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1 Introduction

Various types of flows are among our everyday experience. There are flows (winds) in the atmo-
sphere, flows of water or oil through pipes, flows around air plane wings, in rivers, blood flow
through our veins and arteries, fluid motion during cooking etc.. Motion counts to the most
fascinating states of matter and flows exhibit a great variety of motion and of nonlinear phe-
nomena. With the Navier-Stokes equation (NSE) there is a theoretical framework available for
simple (Newtonian) fluids like water, olive oil etc. that is known already since the 19th century
[1, 2]. Due to the inherent nonlinear character of many flows it is hard to obtain analytical so-
lutions of the NSE or of the NSE coupled to the heat conducting equation. However, numerical
methods combined with computer power, sophisticated computer assisted experiments and new
concepts from chaos theory and pattern formation have provided important new insights about
various kinds of Newtonian flows during the last two decades. For viscoelastic liquids the basic
equations are much less established and in this field one needs besides smart computer codes
also theoretical progress for establishing appropriate equations of motion.

e (lassical fluid dynamics with its huge variety in flow problems in engineering, in geo-
physics and meteorology belongs to the huge field of hydrodynamics. Many efforts in
these areas are directed towards an improved understanding of turbulent fluid motion
for practical purposes and they rely very often on a statistical analysis. The transition sce-
narios to turbulence are not known for all types of flows. For instance, a novel bifurcation
scenario has been identified in pipe flow quite recently [3, 4].

Thermal convection was first studied by Henri Bénard (1874-1939) more than hundred
years ago and explained by Lord Rayleigh. An overview about a number of recent and
surprising insights about turbulence in that system may be found in [5] and the references
therein.

e Many investigations about various kinds of bifurcation scenarios in chaos and pattern
formation, another huge area of activities, have its starting point in hydrodynamics. Fluid
dynamicists are well aware of so-called coherent structures that are observed in turbulent
fluid motions, and often these structures can be related to instabilities of a basic laminar
state, such as in Rayleigh-Bénard convection or in Taylor-Vortex-Flow (see Fig. 1).

In Taylor-Vortex flow the control parameter is for instance the rotational frequency of the
inner cylinder. In Rayleigh-Bénard convection it is the temperature difference between
the upper and lower boundary. In an extended layer of Rayleigh-Bénard convection one
has in the center of the cell essentially rotational invariance. This rotational invariance is
broken for an inclined convection layer and the inclination angle provides an additional
control parameter. A horizontal flux through a Rayleigh-Bénard cell breaks also the rota-
tional symmetry in the z — y plane. With such a symmetry breaking one can mimic winds
in convection layers in the atmosphere. Other examples with a broken rotational symme-
try are convection experiments with nematic liquid crystals, another field with fascinating
flow patterns [7, 8].

In thermal convection many fundamental phenomena have been observed for the first
time. The occurrence of chaos goes back to a three mode model of Lorenz [9], derived
from the fundamental equations of thermal convection. Period doubling phenomena on
the route to chaos have been observed in thermal convection [10]. Recently in this well
known system spiral defect chaos has been discovered [11] and even in turbulence new
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Fig. 1: Paradigmatic flow systems to investigate with increasing external stress (increasing
values of the control parameter) sequences of bifurcations experimentally and by advanced
computational methods [6].

phenomena have been observed quite recently [5]. Many other investigations on thermal
convection and other pattern forming systems are summarized in the review of Cross and
Hohenberg [12].

e Microfluidics is another and expanding branch of hydrodynamics [13]. This research
area is restricted to flows through narrow channels and therefore to low Reynolds number
hydrodynamics. But the flows here are often strongly influenced by suspended particles
such as polymers, red blood cells etc. .

e Flow problems in complex fluids. Complex fluids exhibit a great variety of fluid phases
and ordering phenomena in thermal equilibrium. The origin of these different phases are
competing interactions in these materials.

Liquid crystals are examples of fluids with an internal, spontaneously broken symmetry.
Especially nematic liquid crystals are nearly omnipresent nowadays due to their applica-
tions in liquid crystal displays (LCD). Liquid crystals are switched by an applied voltage.
In a quite similar configuration electrohydrodynamic instabilities and bifurcations occur,
where an additional coupling between the flow field and the nematic ordering takes place.
This leads to a number of fascinating patterns as shown for instance in Fig. 2. Much more
images of similar flow patterns (discovered and partially explained quite recently) may
be found in Refs. [7, 8, 14, 15, 16, 17, 12].
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Fig. 2: These are images of flow patterns occurring in electrically driven nematic liquid crys-
tals. These patterns are observed in an experimental configuration which is rather similar to
that of a liquid crystal display (LCD), a device which is used in many applications today. In
nematic liquid crystals the viscosity is anisotropic. Nematics have also elastic properties and
their interplay with flow leads to the numerous fascinating patterns in these materials, more
of them may be found in Refs. [14, 7, 8, 15, 16]. The pattern shown in the left part has been
understood only recently [18].

Suspended particles change the shear viscosity. Einstein calculated in 1906 this effect
and obtained in the diluted regime without interactions between particles, that the shear
viscosity increases with the density of the particles [19]. If the particles are deformable
such as vesicles then the shear viscosity is less increased as shown recently [20].

Suspensions often lead to a nonlinear relationship between the flow rate of a laminar flow
through a pipe and the pressure drop. In such a case the shear viscosity depends on the
shear rate itself, a typical signature of non-Newtonian fluids. The majority of complex
fluids are shear thinning, i.e. their viscosities decrease with the shear-rate. A few fluids
are also shear thickening. The shear thinning occurs for instance by deformations of
suspensions.

Polymers in solution may be considered as deformable suspensions. Undeformable sus-
pensions are less related to elastic and memory effects than suspended polymers. Elas-
tic effects change the time-dependence of flows enormously. Another effect are normal
stresses which play a role for instance in rod climbing of viscoelastic fluids, the so-called
Weissenberg effect.

In ferrofluids one has suspended particles that carry a magnetic moment. The flow proper-
ties may depend on dipole-dipole interaction and viscosity may be varied by the strength
of an applied magnetic field. More about ferrofluids may be found in [21, 22, 23]. In a
similar manner the viscosity in an electrorheological fluid, (where the particles carry an
electric dipole) can be varied over a wide range by application of an electrical field [24].

e Polymeric fluids - viscoelastic fluids. The entropic elasticity of polymers leads to very
fascinating phenomena in polymer solutions. Prominent and astonishing examples are
the Weissenberg effect (rod climbing effect) and the turbulent drag reduction as shown in
Fig. 3.

Only a few ppm of polyethylene oxide added to water reduce the effective viscosity in a
fire hose by a huge amount. As a consequence, a jet of pure water leaves the fire hose
much slower but under the same conditions, the same pumping power, the same fire hoses,
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Fig. 3: Demonstration of turbulent drag reduction with two fire hoses as an example for flow
phenomena in viscoelastic fluids. Through one fire hose (the left one) pure water is pumped and
through the other one water containing 0.003% polyethylene oxide (from Bailey & Koleske:
Poly(Ethylene Oxide), Academic Press 1976).

the same inclination angle etc. than the jet of water including a few ppm poly-(ethylene)
oxide. The mean velocity of turbulent flows through pipes may be enhanced by polymer
additives up to a factor of ten. This effect of turbulent drag reduction is also used in the
Trans Alaskan oil pipelines in order to save pumping power and in a Bristol sewer pipe.
There are suggestions for explanations of this phenomenon, but a number of questions are
left open and this problem is still a matter of current research. However, it seems rather
obvious that the entropic elasticity of polymers plays a crucial role for this phenomenon.
Further examples of viscoelastic flow effects may be found in volume I of Bird et al. [26].

Polymer liquids are not only fascinating in flows at large Reynolds numbers. The de-
formability of polymers and their entropic elasticity leads even in flows at low Reynolds
numbers to turbulent flow behavior, the so-called elastic turbulence [29]. This behavior
may be also used in microfluidics for mixing substances [30]. A theoretical foundation
of this effect is still missing too.

e Hydrodynamics in general is a method to describe macroscopic states of matter by fields
that are continuously varying in space and time. It covers the long wavelength dy-
namics. The concepts of hydrodynamics used for the previously mentioned examples
are at present further developed and applied even to continuum aspects of the dynam-
ics of the skeleton of biological cells. This is a rather new direction with very in-
teresting perspectives. These and further recent developments in soft matter physics
may be summarized also under the notion Nonlinear Dynamics of Complex Continua
(http://www.for608.uni-bayreuth.de).
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2 Fluid dynamics of Newtonian Fluids

The derivation of the equations of motion of simple fluids is based on mass, energy and mo-
mentum conservation, simple linear transport laws for the heat and the second law of thermo-
dynamics. A detailed derivation of the basic equations may be found in many textbooks. A
rather complete description is given for instance in volume VI of the textbook series of Landau-
Lifshitz [1]. A more generalized point of view may be found in the book of Chaikin/Lubensky
[31]. Further introductory texts on classical fluids are Tritton [32] and Acheson [2].

The dynamics of a Newtonian fluid is described by a velocity field u(r, ¢), by the mass density
p (the time and spatial dependence is only considered in this section in front of the gravitational
force g), the temperature field 7'(r,¢) and the pressure field p(r,t). The equations of motion
are given by (see also appendix A)

pou + p(u-Viu=—Vp+pg +nVu , (1)
0T + (u-V)T = rAT. )

2.1 Thermal convection

Rayleigh-Bénard convection is one of the most investigated fluid dynamics systems [33, 34, 35,
36, 37]. Convection patterns have been observed by H. Bénard [33, 34] nearly 100 years ago
and a first theory was provided by Lord Rayleigh nearly 90 years ago [38, 39]. By cooking
liquids everybody can observe thermal convection.

This system exhibits still new phenomena and is especially used for investigations of generic
nonlinear phenomena, that occur very likely in many other systems, such as chaos [40, 12] and
various stationary as well as spatiotemporal patterns [37, 12].

In addition this system allows the determination of the transition from thermal conduction to
convection by an elementary calculation. The mechanism for the onset of convection can be
found in many different places as for instance in Ref. [5].

Thermal convection is usually investigated between two parallel plates in a gravitational field as
indicated by Fig. 4. Convection sets in, when the temperature difference AT increases beyond
a critical value that depends on the layer height, the viscosity of the fluid etc. (see below).
Below the onset of convection the z-dependent heat is transported by heat conduction without
convection and the solution of Eq. (2) is in this case described by

T(z) = AT(1— z/d)+ T} . 3)

We call this linear temperature profile without convection the basic state, which is translationally
invariant with respect to x and y in the plane of the convection layer, if we assume an infinitely
extended fluid layer.
By thermal extension the lighter fluid is at the bottom, which corresponds to an inherently
unstable state in the gravitational field. This unstable state persists up to a critical temperature
difference, which we calculate in this section.
A rescaling of the two equations, as described in appendix A, leads to the introduction of two
dimensionless variables, the Rayleigh number R and the Prandtl number P:
R:poagATdi”’ p_V
K

RV

“4)
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Fig. 4: A schematic drawing of a Rayleigh-Bénard convection cell with the layer height d,
where the heat current () is transported through the cell according to the temperature difference
AT = Ty — T between the temperature at the bottom T, and the temperature Ty at the top
boundary.

P is the ratio between kinematic viscosity v = 7/py and the thermal diffusivity x. R is the
control parameter of the system and it is the dimensionless ratio between the buoyancy force
poagATd? and the product of the friction v and the thermal diffusivity x. « is the thermal
expansion coefficient and d is the layer height.

Determination of the onset of thermal convection. Here we determine the critical value of
R at which the basic heat conducting fluid becomes unstable and convection sets in. For this we
use the equations of motion for the velocity potential ¥ and the temperature 7" in Boussinesq ap-
proximation, but restricted to two spatial dimensions, as derived in appendix A. The velocity po-
tential U and the velocity components are related as follows v = (v,,0, v,) = (9,¥, 0, —0, V).
Since one has in an infinitely extended fluid rotational invariance, i.e. the orientation of the
convection rolls is arbitrary, a stability calculation for two spatial dimensions is sufficient. The
deviation from the linear temperature profile we denote by ©.

1 1
SOAY +0,0 — A = 5(0:90, — 9,00.)AV,
90 — AO + R),¥ = —(0,99, —9,V0,)0. (5)

Since © and ¥ describe the deviations from the basic state, it is sufficient to investigate the
growth properties of small perturbations in © and W. This procedure is the so-called stability
analysis and for that we can neglect products of both fields in the equations.

The linear part of the two coupled equations (5) are partial differential equations with constant
coefficients and such a type of equations is solved by a Fourier ansatz. In y-direction we assume
periodic boundary conditions to the infinite extension. If we assume for simplicity free slip
boundary conditions for the horizontal components of the velocity, as described in appendix A,
we can solve the linear part of Egs. (5) with an analytical ansatz as follows

O(t,y,z) = ©¢€”" cos(mz) cos (ky) ,
U(t,y,z) = We cos(mz) sin (ky). (6)
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Here © and VU are constant amplitudes. For ©, U # 0 the solubility condition for the resulting

homogeneous equations in the amplitudes © and ¥ provides the expression for the dispersion
relation

1 12 4k2R
2 2

= (@ + )1 —)i\/ 2| (14 5) -4+ 5 7
oo =—("+ k) (1+ 5 (72 + k2) +5 t e (7
The first contribution to o 5 is always negative. Therefore the growth rate Re[o] can become
positive only if the expression under the square root is positive. Since this is always the case
the basic state becomes only unstable with respect to non-oscillatory perturbations. For each
wave number £ the basic state becomes unstable for a different value of R. The neutral stability
condition Re[o]| = 0 separates the parameter range, where the basic state is unstable from that

range where the basic state is stable. With the condition Re[o] = 0 one gets with

(m% + k?)3
Ro(k) = 5. ®)
the expression for the so-called neutral curve as shown in Fig.5a). Below this curve the homo-
geneous basic state is linearly stable and beyond unstable.

—r—— T T Jooo F
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1400 |- . - . !
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21200 A
5 € 4000 |- -
= 2
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Fig. 5: a) The neutral curve Ry (k) for free slip boundary conditions defined by Eq. (87) and in
b) for realistic boundary conditions as defined by Eq. (86).

Experimentally the wave number cannot be chosen. The thermal fluctuations include a broad
spectrum of wave numbers and only those will be amplified with (R, k) beyond the neural
curve. Hence the minimum of Ry(k) tells, at which temperature difference the basic state
becomes unstable. The values at the minimum are

27 s
R. = =" =~ 657.51, k, = — ~ 2.221 free boundary) . 9
The great advantage of the used free slip boundary conditions is that the stability calculation
could be done analytically. For realistic non slip boundary conditions one has to use appropriate
numerical methods and the critical values are in this case

R, =1707.76... , k.= 3.116 (realistic boundary) . (10)

The neutral curve for non slip boundary conditions is shown Fig. 5b). These critical values of di-
mensionless parameters are universal numbers. Whatever kind of Newtonian fluid is used, these
numbers are always the same. However, the corresponding temperature difference changes with
the material parameters of the substances, c.f. Eq. (4).
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The Eigenvector. Since for the determination of the critical values we have solved an eigen-
value problem, the two amplitudes © and ¥ are not independent. The linear solution at (R, k.)
is

G v _ ikey x _—ikey |77 . 3 42/7T
ul_(@)‘ [Ae +A RO (z) with Oi= (g5, ) cos(nz). (D)

For non slip boundary conditions U, (2) has to be determined numerically (see for two different
methods either Ref. [35] or Ref. [41]). The amplitude A of the eigenfunction is the so-called
order parameter because it is a measure for the strength of the new order beyond the instability.
By introducing a small parameter ¢ = (R — R.)/R. and k — k. one may cover the behavior in
a small neighborhood of (R, k.) by an equation for the amplitude A(y,t) where A(y,t) covers
slow modulations of the spatially periodic structure and the slow dynamics [42, 12, 41],

T A = eA+ &0, A — g|APA, (12)
with ,
1 2 ) 1 0?R 8
p— = — p— pr— 1
0= R oo T 320 % 2R, Ok2  3m2’ (13)

¢dR
for free slip boundary conditions. The nonlinear coefficient is positive for thermal convection
and therefore the bifurcation is continuous, i.e. supercritical.

2.2 Nonlinear properties beyond the onset of convection

Close to the threshold in extended systems straight roll convection is observed. This is also
what analytical and numerical solutions of the NSE imply. These straight roll solutions are
stable for wave numbers in a subrange above the neutral curve in Fig. 5b), which is bounded
by the Eckhaus stability boundary (right) and the Zig-Zag instability (left). There is excellent
agreement between the observation of convection rolls and their theoretical description. The
wave number range, where convection rolls are stable as a function of R, P and k, is the so-
called Busse-balloon [6] (F. H. Busse is Professor at the University of Bayreuth).

If the convection cell has only finite extension in the x — y plane then convection rolls tend to
stay with their axis perpendicular to the container boundaries as shown in Fig. 6. This can be
predicted in terms of amplitude equations as given in Eq. (12), but extended to two dimensions
[12, 43].

Rayleigh-Bénard convection has been studied for more than one century, but roughly one decade
ago the researchers were very surprised by observing Spiral-Defect-Chaos. In a parameter
range, where the convection rolls have been shown to be stable experimentally and by calcu-
lations, they found as a second nonlinear state the spatiotemporally complex state of Spiral-
Defect-Chaos (SDC). Two snapshots of the dynamical state are given in Fig. 7. Characteristic
for this state is the persistent creation and annihilation of spiral-defects.

By increasing the Rayleigh number R further beyond R, a sequence of bifurcations and patterns
may be found as indicated in Fig. 1. Turbulent convection takes place at much higher values of
the Rayleigh number. Large values of the Rayleigh number R can be achieved in high containers
with large values of d. In one experiment at the university of Illmenau d is several meters and the
convection cell is a building. So the aspect ratio I', the ratio between the horizontal extension
and d, is small, as for instance indicated in Fig. 8.
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Fig. 6: a) Convection rolls in intrinsically isotropic systems, such as Rayleigh-Bénard convec-
tion, orient with their axis of rolls perpendicular to the side walls of the convection cell. b) In
certain fluids, like water close to 4°C, close to the threshold hexagonal patterns occur.

Fig. 7: In a range for the Rayleigh number R where straight rolls are still linearly stable only
one decade ago the so-called Spiral-Defect-Chaos has been observed in experiments both in
rectangular and circular convection cells (see [11] and references therein).
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Fig. 8: A snapshot of turbulent convection at very large values of R = 6.8 - 10% and a small
aspect ratioI' = 1 (P = 596). The right part shows that there is a large scale motion (“Wind of
turbulence”) superimposed with turbulent motion down to very small scales (see e.g. [5, 46]).

The influence of spatially varying boundary conditions on pattern formation (or more general
heterogeneity effects) is another aspect that is investigated in thermal convection intensively
[47].

3 Flow at low values of the Reynolds number Re

3.1 Dimensionless Navier-Stokes equation and the Reynolds number

The various terms in the Navier—Stokes equation can be very different in magnitude, depend-
ing on the special flow under consideration. The Navier-Stokes equation is nonlinear and may
exhibit turbulence in many situations [44, 45]. Analytical solutions of (65) exist only for sim-
ple geometries, especially in the limit of small values of the dimensionless Reynolds number
Re, which we introduce now. Eq. (65) includes essentially three relevant parameters: the kine-
matic viscosity v = 1/ p, a typical length scale [ (often the dimension of the container or of an
swimming object) and a typical flow velocity uy.

(V] = E, (1] =m, and [up] = m (14)
s s
These may be combined to the dimensionless Reynolds number
l l
Re =200 _ Pt (15)

v Ui

which compares the inertia forces and the viscous ones. With v = ugu, x; = Iz}, p = pl/(nuy)

and a typical time ty = [ /ug with t = t4t after multiplication of Eq. (65) by ?/(nug) one obtains
ou;, = _ -

From this equation it is clear that the Reynolds number Re is the only parameter that indicates

the importance of inertia relative to viscous forces. For two different fluids (for example with

different viscosities) and two spheres with different radii in the same flow type the velocity
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u/ug depends in both cases on r/l in the same manner, if the Reynolds numbers coincide.
Flows which may be transformed into each other by such a similarity transformation are called
similar fluids.

There are two flow regimes distinguishable: Re < 1 and Re > 1. Usually, a flow becomes
turbulent beyond a critical value of Re that depends on the flow type. In the range Re < 1,
the term Re(u - V)u can be neglected and equation (65) reduces in the stationary Stokes or
creeping—flow equation, which is in dimensional form

~Vp+nViu+f=0. (17)

The creeping—flow equation is particularly useful in describing the flow around colloidal par-
ticles because in this case the characteristic length [ occurring in the Reynolds number can be
identified with the particle size. Even for a colloidal particle as large as 1 xm in water, assuming
p = 103 kg m~3, the Reynolds number approaches unity at velocities of about 1 ms~!. Hence
for colloidal particles the condition Re < 1 is almost always satisfied. It must be pointed out
that even when the Reynolds number calculated using the size of a colloidal particle is usually
less than one, the Reynolds number based on some macroscopic dimension of the flow (e.g. the
diameter of a tube) can be much larger than one. Even in turbulent flow, if the particle is smaller
than the microscopic scale of turbulence, the local flow in the neighborhood of a colloidal par-
ticle is laminar even though the “distant” velocity it experiences is a fluctuating function of
time.

3.2 Example: Plane Poiseuille Flow

A flow induced by a pressure drop between two parallel plates is the so-called plane Poiseuille flow. If
the two parallel plates are located at z = +d/2 and parallel to the z — y plane we assume a pressure
gradient along the z-direction and linear pressure drop J,p = const.. Accordingly we expect a flow
in z—direction u = (ug,0,0). At the bounding plates we assume stick boundary conditions u,(z =
+d/2) = 0 and therefore the only spatial dependence of the flow field is along the z-axis. In a stationary
flow case J;u = 0 and one has also (u - V) = 0. Hence only the equation nAu, = O,p = pe
is left. This is an ordinary differential equation of second order which may be solved by integration:
ug(z) = %((%p) /n + Cz. The problem is symmetric with respect to the reflection = — —z and
therefore C' = 0. In order to fulfill the boundary conditions we have for the plane Poiseuille flow

wz) = 5 <22 - (‘;)2) (8)

induced by the linear pressure drop p. = O, p. This laminar flow is only preferred for small values of the
Reynolds number and at large values of Re one expects turbulent flows.

3.3 Particles in a Newtonian fluid

A particle suspended in a fluid starts to move by an applied force. For instance, if the particle
has a higher density than the solvent, the particle sediments in a gravitational field.

The relation between the particle velocity and the applied force as well as the perturbation of
the flow and the pressure field are calculated.
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Every moving particle perturbs the flow field and this perturbation influences the motion of
other particles. This effect of hydrodynamic interaction between moving and rather far distant
particles (with a next neighbor distance much larger than the diameter of the particles) is de-
scribed by the so—called Oseen tensor, as presented in the contribution of J. Dhont.

Particles in a local shear field rotate and this rotation perturbs the flow field too. This leads to a
higher shear viscosity than for the fluid without particles.

Hydrodynamic interaction between point particles. — At a sufficiently large distance r
from a moving sphere of radius R, i. e. R/r < 1, its action on the fluid is the same as that of
a point force §(r)f [1]. Assuming in the Stokes equation a point like body force 4(r)f at the
origin

Vp =nAu+ §(r)f (19)

the flow field induced by this force is

afr) = Q) - f = — (I+r@;r) f (20)

- 8mnr r

as shown in appendix B. €2(r) is the so-called Oseen tensor.

Equation for point particles— Now we consider N moving point particles located at R; with

a force F; acting on each of itand z = 1, ..., N. Then the force density is
N
f(r') = Z 5(r' — R;) F; usually F; = const . (21)

i=1

Together with the Oseen-tensor as defined by Eq. (20), the equation for the perturbed flow field
in the presence of N particles is

u'(r) = Z Q(r—R,)-F, . (22)

The perturbation u’(R;) at the place of the i-th particle is induced by all the other N —1 particles

W(R) =Y QR,-R;)F;. (23)
J#i

For a creeping flow one assumes that a sphere adjusts due to stick boundary condition to the
same velocity R; = v; than the fluid in its immediate neighborhood u(R;). The flow field
at the position of the ¢-th particle may have two contributions. The first contribution is the
undisturbed flow field in the absence of particles uy(r), such as for example the uniform flow
field uy(r) = const. - n along some direction n, a linear shear field (uy), = sy or a parabolic
shear profile, e.g. a plane Poiseuille flow with (ug),(y) = u,(d*>—?). The second contribution,
u/(r), is induced by all the other other moving particles. The force acting on the i-th particle
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due to the Stokes law determines the velocity difference between this flow ug(r) + u’(r) and
the actual velocity of the particle v;
1

V; — [uo(Rz) + u’(Rl)] = 671'7]0,

F,;. (24)

Here a is an effective radius of a point particle. For point particles the notion of an effective
friction coefficient ( = 67na is also common. Hence, the equation of motion for the ¢th particle
is

RZ’ =Vv; = uo(Ri) + u'(RZ-) Fz

* 6mna

1
= uo(Ri) + Z Q(RZ — Rj) . Fj + %Fz
i

N
= w(R))+ > Hy-Fy, (25)
k=1

where

11 fork=1
Hj, = ¢ 26
g {erim fork # i (26)

is called the mobility matrix.

The forces acting on the particles may be induced for instance by gravitation or in the case of
charged particles by an electric field. In bead spring models for polymers a part of the forces
acting on the beads are due to the springs connecting next neighboring beads. Besides the hy-
drodynamic and spring forces in polymers thermal motion has to be taken into account as well.
For more details about bead—spring models for polymers, where the hydrodynamic interaction
is taken into account, see for instance Ref.[48] and the references cited therein.

distance vector R

-/ \\N® 1 :

1 2

Fig. 9: Two simple bead—spring models: a) dumbbell and b) tetrahedron.

Two simple bead—spring models are the dumbbell and the tetrahedron as shown in Fig. 9. Both
are used for modeling certain aspects of polymers. A simple potential for a linear spring with a
finite equilibrium length b connecting two neighbor beads is

b — %k:(]R] )y 27)
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with the force law

F(R) = —-V®(R) = —k (1 - %l) . (28)

For such a spring potential the whole force acting on one bead of a tetrahedron or some com-
plicated connected bead—spring model is

b
Fj=k)_ (1— |ri_rj|> (r; — ;). (29)

This force together with Eq. (25) builds the equation of motion for the Stokesian dynamics of a
bead spring system. More about Stokesian dynamics may be found in Ref. [27]. If the undis-
turbed flow ug(r) is a shear or a Poiseuille flow, a tetrahedron or another three—dimensional
object is in permanent motion and rotation. Surprisingly, a tetrahedron migrates during its per-
sistent rotating motion perpendicular to the streamlines [28] and moves to the center of the
Poiseuille flow. Asymmetric dumbbells may migrate away from the center of the Poiseuille
flow. So migration is the consequence of a delicate balance between different forces.

A simple consequence of the hydrodynamic interaction may be seen in Fig. 10. Here the force is
calculated which is needed in order to keep the two beads fixed in a uniform flow of velocity u.
The force can be determined from equation (24) by setting the bead velocity v; = 0. Each bead
perturbs the flow and reduces the flow velocity in its neighborhood. Therefore the dragforce on
the second bead is reduced compared to that in absence of the first bead. This reduction depends
on the distance between the two beads as can be seen from the dependence of the drag force as
a function of the bead distance d in Fig. 10c). In both cases with the connection vector between
the two beads either parallel or perpendicular to the flow, the forces needed to keep both beads
fixed point into the direction opposite to the flow velocity. In the case of a finite value of §, one
has also to apply forces perpendicular to the flow.

0.9 ~

— d parallel u,
———- d perpendicular u,

0 0.1 0.

) 2 03 0.4 0.5
reciprocal distance (a/d)

Fig. 10: Two beads kept fixed in a uniform flow, with the connecting vector either perpendicular
or parallel to the flow direction u = (u,,0,0). The drag force for each bead of the two bead
system normalized to the drag force Fy = 6mna needed for a single bead (Fy = 6mna) . In the
case of a perpendicular orientation we have chosen o, = 0. a is the effective bead radius and d
the distance between the beads.
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3.4 Effect of a dilute suspension of particles on the shear viscosity

Small particles (either solid, liquid, or gaseous) that are randomly dispersed throughout another
fluid material are quite common in nature and industry. The term suspension or colloidal sus-
pension usually refers to a system of small solid particles in a liquid, but the nature of the two
media is not of particular significance from the dynamical point of view and our use of the word
here will include also systems of drops of one liquid dispersed either in another liquid (an emul-
sion) or in a gas. How do such suspensions behave in response to applied forces and moving
boundaries like in shear cells? How does a suspension influence the shear viscosity? A. Ein-
stein has shown in 1906 for the first time that suspended particles increase the shear viscosity
compared to the pure solvent [19, 1] as described by the following formula

AT R3
= c

3 ) (30)

n =" (1 + ggo) with %
 being the part of the volume occupied by the suspended particles and 7), is the shear viscosity
of the pure solvent. This contribution is obtained in the very diluted limit, where particles do
not interact via hydrodynamic interactions. For the calculations the fluid was assumed to be
incompressible and particles where assumed to be spherical.

If the suspended particles are deformable, such as vesicles, then the situation is slightly different
as shown recently [20]. Vesicles in shear flow are of elliptical shape and the larger principal axis
is obliquely oriented with respect to the parallel flow lines. The inclination angle depends on
the shear rate. The shear viscosity of a fluid with suspended vesicles is

5 23\—16 15\ /? (4h2 — A)
eff =M1+ -9 ———= — T 31
Terf =M E T 5 ¥ 933 1 32 (%) h @D
Here A = 7/ is the viscosity contrast, with 7 the viscosity of the solvent and 7 the vis-
cosity of fluid in the vesicle. A is the excess area. A = 0 for a spherical vesicle and

h = 604/27/15 (32 + 23)). Since in many cases 4h> — A < 0 the shear viscosity of sus-
pended vesicles is less than for hard spherical particles.

So far sufficiently diluted particle suspensions have been considered in shear flow where the
hydrodynamic interaction between particles is sufficiently small and where the particles behave
like independent ones. As we have seen above, if two spheres come close enough, say if the
ratio between the particle diameter 2R and the distance d, R/d, becomes larger, then the drag
on one of them is influenced by a second sphere nearby: The spheres experience in this case a
hydrodynamic interaction. Such interactions between two spheres lead to a contribution to the
viscosity 7 that is proportional to 2. This effect of two body interactions on 7j was computed by
Batchelor [49]. Here, in contrast to the hydrodynamic interaction according to the Oseen tensor,
which describes the interaction of point particles, also the particle rotations have to be taken into
account for the determination of the particle interactions. When combined with Einstein’s result
the calculation in Ref.[49] gives

5
n:m(1+§¢+62¢). (32)

For polystyrene spheres this formula holds good up to a concentration ¢ < 0.10.
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Fig. 11: The top part is a sketch of the experiment. Parts a-d show different mixing states of the
two fluids at different positions along the pipe (see text) [50].

3.5 Elastic turbulence in polymeric solutions at small Re

Polymers with a relaxation time 7 in a local velocity gradient with a shear rate s cannot relax
to their equilibrium shape if the Weissenberg number s7 > 1 becomes much larger than one.
Polymers in a shear gradient tumble with a rather stochastic behavior of the mean extension
of the polymer [51]. Adequate shear rates can be achieved with laminar flow in micro chan-
nels. However, not only the shape of polymers is deformed in a shear flow. A dynamical shape
change and the tumbling influence also the local flow field around the polymer. This influence
will increase with the density of the polymers. With the density of the polymers also the hydro-
dynamic interaction (via the Oseen tensor) between the polymers increases, which affects also
their dynamics. The action of a shear rate on polymers and the back action of many polymers
on the flow field can cause turbulent flows and this already at rather small values of Reynolds
number Re = 0.01..1 [52, 50]. This phenomenon has been called elastic turbulence.

This elastic turbulence is also employed for mixing in micro channels [53, 50]. This is shown in
Fig. 11 where fluid mixing in a pipe is studied without and with polymers in the fluids. In this
experiment the Weissenberg number Wi = 6.7 was chosen. In the bottom part of Fig. 11(a)
it is demonstrated that two Newtonian fluids do not mix even after the curve N = 29. With
a finite amount of polymers both fluids, which are injected separately, mix with increasing
distance from the left end as can be seen in parts (b)-(d). The shape shots (b)-(d) are obtained
at N = 8,29,54. The efficiency of mixing with polymers is evident. A good theoretical
description of the mechanism is missing up to now.
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4 Nematic liquid crystals

Complex fluids are deformable materials which have, compared with simple fluids, further inner
degrees of freedom. In order to describe these additional degrees of freedom the equations
of motion for simple fluids must be generalized and coupled with further equations. For a
two component fluid mixture, such as e.g. water—alcohol, one needs for each component a
conservation law for mass. However, instead of two conservation laws for mass one may use a
conservation law for the whole mass and an equation for the concentration of one fraction. In
charged systems one has in addition a conservation law for the charge

pe+V-j9 =0 (33)

with the electrical current density j(©).

T>T // T<T, /
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Fig. 12: a) Disordered (isotropic) phase beyond the isotropic—nematic transition (T > T.) and
the phase with orientational order (nematic phase) below the nematic—isotropic phase transition
(T < T,). nis the director.

In systems that have many components conservation laws completely determine the set of hy-
drodynamical variables. For liquid crystals or superfluids there are one or more variable as-
sociated with broken symmetries. In a nematic liquid crystalline phase one has an additional
spontaneously broken rotational symmetry. Organic liquids may become anisotropic due to
an orientational ordering of non spherical molecules. The angle distribution of the anisotropic
molecules is uniform in the isotropic phase, cf. Fig. 12 a), but in the anisotropic nematic phase
the angle distribution exhibits a local maximum and this preferred direction is described by the
director field n(r,t). The director field has a £—symmetry (n = - n) and hence in the nematic
phase the rotational symmetry is broken. Since this symmetry is spontaneously broken (broken
during a phase transition) without application of external fields, it is called a spontaneously
broken symmetry. Similar as in simple fluids there is no positional order of the molecules in
nematic liquid crystals. In the absence of boundaries every spontaneously formed direction has
the same energy, as long as the orientation of the director n is everywhere the same. Therefore,
rigid rotations of the whole fluid volume don’t cost energy in the absence of boundaries.

Related to the orientational ordering of the molecules is the anisotropy of material properties.
The dielectric constant is different for a light wave with the wave vector k parallel to n (¢ = ¢|)
and perpendicular to n (¢ = ;). The same holds for the index of refraction, which is also
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different parallel to n (n = n)) and perpendicular to n (n = n,). Due to the anisotropy,
An = n — ny, nematic materials are birefringent.

Only spatially varying deformations of the director field n(r) lead to a change (increase) of the
free energy. Therefore spatial deformations tend to relax to the homogeneous director orienta-
tion and if the wavelength of the deformations becomes larger and larger, the relaxation time
increases too. Therefore, the deformation of the director field is an additional hydrodynamic
mode in nematic liquid crystals and the equations must be generalized accordingly: To any
spontaneously broken continuous symmetry, there is a symmetry variable behaving hydrody-
namically, w(k — 0) — 0.

splay, K bend, K twist, K 5
VN
— \ \ \\ \ \ . . .
- A ] ] ]
/////// | ], | — — —

Fig. 13: The three fundamental distortions of the nematic director field n(r,t): a) splay, b)
bend and c) twist deformation.

Changes of the director field on; are not conserved. The deformations of the director field are
elastic and any deformation can be decomposed in three fundamental deformations, the splay,
the bend and the twist deformation, cf. Fig. 13. The energy stored in each deformation is
proportional to an elastic constant: /K the splay elastic constant, K5 the twist elastic constant
and the bend elastic constant K3. The Frank free energy of the director deformations is

F = %/d?’r (K1 (V-n)?+K;[n-(Vxn)’+ K; nx (Vxn)]>—ce.(n-E)?) (34)

with ¢, = ¢ — &1 > 0. The last contribution describes the coupling to an applied electric
field. For ¢, > 0 a parallel alignment between the director field and the electric field reduces
the free energy. If a magnetic field is applied, the free energy contribution —gg,(n - E)? has
to be replaced by —x,(n - H)2. A detailed derivation of this free energy for the distortions of
the director field and the respective equation of motion for n(r,¢) may be found in the books
[54, 31, 55].

The orientation of the director close to a container boundary depends on the surface prepara-
tion. There are several surface preparation techniques which induce close to the boundary an
orientation of n either parallel or perpendicular or with some oblique angle with respect to the
container boundary. Due to the elastic energy of orientational deformations of the director field
the orientation of n at the boundaries is transmitted to the bulk. An example is shown for a
sandwich geometry in Fig. 14a) with the orientation of the director parallel to the wall and with
the same orientation at both walls. The result is a homogeneous orientation of n in the bulk. If
an electric field is applied, as indicated in Fig. 14b), and if the material has a positive dielectric
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anisotropy, €, > 0, the energy is decreased when n and E become parallel. This orientation
effect of the applied electric field competes with the boundary induced director orientation. As
long as the effect is weaker as the boundary orientation effect, n stays parallel to the wall.
However, the electric field can distort the director in the bulk. Since in this configuration the
electric field is perpendicular to the initial orientation, a critical electrical field is required. This
field driven orientation transition in the bulk is the so-called Fredericks transition. If the electric
field is switched off, the director relaxes back to the initial configuration. Since the nematic
liquid crystal is birefringent its optical properties can be changed by switching on and off by an
electric field or a voltage between the two bounding plates. The initial configuration in an LCD
is a twisted state, but the LCD is switched by the same mechanism.

AE
o - -
—_ — — — VA A
- ////
a) b)

Fig. 14: a) Homogeneous director orientation induced by the boundary orientation. b) The
director is distorted in the bulk by application of an electric field (Fredericks transition).

Viscosity in a uniaxial liquid - anisotropic viscosity — Due to the orientational order the
viscosity depends on the orientation of the director n with respect to the shear plane. As we
have seen the orientation of the director can be enforced by application of a magnetic or electric
field. Hence we will assume that the director is strongly aligned along the 3 = z—direction, cf.
Fig. 15. In this case the expressions for the linear shear stresses are

’ ’ 0U1 4 0u2
g = g = _— _—
12 21 =13 Ory | Ox1)
8uQ 8u3 8u2 8u3
/ — _— _— ! — — _— 35
T3 = g - +m Oy’ T2 = T2y + 14 Dy’ (35)
8U3 Ouy 8U3 8“1

I — R - 36
031 T4 8I’1 + 12 8I’3 ) 013 m axl + N4 a.’L'g ) ( )

The four viscosities 71, 72, , 73 and 74 constitute four of five independent viscosities in an uni-
axial system. Note that the coefficient of Juy/Jz3 in the equation of o), and the coefficient
of Jus /0, in the equation of o}, are (like the corresponding coefficients in the last equation)
identical. Their identity, which constitutes the only surprise of the three equations above, is
an example of an Onsager relation, and readers who are unfamiliar with Onsager relations and
with the subject of irreversible thermodynamics in which they arise, should take it on trust or
should read in the books of deGennes/Prost [55], of Landau [54], of Chaikin/Lubensky [31] or
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the original literature about nematic liquid crystals. These five viscosities have been measured
at least for two substances.

X0
- R

Fig. 15: Measuring different shear viscosities for different orientations of the nematic director
with respect to the shear plane.

If there are deformations of the director field, their relaxations excite a flow and any flow influ-
ences the orientation of the director field. Therefore in the equation for the momentum conser-
vation there are contributions due to the director deformation and in the dynamic equation for
the director n the shear fields 0;u; occur. Due to the many material parameters in nematics the
equations look much more complicated than the Navier—Stokes equation, but they are solvable
and all the material parameters may be measured. The systematic derivation of the equations
for nematodynamics is described in [55, 7, 54]. Since the director field is a local unit vector
(n? = 1), the dynamics of the director field is restricted to rotations, therefore 1; n; = 0.
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Fig. 16: Flow alignment of the director field in the center of the plane shear cell.

The mean orientation of the molecules close to container boundaries depends on the prepara-
tion of the surface. Assume that the surfaces of the shear cell are coated in that way that the
molecules align parallel to the container boundaries. If the upper plate is moved with some
velocity v the director is still undistorted close to the upper and the lower plate, but in the center
of the shear cell the director field becomes distorted and non-parallel to the bounding walls as
indicated in Fig. 16. Vesicles show a similar inclined flow alignment in shear flow [25]. Sus-
pended non spherical objects may be oriented in shear fields by similar mechanisms. About
flow effects in further liquid crystal phases see [55, 7].
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S Polymer liquids

The viscosities of polymer liquids show both elastic and viscous behavior. Nematic liquid crys-
tals are elastic with respect to their orientational order. The elasticity of polymer solutions is
due to the entropic elasticity of the polymers which resembles the elasticity of a solid with re-
spect to positional deformations. On a short time scale (high frequencies) the elastic behavior is
pronounced and on a long time scale (small frequencies) the viscous behavior. The notion high
and low frequency depends on the material and its internal relaxations. With increasing excita-
tion frequencies any material exhibits elastic behavior beyond some critical frequency or below
a certain time scale. In polymer liquids the relaxation of polymers may be that slow that the
slow dynamics of individual polymers may interfere with the slow macroscopic hydrodynamic
modes. In the regime where both time scales overlap viscoelasticity arises.

A hydrodynamic theory of simple or multicomponent fluids relies on conservations laws. Sys-
tems with spontaneously broken symmetries take into account the dynamical equations for
broken—symmetry hydrodynamic variables. In both cases the fast dynamics at molecular level
adjusts immediately to the far slower hydrodynamic motion. For viscoelastic fluids one has to
couple the slow hydrodynamic modes (slow in terms of the dynamics at the molecular level) to
appropriate slow modes of the microscopic dynamics. This field of viscoelastic fluids is less
mature than hydrodynamic theories for simple fluids and for liquids with spontaneously broken
symmetries.

Various models for viscoelastic fluids exist, but a general theory is not available at present.
Only for small deformations of the viscoelastic fluids there is with the linear Maxwell model a
reasonable model available.

5.1 Linear Viscoelasticity - Maxwell Model

Let us consider a symmetric deformation field
1

with w; = r; — r/ being the difference between r; the final and 7/} the initial position of a fluid
element. This symmetric deformation tensor does not include simple rotations. For small de-
formations, which we will only consider in this section, the field F;; is related to the stress
tensor via Hooke’s law. However, after a certain time polymers or some particle arrangements
relax to a new equilibrium configuration and the elastic stress contribution relaxes too. This is
different to a solid where the stress only relaxes when all the atoms or molecules relax to their
fixed equilibrium positions.

Therefore in a viscoelastic liquid one has the shear stress and a relaxing elastic stress. This
suggests the following equation of motion for the stress tensor in the case of small fluid defor-
mations

0 .
oij + M 570 = Mis - (38)

It is the so—called Maxwell model for linear viscoelastic fluids. For simplicity we have only one
relaxation constant \;. This is a first order inhomogeneous and linear differential equation for
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the stress tensor, which may be easily integrated

5y = e { / (_Al qut’/hdt') ; oi]} | (39)

1

This solution of the Maxwell model shows a memory behavior that is typical for a viscoelastic
fluid. Especially the memory effects due to elastic behavior make a continuum formulation of
the viscoelastic fluids intricate.

With a periodic shear field ¥ = w7, cos(wt) and the relation o (t) = vG(t) used together with
Eq. (38), the expressions for the loss G'(t) and the storage modulus G”(¢) read

17)\10.)2 1" nw
G'(w) = —5— d G = ——. 40
W=1ree = W)= “0)
From measurements with oscillatory shear one can determine the two unknown parameters, the
shear viscosity 77 and the relaxation \; in the Maxwell model.

5.2 Nonlinear deformations of viscoelastic fluids

Most of the flow problems of viscoelastic fluids cannot be described by the linear Maxwell
model, c.f. Eq. (38). In a flow of a Newtonian fluid the temporal change of a field has two
contributions described by the substantial derivative: d/dt = 0/0t + (u - V). We assume here
at some initial time the distance |dr| = |r; — r2| between two fluid elements. At some time
later the positions of the fluid elements might have changed to dr’ = r} — r/, and the distance
is very likely not the same anymore |0r’| # |dr|. This does not have any consequence for a
Newtonian fluid, only energy has been dissipated during the motion relative to each other. In a
viscoelastic fluid such a change of the distance between neighboring fluid elements means an
elastic deformation that contributes to the stress tensor. The time derivative of the stress tensor
in viscoelastic fluids must be changed accordingly.

It is known from classical mechanics that time derivatives of vector or tensor components in
a moving frame of reference obey special transformation rules. In continuum mechanics there
are two common formulations of the time derivative for the stress tensor (see e.g. [26])

) D
o — D o' =00+ (u-V)oy; —0oj; - Vu — (Vu)'- o’ 41)
with (Vu);; = 0;u;. Here ¢’ denotes the time derivative in the local frame of reference of a fluid
element, where the partial derivatives on the right hand side refer to space and time coordinates
in a fixed frame of reference. This is known as the (upper) convected derivative. Alternatively
one has with

A

D
& — oy o' =00’ + (u-V)oj; — ol - (V) = (Vu) - o’ (42)

also the (lower) convected derivative. In the traditional literature the upper convected deriva-
tive is preferred and this is justified by the so—called material frame independence. Recently,
however, it was argued that the lower convected is the appropriate one, because it provides the
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appropriate limit of an elastic solid [56].

With this definition one obtains with (38) either the upper or lower convected Maxwell model
D
"+ A= =n5. 43

This model has been applied to various situations, but with the continuum formulation of the
equations of motion of viscoelastic fluids there is besides the appropriate choice of the time
derivative the question about the appropriate macroscopic description of the polymer defor-
mations. In other words, what are appropriate additional contributions on the right hand side
of Eq. (43) in order to describe for instance the viscoelasticity of flow in polymer solutions?
There are a number of models used in the literature, but a heuristic approach with a similar
fundamental importance as the Navier—Stokes equation for Newtonian fluids, is not available
yet.

5.3 Example: Pipeflow for a shear thinning fluid

In a number of complex fluids one observes shear thinning behavior, i.e. the viscosity decreases
with increasing shear rate. There is no general theory for viscoelastic fluids, but there are a
number models for special flow situations.

For instance, for many viscoelastic fluids a shear-rate—dependence of the viscosity occurs when
the shear rate is high enough to disturb the equilibrium distribution of the inter particle spacing
and the particles cannot relax fast enough. The rate at which the particle equilibrium is regained
is controlled by the particle diffusivity, given in dilute solution by

kgT
= . 44
0 6mnR “4)
The time ¢, for a particle to diffuse a distance equal to its Radius R is therefore
R*  6mnR3
tp~ — = . 45
"Dy kg 45)

The shear rate has the dimension 1/time, therefore one can define a dimensionless shear rate,
or Peclet number, as

nyR?

Pe =
T kaT

x tp. (46)

With 75 the relaxation time of polymers in solution, a polymer in a large enough shear field
with

TR > 1 47)

cannot adjust to its equilibrium coiled shape as well. Hence shear thinning may also occur in
polymer solutions.

In the range of large shear rates, this shear rate dependent viscosity may be described by an
approximate “power-law” expression

n(y) = mi"! (48)
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with n from the interval n = 0.15...0.8. Obviously, this shear rate dependent viscosity may
change the flow, e.g. through a pipe.

Stationary flows of shear rate dependent complex fluids, such as a stationary pipe flow, may be
described by the Navier-Stokes equation with a shear rate dependent viscosity. The stationary
form of equation (65) for a shear rate dependent viscosity and incompressibility is

0= —04,p+ (0s,n) (Op,u; + Ou,u) + n@ikui ) (49)

With the axis of the pipe along the z-axis the velocity in the pipe is u(r) = (0,0, u,(r)). With
the Laplacian and the gradient in cylindrical coordinates (only the r dependent part is shown)
Au, = 19,(rd,u.) and V f(r) = &, 0, f (r) one obtains

po—p. 1d du,
L rdr (7“77 dr ) 0)

with the pressure drop (py — pr.) along the pipe of length L. With 4 = 0,u. and 7 from (48) an
integration with respect to r yields

du.\"  (po—p)r  C
= == 4L == 51
m(m) oL 7 b
Since the shear rate on the axis of the pipe at = 0 is finite or zero (symmetry) the constant C
must vanish. With 7 = W one has
du, \" r
= Tp— . 52
m ( dr ) TR R (52)
Integration of this equation gives the velocity-profile
1
TR )1/ nooplts c
L= . 53
“ (mR 1+ % e (53)

Since the flow velocity vanishes at the pipe wall u,(r = R) = 0 (stick boundary condition) it
follows with the constant C5 from this condition

TR \V/* R 7wt
L= (1 1—(-) . 54
" (mR) 1414 { R ] S
One should remember that the power-law behavior of the viscosity is an approximation that
holds only for large enough shear rates (therefore close to the pipe boundary).

In the limit n — 0 the flow velocity U(r) = u,(r)/(u.(r)) becomes a constant besides a small
range close to the wall, where the shear rate diverges Lu.(r ~ R) = —(7z/m)"/".

In addition the volume rate () going through the pipe is of high practical relevance

27 R
Q = / dgp/ u,(r) rdr dp
0 0
1 3
= ooprr [ w Da(L) = T (Tm)
= ettt [ L) = 5 ()

_ TR (= p)R) T (55)
o +3 2mL '
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Fig. 17: The velocity U = u.(r)/{u,(r)) normalized to the average velocity (u.(r)) is shown
for the Newtonian fluidn = 1, forn = 1/2 andn = 1/7.

For n = 1 and m = 7 this reduces to the Hagen-Poiseuille equation for laminar flow of New-
tonian fluids through a pipe. Rather interesting is also ()m/7g, which is independent of the
pressure drop for Newtonian fluids whereas for non-Newtonian fluids one has

Qm

o) (56)

For large pressure drops the volume rate for non-Newtonian fluids may be much higher than
for Newtonian fluids. However, this conclusion holds only as long as the fluid is laminar and
not turbulent. In the turbulent regime the so called turbulent drag reduction occurs, i.e. the
mean flow velocity through pipes of liquid with polymer additives is higher than with without
polymer additives. This effect still not understood in a satisfying manner.

Appendix

A Equations of motion for Newtonian fluids

The dynamics of a Newtonian fluid is described by a velocity field u(r, ), by the mass density
p(r, t) the temperature field 7'(r, ¢) and the pressure field p(r, t).
According to Newton’s law there are three equations for the momentum density g(r,t) =

p(r,t)u(r, )
891‘
ot

Here the right hand side includes volume forces which are the hydrostatic pressure gradient
Vip, the divergence of the viscous stress tensor o;; and an external force per unit volume f;. f;
may be due to an electric field in charged fluids or due to gravitation.

+(u-V)g = —Vip+ Vol +pfl. (57)

The interactions of a fluid element with its neighborhood are expressed in terms of a stress tensor
o0;; that includes both the pressure and the viscous stress. Consider a small volume element as



Hydrodynamics C2.27

Fig. 18: The force per area acting onto the plane perpendicular to the i-axis is f; =
(0i1, 042, 043). 04 is the normal component and o;; (i # j) are the force densities in the planes.

shown in Fig. 18, with forces per area f; acting on its surfaces. These forces form a stress tensor
o;; with f; = (041, 042, 0;3) and integrating the forces over the whole surface gives via Gauss’s
integral theorem

f deO‘Z‘j = / dV 8]‘0'”‘ =AV 8]' Oij- (58)
ov AV

The stress o;; due to the velocity differences between neighboring fluid elements can be ob-
tained by separating the isotropic stress contribution, —pd;;, from the total stress 0;;. An expan-
sion of the viscous part of the stress tensor, ogj, depends only on two viscosities and is of the
following form !

I'The stress tensor of a fluid, a;j is only different from zero, if viscous friction occurs in a fluid. This is the
case for real fluids and non—vanishing velocity gradients, when different parts of the fluid move with different
velocities. An expansion of the stress tensor up to the leading order of the gradients is

ol = ikt Veur (39

whereby 7;;; is the fourth rank viscosity tensor. This fourth rank tensor is the most general transformation be-
tween the two second rank tensors a;j and Vu; . One may check that the entropy production due to the viscous
dissipation is proportional to 1;;1;V;u;Viu; and therefore the viscosity tensor must be invariant against the re-
placement kI — ij. o;; must also vanish in the case of rigid rotation of the fluid (there is no viscous friction
related). Therefore o/ j includes only symmetric combinations of the derivatives Vu; + V,;u, (the antisymmetric
combinations describe rotations). Since agj must be symmetric the following identities must hold

Nijhl = Mili; = Njikl = Nijik = Njilk- (60)
There are only two combinations of the Kronecker d;;
040kt and Oik0j1 + 040k (61)
which fulfill this symmetry. Therefore the viscosity tensor includes two independent coefficients

Nijkt = N30k + C(Iindji 4 dudjn)- (62)
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2
ol =1 (viuj + Vju; — §5ij(vu)) + (0 Vu. (63)

1 is the shear viscosity and ¢ the volume viscosity. The full stress tensor 0;; = —pd;; + 0}
includes the pressure. With this form of the stress tensor agj Eq. (57) is the so-called Navier—
Stokes equation.

For excitation frequencies far below that of sound waves most of the fluids behave essentially
as incompressible fluids

V-u(r,t)=0. (condition for incompressibility) (64)
In this case the equation for the momentum density simplifies to

8ui ’
p (E + ujajui) = —0ip+ 003 + pfi (65)

and the stress tensor is given by
ol = Mij » (66)
with the rate—of—strain tensor
Yij = Oiu; + 0ju; . (67)
In vectorial notation the Egs. (65) take the form
pou+ p(u-Viu=—-Vp + pg +nViu , (68)

g being the gravitational field.

Symmetry considerations, the laws of thermodynamics and an expansion of the transport laws
lead to this form of the equations of motion for simple fluids with three positive phenomeno-
logical parameters, 7, ( and x, that may be measured for each fluid. There are three further
parameters in the thermodynamic equations of state relating 7" with € and p with p.

For the so-called Boussinesq-approximation the material parameters are assumed to be inde-
pendent of the temperature, only in front of the gravitational field the variation of the density p
with the temperature is taken into account.

p=po|l —a(T —Tp) +O((T - Tp)*) (69)

Here « is the thermal expansion coefficient and 7( the mean temperature of the fluid layer.
Energy conservation and the second law of thermodynamics and the Boussinesq-approximation
give the equation for the temperature distribution [1]

T + (v-V)T = kAT (70)

with the thermal diffusivity «.

Here we restrict our consideration to two spatial dimensions. z is the vertical and x the hori-
zontal coordinate and the y-coordinate we discard here for reasons of simplicity. In two spatial
dimensions the velocity may be expressed by the curl of the velocity potential W:
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u, = 0.V, (1)
u, = —0,V. (72)

With a few straight forward manipulations the Navier-Stokes equations take in two dimension
the following form:

AV + (0,90, — 0,V0,)AV = —gad,T + vA*V | (73)
v = p% is the kinematic viscosity. The heat transport equation in terms of the potential W is
oT + (0,90, — 0, V0,)T = kAT . (74)

With the height d of the fluid layer we introduce also dimensionless units

length X =X -d

. 7 K
velocity u u/ a4
pressure p=p L
temperature T =17 0;23
time t =t -4

2|

The equations of motion include the dimensionless Prandtl number P
p="Z (75)
K

and the dimensionless Rayleigh number

3
R=T,_T,= 9%

AT. (76)
KV

The rescaled equations include with the Prandtl number only one material constant. For water
the Prandtl number is P = 7 and for olive oil one has P ~ 950. The Rayleigh number is the
control parameter of the system. For the remaining part of this appendix all calculations are
done in rescaled units but for reasons of simplicity we discard the primes, i.e. for comparison
with experimental data the results have to be transformed to the real variables. The rescaled
equations of motion are

AV + (0,90, — 0,¥0,)AV = —PO,T + PA*V (77
OT + (0,90, — 0,V0,)T = AT. (78)

For values of the Prandtl number such as for olive oil in the equations of motion one may choose
the limit P — oo, i.e. in this case the left part of Eq. (77) may be neglected. In this limit the

two equations of motion are
AU =9, T (79)

and
oT + (0.V0, — 0,V0,)T = AT. (80)
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For small temperature differences we expect a linear temperature profile and this may be sepa-
rated as in the following expression

T(t,x,z)=—Rz+T,+0(tx,z). (81)
With this modification the equations of motion are

AV + (0,90, — 0,¥0.)AV = —P9,0 + PA*V (82)
9,0 + (0,99, — 0,¥9,)0 = AO — RO, V. (83)

Boundary conditions. Fluid motion takes always place in finite systems with boundaries and
therefore the boundary conditions for both fields must be specified. We assume that the top and
bottom plate are parallel to the z — y plane and located in scaled units at z = 1 and z = 0.
The temperature at the top plate is denoted with 7} and at the bottom plate with 75. At the
boundaries we also assume ideal heat conductivity. In this case boundary condition for the
temperature field are

T(x,z)=T, at z=1 and T(x,z)=T, at z=0. (84)

The component of the velocity that is vertical to the boundary has to vanish at the boundary.
This is expressed by

v(r,2) =0 = 0,¥(x,2) =0 at z=0,1. (85)

The motion of the fluid parallel to the boundaries vanishes at the boundaries due to viscous
friction:
ve(x,2) =0 = 0,¥(z,2) =0 at z=0,1. (86)

Velocity boundary conditions of this type are called rigid boundary conditions. For analytical
calculations often free slip boundary conditions are more appropriate. In this case the veloc-
ity parallel to the boundaries does not experience friction. l.e. there are no shear forces at
boundaries and the non diagonal elements of the stress tensor

Ogz = n(azvx + aﬂcvz)

vanish. If the continuity equation is taken into account one obtains the following boundary
condition for the velocity potential

02V (z,2) =0 at z=0,1. (87)

For the velocity potential one has the freedom to choose an additive constant such, that the
velocity potential vanishes at the boundary.

B Derivation of the Oseen—Tensor

In this section we derive in the limit of a the Reynolds—number Re < 1 from Stokes equation
(17),

nAu’ — Vp' +f =0, (88)
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the Oseen—Tensor, describing the hydrodynamic interaction of moving particles. This is a linear

partial differential equation and may be solved by Fourier-transformation of u’(r, t), p/(r, t) and
f(r,t):

u/(r) — /%u/(k)eik'r,
Vo) = [ Gsroee.
f(r) = / (3753 f(k)e™™ . (89)

With this ansatz the linear Stokes equation (88) and the incompressibility condition take the
form

nk’u'(k) +ikp'(k) = f(k),
k-u'(k) = 0. (90)

Multiplication of equation (88) with wave number k leads to

—ink?’k - u'(k) +k-kp/(k) = —ik-f(k)
=0
k-f

and this gives together with (90)

/ o 1 1
W) = g (1 - kk) f(k) 92)

for the perturbed velocity field u’ as function of the force field f (kk describes a dyadic product).
In real space one has a nonlocal relation between the flow perturbation and the force field

w(r) = / (CQlel){S%(l—fd}) (k)

- [ { / %% (1~ k) <>} £(r)

_ / Pr Q1) - £(r) | (93)

with unit matrix 1 and the explicit from of the integral kernel

Pk 1 N
Q(r):/W@@—kk)e . (94)

The relation between u’ and f is nonlocal but linear. For the evaluation of the integral we use
the isotropy of space and therefore the ansatz

Qaﬁ = A(Sag + B?%fg . (95)
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The trace of the matrix €2 is

1 .
Tr(Q) = Qu=3A+B= /d3k — (3= 1)l

(2m)3 k2
1 8t [  sin(kr) 1
— 20 dk = . 96
(2m)3 777"/0 k 2 6)

N J/
g

/2

With tensor contraction of 2

PP = AQuss
= APobupis + Bia (Fais) g

d3k 1 e . 5 2 ik-r
- A+B_/(2 )* k2 [“(k‘r)]e
ddeOSH 1_COS 9) ikr cos @
2 sin kr
- dk —
(27T)277 {/0 r k
—/ dk dcos§ —— 02 zkrcose}
0 (i )

1 {7T+2ia (smkr)oo}
= —+ =0k
(2m)%n | r 3 k 0

I'Hospital 1 21 ( —/{:7’2 sin /{:T)

drgr — (27) 2k
e
—0
1
= ) 97
dmnr ©7)
one obtains a second equation for the determination of the two constants A and B.:
3A+ B = 1
- 27”77" — A=B= :
A+ B= 47rnr 8mnr
The final form of the matrix .
Q 1+471r) . 98
(1) = g (14 70) ©8)

1s the so-called Oseen—Tensor.
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