (127)

where it is used that the single-particle pdf is nothing but1/V . For wave vectorsk 6= 0, the
delta distribution is zero. Hence, the result in eq.(124) is only valid for non-zero wave vectors,
which excludes a position independent external potential. The linear response result in eq.(123)
can thus finally be written as,

< ∆ρ > (k, ω)

ρ̄
= i ω β S(k, ω) ϕext(k, ω) . (128)

S is generally a complex quantity. The imaginary part ofS describes the response that is in-
phase with the external potential, while the real part describes the out-of-phase response.
Since in the derivation of this result we assumed thatk 6= 0, which excludes a spatially constant
potential. Let us now consider a potential that is constant for timest > −τ , whereτ is the time
interval during which the density relaxes, that is, the time interval whereΞ is non-zero. For
t > 0, the response is then due to a constant external potential, independent of both time and
position. Physically this means that the state of the system at timest > 0 is beyond the time
where the system ”remembers” previous states during which the potential was switched on.
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In the derivation of the Smoluchowski equation, we considered a closed system, since it was
assumed thatP ∼ exp{−βΦ} in equilibrium. The number of particles is thus fixed. A potential
that is constant throughout the system therefore can not have an effect on the overall density. In
order to analyze the response to a constant potential, we therefore divide the system into two
parts : in half of the system the potential isϕ0 > 0, say, while in the other half the potential
is −ϕ0. The increase of the number density in the two parts then cancels, ensuring that the
total number of particles remains unchanged. Since the width of the ”interface” between the
two parts is equal to the range of interaction between particles, which is the range over which
Ξ varies with position, one can simply consider one of the parts on the basis of the equations
derived above. Interpreting the volume integral in eq.(113) as the zero wave vector limit of the
dynamic structure factor (126), it is found that the static response of the density is given by,

< ∆ρ >

ρ̄
= −β ϕ0 lim

k→0
S(k) , (129)

where,

S(k) ≡ S(k, t = 0) , (130)

is the dynamic structure factor (125) fort = 0, which is referred to asthe static structure factor.
Clearly, if the potential is positive, the density will decrease, since then the internal energy will
be decreased. It can be shown that the static structure factor at zero wave vector is related to the
osmotic compressibility as,

lim
k→0

S(k) =
kBT

∂Π(ρ̄, T, µs)/∂ρ̄
, (131)

whereΠ is the osmotic pressure (here,Π is considered a function of̄ρ, T and the chemical
potentialµs of the solvent). The change in density is larger as the system is more easily ”com-
pressed”, that is, if a relatively large change in density is required to induce a significant change
in osmotic pressure.

7 The Green-Kubo Formula

Linear transport coefficients can be related to time-integrals of current-current correlation func-
tions. Such relations are referred to asGreen-Kuborelations. They can be employed to obtain
numerical values for phenomenological transport coefficients (such as the viscosity, diffusion
coefficients and conductivity) from microscopic simulations where the current-current correla-
tion functions are measured in equilibrium systems.
One can not rely on Smoluchowski dynamics here, since the current-current correlation func-
tions exhibit contributions from times shorter than the momentum relaxation time scaleτB.
Currents, or equivalently, velocities of colloidal particles relax on a time scaleτB = M/ζ to
equilibrium with the heat bath of solvent molecules (see section 4.2), which relaxation process
is excluded in Smoluchowski dynamics. A treatment on the diffusive time scaleτD À τB would
not include such short-time contributions to current-current correlation functions. Without these
”relaxation contributions”, Green-Kubo formulas some times even predict negative values for
inherently positive phenomenological coefficients.
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7.1 Derivation of the Green-Kubo formula

Consider the linear response of the currentjA of an observableA. The current is defined as,

jA(r |X) =
N∑

j=1

Aj vj δ(r− rj) , (132)

where, as compared to eq.(110) (withB replaced byA) the velocityvj is added here. Ensemble
averaging of this current gives the average amount ofA that flows through a unit surface area
per unit of time. Substitution into the linear response result (113) of the previous section leads
to,

< jA > (r, t) = β

∫ t

−∞
dt′

∫
dr′ Ξ(r− r′, t− t′) ϕext(r′, t′) , (133)

where it is used that the current is0 in equilibrium. The response function (117) is now equal
to.

Ξ(r− r′, t− t′) =
∂

∂t
< B(r′, t′) jA(r, t) >0 . (134)

This correlation function can be rewritten in terms of a current-current correlation function as
follows. First let’s go back to eq.(116) (where the Liouville operator replaces the Smoluchowski
operator),

Ξ(r− r′, t− t′) =

∫
dXjA(r |X) exp{L̂eq(t− t′)} L̂eq [ Peq(X) B(r′ |X) ] . (135)

Now let us define the conjugate operatorL̂ †
eq to the Liouville operator̂Leq as,

L̂eq [ Peq(X) F (X) ] ≡ Peq(X) L̂ †
eq F (X) , (136)

for any phase functionF . Since the Liouville operator (46) contains only first order derivatives,
andL̂eqPeq = 0, it immediately follows that,

L̂ †
eq = L̂eq . (137)

It is furthermore easily verified from the expression (46) that,

L̂eq δ(r− rn) = vn · ∇δ(r− rn) . (138)

Hence, from eqs.(110,132),

L̂eq B(r′ |X(t′)) = ∇ ′ ·
N∑

i=1

Bi vi(t
′) δ(r′ − ri(t

′)) = ∇ ′ · jB(r′ |X(t′)) . (139)

After a partial spatial integration, the linear response equations can thus be written as,

< jA > (r, t) = β

∫ t

−∞
dt′

∫
dr′ Θ(r− r′, t− t′) · Fext(r′, t′) , (140)



Statistical Mechanics B1.35

where the tensorΘ is equal to,

Θ(r− r′, t− t′) = < jB(r′, t′) jA(r, t) >0 . (141)

The external force in eq.(140) is equal to,

Fext(r′, t′) = −∇ ′ ϕext(r′, t′) . (142)

That the force instead of the potential as such appears here is intuitively clear since a current is
indeed driven by a force rather than the absolute value of the potential itself. When this external
force changes slowly in time as compared to the decay time of the current-current correla-
tion function, which is of the order of microstructural relaxation times, and the force changes
slowly on the length scale set by the range of the inter-particle interactions, the external force
Fext(r′, t′) in eq.(140) may be taken equal toFext(r, t). In addition, in an isotropic, rotationally
invariant system, the off-diagonal elements of the current-current correlation function are zero.
Also, all diagonal elements are equal, and henceΘ ∼ Î, whereÎ is the identity tensor. Finally
using that,

∫
dr

∫
dr′ < jB(r′, 0) jA(r, τ) >0 =

N∑
i,j=1

Bi Aj

∫ ∞

0

dτ < vi(0) · vj(τ) >0 , (143)

we can rewrite the above expressions to arrive atthe Green-Kubo formula,

< jA(r, t) > = β ΘFext(r, t) ,

Θ =
1

3 V

N∑
i,j=1

Bi Aj

∫ ∞

0

dτ < vi(0) · vj(τ) >0 . (144)

It should be noted that the variableB is determined by the way the external potential acts on to
the system, as formally described in eq.(109).
These equations are at the basis of many computer-simulation calculations of linear phenomeno-
logical transport coefficients. Expressions for the self-diffusion coefficient and the sedimenta-
tion coefficient are derived in the following two subsections on the basis of the Green-Kubo
formula.

7.2 Self-diffusion

Consider a single colloidal sphere (the tracer particle) in a possibly concentrated dispersion of
other spheres (the host particles). The host spheres are assumed to be identical to the tracer
sphere. An external forceFext is applied that acts only on the single tracer particle, not on the
host particles. The thermally averaged velocity that the tracer particles attains in the stationary
state can be written as,

< v > =
1

ζs

Fext , (145)

whereζs is theself-friction coefficient. This friction coefficient includes both friction with the
solvent and interactions with the force-free host particles. The analysis in section 4 to arrive at
the Smoluchowski equation (68) can be repeated for a subset of tracer particles which are so
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dilute that they do not interact with each other. The derivation of the Smoluchowski equation
can be done from the start with the neglect of interactions between the tracer particles. The
only forces acting on a tracer sphere are now the Brownian force and the hydrodynamic force
Fh = −ζs vcg whereζ is the same friction coefficient that appears in eq.(145). Hence,

∂

∂t
P (r, t) = Ds∇2P (r, t) , (146)

whereP (r, t) is the (non-equilibrium) pdf for the position coordinate of the tracer sphere. The
same expression (67) for the diffusion coefficient is found, where now the friction coefficient
includes interactions of the tracer sphere with the host spheres. The diffusion coefficient,

Ds =
kBT

ζs

, (147)

is referred to asthe self-diffusion coefficient. It is a long-time diffusion coefficient in the sense
that it contains the friction coefficient of the stationary translating tracer sphere, long after the
external force has been switched on. This diffusion coefficient describes the dynamics of a
single sphere in a matrix of other spheres. It is related to themean-squared displacement,

W (t) ≡ <| r(t)− r(t = 0) |2> . (148)

of the tracer sphere. The connection between the mean-squared displacement and the self-
diffusion coefficient can be obtained from the Smoluchowski equation. Multiplying both sides
of eq.(146) withr2 and integration gives (withr(t = 0) taken equal to0),

d

dt
W (t) = Ds

∫
dr r2∇2P (r, t)

= Ds

∫
dr P (r, t)∇2r2 = 6 Ds , (149)

where in the second line, two partial integrations have been performed. SinceW (t = 0) = 1, it
follows that,

W (t) = 6 Ds t . (150)

This specifies how the self-diffusion coefficient characterizes the dynamics of the tracer sphere.
A Green-Kubo formula for the self-diffusion coefficient can be obtained from a comparison of
the Green-Kubo formula (144) and eq.(145) in the form,

< j > = ρ < v > = β Ds ρFext , (151)

with ρ the number density of tracer spheres (which should be small enough to prevent tracer
spheres to interact with each other). Since the external potential couples to the density of the
tracer particles, bothAi andBj in the Green-Kubo formula (144) are equal to1. Furthermore,
since the tracer spheres do not interact with each other,< vi(0) ·vj(τ) >0= 0 wheni 6= j. The
Green-Kubo formula (144) thus leads to,

Ds =
1

3

∫ ∞

0

dτ < v(0) · v(τ) >0 , (152)

wherev is the velocity of a tracer sphere. In a simulation, tracing the velocities of the particles
thus allows to compute the self-diffusion coefficient for any concentration of host particles and
arbitrary interaction potentials
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For non-interacting colloidal spheres, eq.(50) can be used in combination with eq.(152) to obtain
Ds = kBT/ζ, where it is used that< v2 >0= 3kBT/M , which follows from the equi-partition
theorem. This reproduces Einstein’s expression for the single-particle diffusion coefficient.
Note that this value for the diffusion coefficient is determined entirely from dynamics for times
shorter than the momentum relaxation time scale. A treatment on the diffusive time scale would
have given the wrong answer.

7.3 Sedimentation

Instead of a force on a single particle, now consider the case where the same force acts on all
particles. This force may be thought of as the earth gravitational force, due to which colloidal
particles slowly sediment to the bottom of the container. Similar to eq.(145) we have,

< j > = ρ < v > = ρ
1

ζc

Fext , (153)

where nowρ is the total number density of colloidal particles andζc is a collective-friction
coefficient. This friction coefficient differs from the ”self-friction coefficient” in the previous
subsection, due to the fact that each given particle interacts with other particles that move on
average along with the given particle. Both direct interactions and hydrodynamic interactions
differ on average in both cases. Comparing eq.(153) with the Green-Kubo formula (144) im-
mediately gives,

1

ζc

=
β

3 N

N∑
i,j=1

∫ ∞

0

dτ < vi(0) · vj(τ) >0 , (154)

since, as before, bothAi andBj are unity. This result can be reformulated in terms ofthe
sedimentation coefficientS, which is defined as the ratio of the velocity of a colloidal particle
and the velocityv0 of a colloidal sphere in pure solvent. Sincev0 = βD0F

ext, whereD0 is the
Einstein diffusion coefficient (67), the sedimentation coefficient follows from eq.(154) as,

S =
1

3 N D0

N∑
i,j=1

∫ ∞

0

dτ < vi(0) · vj(τ) >0 . (155)

Contrary to self-diffusion, cross terms wherei 6= j are non-zero, since the particles under
consideration now interact with each other.
In the next section it will be shown on the basis of the Green-Kubo formula that there is a
connection between the sedimentation coefficient and the collective diffusion coefficient.

8 Onsager’s Regression Hypothesis

The Green-Kubo formula derived in the previous section allows for the calculation of trans-
port coefficients that relate to a conservative external field, that is, an external field for which
a potential can be defined (see eq.(105)). This excludes transport coefficients such as the shear
viscosity and thermal conductivity. It also excludes transport coefficients which connect a flux
with spatial gradients of an observable, like for collective diffusion. For non-thermodynamic
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transport coefficients such as the shear viscosity, the above analysis can be repeated with a dif-
ferent form for the operator due to the external field as compared to eq.(105), which is beyond
the scope of this chapter. For thermodynamic transport coefficients such as the thermal con-
ductivity, and for example collective diffusion, a different approach must be taken. In all cases,
Onsager’s regression hypothesis can be employed to obtain the relevant Green-Kubo formula.

8.1 Formulation of Onsager’s regression hypothesis

Onsager’s regression hypothesis states that equilibrium fluctuations of a phase variable relax
on average in the same way as the corresponding macroscopic variable. Suppose, as a simple
example, that a macroscopic variableA obeys a linear kinetic, phenomenological equation of
motion of the form,

∂A(r, t)

∂t
= M ∇2 A(r, t) , (156)

whereM is a linear transport coefficient. Onsager’s regression hypothesis implies that the phase
function A(X) that complies with the macroscopic variableA, that is< A(X) >= A(r, t),
obeys the same equation of motion on average. When< A > at timet = 0 is specified to be
equal toA0, this implies that,

∂ < A >0 (r, t)

∂t
= M ∇2 < A >0 (r, t) , (157)

where the subscript ”0” refers to the initial condition for< A >. The initial condition for
< A > resembles a typical fluctuation of the equilibrium system. The time derivative in this
equation should be interpreted as,

∂ < A >0 (r, t)

∂t
≡ < A >0 (r, t + τ)− < A >0 (r, t)

τ
, (158)

whereτ is much larger than the timeτcoll between collisions of particles and much smaller than
the relaxation timeτrelax of fluctuations,

τcoll << τ << τrelax . (159)

When fluctuations decay within a few particle collision times, macroscopic equations of motion
can not describe the decay of such fluctuations. It takes a large number of collisions before the
decay of a quantity obeys macroscopic equations of motion.
In the following two subsections, Green-Kubo formula for the collective-diffusion coefficient
and the shear viscosity of a molecular fluid will be derived from Onsager’s regression hypothe-
sis.

8.2 Collective-diffusion

In a phenomenological approach to describe diffusion, the particle current is assumed to be
proportional to the gradient of the particle number density. This is a good approximation for
small gradients of the concentration. Hence,

< jρ > = −Dc∇ρ , (160)
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where the transport coefficientDc is referred to asFick’s diffusion coefficient. Contrary to the
self-diffusion coefficient, Fick’s diffusion coefficient describes the collective motion of many
particles simultaneously. It is therefore alternatively referred to asthe collective diffusion coef-
ficient. The minus sign is introduced here to renderDc positive. This Ansatz is known asFick’s
first law. The continuity equation (73) (applied to colloidal particles instead of fluid molecules)
leads toFick’s second law, also referred to asFick’s diffusion equation,

∂

∂t
ρ(r, t) = Dc∇2ρ(r, t) . (161)

¿From Onsager’s regression hypothesis (157) and eq.(32) it thus follows that,

∂

∂t
< ρ(r, t) ρ(r′, t′) >0 = Dc∇2 < ρ(r, t) ρ(r′, t′) >0 . (162)

Fourier transformation with respect tor− r′ gives,

∂

∂t
< ρ(k, t) ρ(−k, t′) >0 = −Dc k2 < ρ(k, t) ρ(−k, t′) >0 , (163)

the solution of which reads,

< ρ(k, t) ρ(−k, t′) >0 = < ρ(k, 0) ρ(−k, 0) >0 exp{−Dc k2(t− t′)} . (164)

An expression for the current-current correlation function can be obtained as follows. Consider
the time-derivative,

∂2

∂t2
< ρ(k, t) ρ(−k, t′) >0 =

∂2

∂t2
< ρ(k |X) exp{L̂eq(t− t′)} [ Peq(X) ρ(−k |X) ] >0

= < ρ(k |X) exp{L̂eq(t− t′)} L̂2
eq [ Peq(X) ρ(−k |X) ] >0 . (165)

By partial integration, it is easily shown from the expression (46) for the Liouville operator that
for any two phase functionsF andG,

< F (X) L̂eq G(X)} >0 = − < G(X) L̂eq F (X) >0 . (166)

Hence, using eqs.(136,137),

∂2

∂t2
< ρ(k, t) ρ(−k, t′) >0 = − <

[
L̂eq ρ(k |R)

]
exp{L̂eq(t−t′)}Peq(R)

[
L̂eq ρ(−k |R)

]
>0 .

(167)
¿From the Fourier transformed version of eq.(138),

L̂eq exp{−ik · rn} = − ik · vn exp{−ik · rn} , (168)

it thus follows that,

∂2

∂t2
< ρ(k, t) ρ(−k, t′) >0 = −kk :< j(k, t) j(−k, t′) >0 = −1

3
k2 < j(k, t) · j(−k, t′) >0 ,

(169)
where in the last line it is used, as before, that the off-diagonal of the current-current correlation
function are zero and the diagonal elements are equal. Substitution into eq.(164) and time-
integrating leads to,

Dc =
1

3

1

< ρ(k, 0) ρ(−k, 0) >0

∫ ∞

0

dτ < j(k, τ) · j(−k, 0) >0 . (170)
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Note that,

1

N
< ρ(k, 0) ρ(−k, 0) >0 =

1

N

N∑
i,j=1

< exp{−ik · (ri(0)− rj(0)} >0 , (171)

is the static structure factorS(k) (see eqs.(125,130)), which can be measured by means of scat-
tering experiments. Substitution of the definition of the particle current (the Fourier transform
of eq.(132) withAj = 1) and the expression (131) for the zero wave vector limit of the static
structure factor in terms of the osmotic compressibility into eq.(170) finally gives the Green-
Kubo formula for the collective-diffusion coefficient,

Dc =
β

3 N

∂Π(ρ̄, T, µs)

∂ρ̄

N∑
i,j=1

∫ ∞

0

dτ < vi(0) · vj(τ) >0 . (172)

The zero wave vector limit is taken here, since the phenomenological theory that is at the basis
of the derivation is valid only in that limit.
Comparing the Green-Kubo formula for sedimentation (155) and collective diffusion (172)
shows that,

Dc = D0 β
∂Π(ρ̄, T, µs)

∂ρ̄
S . (173)

The interpretation of this relation is as follows. One can ask for the force experienced by a
colloidal particle embedded in a concentration gradient. Assume that it is actually the gradient
in osmotic pressureΠ that drives the colloidal particles, that is, the force per unit volume equal
to F = −∇Π. The force on a single colloidal particle is then equal to−ρ−1∇Π. When there
are only gradients in the density, this is the same asF = −ρ−1 ∂Π

∂ρ̄
∇ρ. The flux of colloidal

particles is, according to eq.(153), equal toρ < v >= − 1
ζc

∂Π
∂ρ̄
∇ρ. Fick’s diffusion coefficient

would then be equal toDc = 1
ζc

∂Π
∂ρ̄

= D0β
∂Π
∂ρ̄

S, which reproduces eq.(173). The osmotic
compressibility is thus indeed the driving force for collective diffusion. The sedimentation
coefficient describes the friction as an assembly of spheres that move simultaneously. The result
(173) for the collective diffusion coefficient can thus be interpreted as the ratio of a driving force
and a friction. This is qualitatively the same as in eq.(147) for the self-diffusion coefficient,
wherekBT is the thermal driving force for Brownian motion andζs is the friction factor.
This intuition reveals why the Green-Kubo formula (144) can not be used directly for collective
diffusion. The driving force for collective diffusion is inherently related to properties of the
system itself, and is not simply determined by an external force.

8.3 The shear viscosity

In this section we shall derive the Green-Kubo formula for the shear viscosityη0 of a fluid.
For low Reynolds numbers (see section 5.3) and in the absence of an external body force, the
Navier-Stokes equation (78) for an incompressible fluid reduces to,

ρ
∂

∂t
v(r, t) = ∇ ·Σ(r, t) = η0∇2v(r, t)−∇p(r, t) , (174)

whereρ the mass density of the fluid,v is the fluid flow velocity,Σ is the stress tensor andp
is the pressure. We shall consider a laminar flow in thex-direction, that is,v = (vx(y, t), 0, 0),
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with y the gradient direction, which is the direction along which the velocity varies. Since
there is only a force in thex-direction on surfaces orientated with their surface normal in the
y-direction, it follows from the definition of the stress tensor (see section 5.2) that only theyx-
componentΣyx of the stress tensor is non-zero. Furthermore, the pressure can only vary in the
y-direction in this case, so that eq.(174) simplifies to,

ρ
∂

∂t
vx(y, t) =

∂

∂y
Σyx(y, t) = η0

∂2

∂y2
vx(y, t) , (175)

Note the similarity of this equation of motion and the equation of motion (161) for the number
densityρ of colloidal spheres (not to be confused with theρ in the above equation, which is the
mass density of the fluid). Fourier transformation with respect toy gives,

ρ
∂

∂t
vx(k, t) = i k Σyx(y, t) = −η0 k2 vx(k, t) . (176)

According to Onsager’s regression hypothesis we thus have,

ρ
∂

∂t
< vx(k, t) vx(−k, t′) >0 = −η0 k2 < vx(k, t) vx(−k, t′) >0 . (177)

with the solution,

< vx(k, t) vx(−k, t′) >0 = < vx(k, 0) vx(−k, 0) >0 exp

{
−η0

ρ
k2 (t− t′)

}
. (178)

Since the equilibrium pdf is∼ exp{−β[Φ + 1
2
m

∑
j v2

j ]}, where the interaction potentialΦ
is independent of velocities, position coordinates and velocities are statistically independent
variables, the velocities of different particles are independent, and the average velocities are0.
Here,m is the mass of a fluid molecule. Hence, (withvi,x thex-component of the velocity and
yi they-component of the position coordinate of particlei),

< vx(k, 0) vx(−k, 0) >0

≡
∫

dy

∫
dy′ exp{−ik(y − y′)}

N∑
i,j=1

< vi,x vj,x δ(y − yi) δ(y′ − yj) >0

=
N∑

i,j=1

< exp{−ik(yi − yj)} >0 < vi,x vj,x >0 = N < vx vx >0 ,

wherevx is the transversal velocity of a single particle. According to the equipartition theorem,
< vx vx >0= kBT/m. Substitution into eq.(178) gives,

< vx(k, t) vx(−k, t′) >0 =
N kBT

m
exp

{
−η0

ρ
k2 (t− t′)

}
. (179)

Consider the second order time-derivative of the left hand-side,

∂2

∂t2
< vx(k, t) vx(−k, t′) >0 = < vx(k |X) exp{L̂eq(t− t′)} L̂2

eq [ Peq(X) vx(−k |X) ] >0 .

(180)
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¿From eqs.(136,137,166) this can be rewritten as,

∂2

∂t2
< vx(k, t) vx(−k, t′) >0 = − <

[
L̂eq vx(k |X)

]
exp{L̂eq(t−t′)}Peq(X)

[
L̂eq vx(−k |X)

]
>0

≡ − 1

m2
< jx(k, t) jx(−k, t) >0 , (181)

where the ”current”j is defined as,

jx(k |X) ≡ m L̂eq vx(k |X)

= m
d

dt
vx(k |X(t)) =

N∑
j=1

{
ik

pj,y pj,x

m
− Fj,x

}
exp{−ikyj} . (182)

The second equation follows from,

d

dt
F (X(t)) = L̂eq F (X) , (183)

for any phase functionF , which is consequence of Newton’s equation of motion. The second
part of these equations follows from explicit differentiation with respect tot and using the
expression (46) for the Liouville operator. This equation shows thatjx is the momentum current.
Since this current is in thex-direction andk is the magnitude of the wave vector that points in
they-direction, it is commonly referred to asthe transversal current. Differentiating eq.(179)
twice, a subsequent time-integration and using that the mass densityρ is equal tomN/V leads
to the Green-Kubo formula for the viscosity,

η0 =
1

V kBT
lim
k→0

1

k2

∫ ∞

0

dτ < jx(k, τ) jx(−k, 0) >0 , (184)

where the zero wave vector limit has been taken, since the phenomenological theory is only
valid in that limit.
The Green-Kubo formula can be written in terms of a stress-stress correlation function. In order
to obtain a microscopic expression for the stress tensor, we should find the tensorσ such that
jx = ikσyx, in analogy with its macroscopic counter part in eq.(175) in Fourier transformed
form. According to eq.(182) the microscopic stress tensor should obey the relation,

ik σyx(k |X) = jx(k |X) = ik

N∑
j=1

{
pj,y pj,x

m
− 1

ik
Fj,x

}
exp{−ikyj} . (185)

In the small wave vector limit we have,

1

ik
exp{−ikyj} =

1

i

∂

∂k
exp{−ikyj} = −yj exp{−ikyj} . (186)

Hence, combining eqs.(185,186), the following expression for (the small wave vector limit) of
the microscopic stress tensor is obtained,

σyx(k |X) =
N∑

j=1

{ pj,y pj,x

m
+ yj Fj,x

}
exp{−ikyj} . (187)
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Generalizing this to more general flows, the position dependent microscopic stress tensor is
given by,

σ(r |X) =
N∑

j=1

{ pj pj

m
+ rj Fj

}
δ(r− rj) . (188)

¿From eq.(185) and the Green-Kubo formula (184) in terms of the current-current correlation
function we thus arrive at the following formula in terms of the stress tensor correlation function,

η0 =
1

V kBT
lim
k→0

∫ ∞

0

dτ < σyx(k, τ) σyx(−k, 0) >0 , (189)

Together with the microscopic expression (187) for the stress tensor, this formula enables to
obtain the shear viscosity by means of simulations where particle coordinates and velocities are
tracked.

8.4 Some remarks on the Onsager approach

Phenomenological equations of motion in combination with Onsager’s regression hypothesis
predict an exponential time dependence of time-correlation functions. Such an exponential
dependence is also predicted from linear response theory when non-local effects and memory
effects in response equations like (133) are neglected, that is, when the response functionΞ(r−
r′, t − t′) is assumed to be only non-zero forr = r′ andt = t′. There may be non-exponential
time dependencies like long-time tails. The analysis is valid more generally, also for non-single
exponential decay. The generalization of, for example eq.(161) to include memory and non-
local effects is,

∂

∂t
ρ(r, t) =

∫
dr′

∫ t

−∞
dt′ Dc(r− r′, t− t′)∇′ 2ρ(r′, t′) . (190)

where the kernelDc is the generalized collective diffusion coefficient. The analysis can now be
repeated after Fourier transformation both with respect tor andt, which gives,

i ω ρ(k, ω) = −Dc(k, ω) k2 ρ(k, ω) . (191)

Onsager’s regression hypothesis can be applied here to obtain eq.(164) in time-Fourier trans-
formed form. The entire analysis can be copied to obtain the Green-Kubo formula (172), again
in time-Fourier transformed form. Now the limit whereω → 0 of the resulting Green-Kubo
formula must be taken, since the phenomenological coefficient in the original Fick’s law (161)
is only valid for slowly varying fields, such that memory effects can be neglected. The Green-
Kubo formulas obtained in the previous two subsections are therefore more generally valid, also
when the correlation functions are not single-exponential in time.
Two important theories are not addressed here : the Mori-Zwanzig formalism to derive from
the Liouville equation, without any assumptions, equations of motion for time-correlation func-
tions, and Einstein’s theory where probability density functions for fluctuations of thermody-
namic variables are defined. The treatment of these theories is beyond the scope of the present
chapter.
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9 Additional Reading

Much of the above treated material can be found in textbooks. Linear response theory and
Green-Kubo formulas are treated in the book of Kubo [6] and, for example Reichl [7]. Com-
puter simulations techniques to obtain transport coefficients based on Green-Kubo formulas are
treated in ref.[8]. The books of Russel [9] and Dhont [10] are specialized to colloidal systems.
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