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1 Introduction

Societal requests for environment prediction and protection, the durability of chemicals, the
vision of new applications in information technology such as autonomous robots, biodiagnos-
tic systems, or faster information processing, as well as demands on the sustainable and ef-
ficient use of resources and energies translate in a huge demand on modeling and simulating
properties, chemical reactions, synthesis and growth processes of emergent quantum materials
that is based on understanding and is predictive. Modern solid state materials have a multi-
plicity of novel properties exhibiting for example a rapid (magnetic, ferroelectric, supercon-
ducting) phase response to external stimuli such as light, pressure, magnetic field or electri-
cal conductivity, so that manifold uses are possible even today or can be expected for the fu-
ture. Materials of this sort are often multicomponent systems such as magnetic tunneljunctions
(e.g. NiMnSb|MgO|Co,MnSn), high-temperature superconductors (e.g. HgBayCayCuyOg), or
perovskite-type materials with complex magnetic structures.

The Challenge
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Fig. 1: Although the principles of a MOSFET transistor depends on the electronic properties
of doped Si, the functionality, the heat load, the leakage current or the clock speed depend on
the quality of interfaces, on the growth and crystallinity of the oxides, the microstructure of the
strain and many other factors of very different length scales.

The functionality of macroscopic systems of technological relevance such as for example a
chip or a central processing unit (CPU) shown in Fig. 1 depends not only on the distribution
of the electrons and their response to external changes on a microscopic scale, but also on
the atomic arrangements, the formation of defects, precipitates, inclusions, clusters, interfaces,
interface roughness, alloying, textures, and other details of the microstructure taking place on
a mesoscopic scale. Thus, the envisaged functionality depends typically on a large number of
distinct atomic scale processes, their interdependence and involves a huge number of atoms.
This calls for a multiscale modeling, where corresponding theories and their results need to be
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Fig. 2: Left figure: Schematic presentation of the time and length scales relevant for most
material science applications. The elementary molecular processes, which rule the behavior of
a system, take place in the so-called ” quantum regime” governing the dynamics of the electrons.
Their interplay are the origin of the functionalities of materials, which develop over meso- and
macroscopic length and time scales [1]. Right figure: It is not possible to treat all systems with
an equal degree of quantum mechanics. Few electron systems, or models extracted to treat the
most relevant interactions of many electrons may be treated with arbitrary accuracy, in general
this is not possible. Using density functional theory (DFT) the dynamics of systems with a few
hundreds of atoms and 10-20 ps is possible, while large molecular systems with electron gaps
between homo- and lumo orbitals of a few thousand atoms may be treated with order-N methods.
The glass formation, amorphization processes or biological systems involving millions of atoms
may be treated with force fields, fitted onto DFT calculations.

linked appropriately. For each regime of length and time scale, the microscopic, mesoscopic
and macroscopic one, a number of methodologies are well established and are being developed.

Particularly interesting is the boundary where the microscopic regime meets the mesoscopic
one, i.e. when laws of quantum mechanics governing the the many-electron problem on the
microscale meets the statistical physics of the many degrees of freedom of many atoms and
spins on the mesoscale. Obviously, then model building becomes important and essential as
it is basically impossible and not necessary to treat all degrees of freedom with with quantum
mechanical accuracy and time scale. On the mesoscale many the time scale and relevance of
process are determined by activation barriers, involving processes which need to be treated in-
volving many atoms. One typically deals with rare events, where the time between consecutive
events can be orders of magnitude large than the actual event itself. To study this scenario by
model building can mean to find the set of relevant processes which are then investigated with
microscopic theories, then mapped to classical many-body potential describing a classical force
field or a lattice gas model, which is then simulated with a molecular dynamics or an equi-
librium or kinetic Monte Carlo method. The evolution of the system at mesoscopic time scale
may provide than answers whether the original assumption of relevant elementary processes are
consistent with the expected results.

The quest for predictive materials science modeling excludes the use of empirical potentials or
fitted force fields on both the microscopic and mesoscopic scale. During the past ten years,
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first-principles calculations based on the density-functional theory (DFT) [2] in the local (spin-)
density approximation (LDA) or in the generalized gradient approximation (GGA) (for a review
see Ref. [3, 4, 5]) emerged as the most powerful framework to respond to the demands men-
tioned above on a microscopic level. By first-principles (or in Latin: ab initio), is meant, that the
parameters of the theory are fixed by the basic assumptions and equations of quantum mechanics
and, for our discussion, density-functional theory. The overwhelming success of the density-
functional theory for the description of the ground-state properties of large material classes
including insulators, semiconductors, semimetals, half-metals, simple metals, transition-metals
and rare-earths in bulk, at surfaces and as nanostructures makes it the unchallenged foundation
of any modern electronic structure theory. The wide applicability combined with the predictive
power of the approach turned it to the “standard model” in material science. In principle, the
only input needed for the theory are the atomic numbers of the constituent atoms of a system,
all other properties follow as a direct consequence of the density-functional equations.

In practice, the definition has to be modified since one is always limited to some set of model
systems. These limitations might include system size, crystal structure, neglect of disorder, low
or zero temperature, the time-scale or any number of other restrictions on the “phase space” to
probe. While some of these restrictions and limitations are burdensome, the goal of calculations
is not merely to obtain numbers, but rather insight. By focusing on well-defined, but restricted
models, by working on chemical trends rather than on isolated case studies, by investigating
systems in hypothetical non-equilibrium structures or follow simulations in idealized environ-
ments, which may not be realized in experiments, one is able to develop different levels of
understanding of the system in question and may hopefully learn which aspects of the problem
are important.

A particularly rich arsenal of assets for material design and tailoring of material properties is
provided when the surface of materials is provided as templates for fabrication. Nanostructures
down to the atomic scale made of single atoms or of small molecules can be manufactured
to form chains and clusters or structures with specific electronic properties by employing the
tip of scanning tunneling microscope (STM) or relying on the instruments of self-assembly.
Nanostructured thin film systems are decisive functional units in electronic devices, sensors and
in biological systems. The existence of particular surface and interface alloys and the complex
interplay between morphological, structural, magnetic and electronic features in nanostructured
systems stand as examples for a wide field of phenomena which are largely not understood,
while offering exceptional technological opportunities at the same time.

The simulation of surfaces provides a good case study for the general aspect of modern ma-
terials science. Also here many, may be most, interesting physical phenomena take place at
meso- or macroscopic length scales and over times of seconds or even minutes. For example,
surface reconstructions sometimes evolve over a time period of seconds or even minutes, and
the self-organization of nano-scale structures, such as for example quantum dots, also occurs
over macroscopic times. Ab initio calculations (electronic structure, total energy calculations as
well as molecular dynamics (MD) simulations) are concerned with length scales of a chemical
bond and with times determined by interatomic force constants and the corresponding atomic
vibrations. To bridge the gap from the atomistic processes to macroscopic dimensions is an
important aspect which is covered in this spring school.

In this chapter we aim at discussing the nitty-gritty details of ab initio calculations, the interplay
of the choice of the electronic structure methods, the structural models, the chemical nature of
the participating elements and the microscopic processes in question for the particular example
of surface science. The results of such density functional theory (DFT) calculations provide
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Fig. 3: Example: structural optimization of Mn and Cu surface atoms in a Cu(100)c(2 x 2)Mn
surface alloy. Right figure: Schematic representation of the substitutional surface alloy film of
one monolayer thickness (e indicates the Mn atoms) grown as overlayer on a fcc (001 ) substrate
(o). Left figure: Total energy per Mn atom vs. the buckling relaxation Az, of Mn in relative
units with respect to the theoretical interlayer spacing of Cu, dc, = 1.76 A. The open squares
represent the nonmagnetic and the solid diamonds the ferromagnetic results. The solid lines
(for Cu atoms fixed at the ideally terminated positions Azc, = 0) and dashed line (the top Cu
atom is always at its optimally relaxed position) are the fitting polynomials. The upper (lower)
inset shows the contour plot of the nonmagnetic (ferromagnetic) total energy with respect to
the buckling of Mn and Cu. The minimum, which determines the optimal structure is found in
the inner circle. The contour interval is 1 meV. The energy of the nonmagnetic solution at 0%
relaxation was chosen as the origin of the total energy scale (taken from Ref. [6]).

then, for example, detailed input to the kinetic Monte Carlo (KMC) methodh with which one
is able to cope with the issue of crystal growth and the evolution of meso- and macroscopic
kinetic growth shapes, which may differ significantly from equilibrium shapes as determined
by the minimum of the free energy.

This chapter starts with a quick overview to the Kohn-Sham ansatz outlining the general aspects
of the first-principles methodology followed by an introduction to the relevant choice of the ge-
ometrical models to simulate surfaces, and the choice of the appropriate electronic structure
method. As an example, two electronic structure methods are introduced at a greater depth,
which are the full-potential linearized augmented plane wave (FLAPW)-like methods to solve
the Kohn-Sham equation for a periodic solid and surfaces, and the Korringa, Kohn and Ros-
tocker (KKR) Green-function method as an example of an Green-function method to cope with
the surface geometry.

2 Kohn-Sham Approach in a Nutshell

2.1 Total Energy and Force

In the density-functional theory, the total energy E[{R}, {¢;}] of a system of interacting atoms
and electrons is a functional of the atomic positions {R} and the electron density n(r). The
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electron density can be expressed in terms of M occupied single-particle orbitals ;(r):

M

n(r) =Y |wir) P, (1)

i(occ)

where 7 labels the states. If the total energy functional E[{R}, {1;}] is minimized with respect
to the electronic degrees of freedom {1; }, we recover the Born-Oppenheimer surface ®[{R}]:

®[{R}] = min E[{R}. {1:}] @

on which the atoms move. The derivative of ®[{R}| with respect to the atomic position R*
gives the force F#,

F/' = —Vg.®[{R}] (3)

exerted on the atom u, which ties electronic structure to structural optimization and molecular
dynamics calculations. The energy functional is divided into several terms:

E{R}, {vi}] = Exan{¢i}] + Bul{i}] + Exe[{thi}] + Eeca{R}, {ti}] + Eicn {R}],  (4)

where E};, is the kinetic energy of non-interacting electrons, E is the Hartree energy, i.e. the
classical Coulomb energy of the electrons, and F,. is the exchange-correlation energy which
contains terms coming from the Pauli principle (exchange hole), from correlations due to the
repulsive Coulombic electron-electron interaction and from the contribution to the kinetic en-
ergy of interacting electrons [4]. E.g. In the local density approximation Ei.[n] is written in the
form Ey.[n] = [drn(r)e(n(r)). Then, E. is the interaction energy of the electrons with
the ions, e.g. described by the 1/r potential as in all-electron methods or by pseudo-potentials,
and Ej,, is the classical Coulomb energy of the ions.

2.2 The Kohn-Sham Equations

The single-particle wavefunctions 1);(r) are obtained by minimization of the total energy with
respect to the wavefunctions subject to the normalization constraint

/dr | i(r) [*= 1. 5)

This leads to the Kohn-Sham equations[7], an eigenvalue problem for the eigenfunctions v;(r)
and the eigenvalues ¢;:

Hin]¢;[n] = &[n] ¥i[n], (6)

where all quantities depend on the electron density n. According to the form of the total energy
Eq.(4), the Hamiltonian H is a sum of corresponding terms and the eigenvalue problem is
written in the form:

(To + Vext + VH + ch) Yi(r) = & Yi(r) (N
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In the real space representation the individual terms are the following:

A h?
kinetic energy : T = — o JANS (8)
, e2 ZH
external-potential : Vet ({R}, 1) = Z m 9)
m
Hartree potential : AVi(r) = 4me*n(r) (10)
xc-potential (LDA) : Vie(r) = 5n5(r) /dr n(r) ex.(n(r)) (11)

In a pseudo-potential approach Vit 18 replaced for each atom p by a pseudo-potential %S. The
terms V;[n] and Vi.[n] are local potentials and explicitly density dependent. Thus, the Hamil-
tonian H[n] and the wavefunctions v;([n],r) are also dependent on the electron density n(r).
Together with the expression Eq.(1) a self-consistency problem to obtain the charge density
n(r) is established, which is solved iteratively until the input density (used to define the po-
tential terms in the Hamiltonian) is equal to the output density within the required accuracy.
The number of self-consistency iterations N, is considerably reduced applying Quasi-Newton
methods [8].

The external potential V,,[{R}] depends explicitly on the positions {R} of all atoms, which
change at certain steps to optimize the atomic structure or every time-step of a molecular dy-
namics algorithm. Thus, the Hamiltonian H[{R}] and the wavefunctions ;({R},r) are also
dependent on the atomic positions {R}. After the self-consistency condition for the electron
density has been fulfilled, the atom positions are moved by a molecular static or molecular dy-
namics time-step, {R(¢)} — {R(¢ + At)}. Thus, for Nyp molecular time steps the eigenvalue
problem has to be solved Nyip Vi, times. These arguments suggest a particular loop structure
of a typical first-principles method and a particular sequence how the different elements are
calculated. This is summarized in Fig. 4.

Typical codes use LDA exchange correlation potentials and energies of Hedin and Lundqvist[9]
or Vosko, Wilk, and Nusair[10], or GGA functionals of Perdew et al. [11, 12] are given as
analytical expressions of the density and their derivatives in case of the GGA.

2.3 Magnetism

If magnetism occurs, the ground state has a broken symmetry and the ground-state energy is de-
scribed by functionals which depend on the vector-magnetization density m(r) as an additional
field to the ordinary charge density n(r), discussed so far. An additional term ppo - By.(r)
appears in the Kohn-Sham equations Eq.(7), where pug = foc is the Bohr magneton, B, is
the magnetic xc-field an electron experiences, and o are the Pauli spinors. Thus, calculating
magnetic systems, one works in a two-dimensional spin-space and the basis functions v;, carry
an additional spin label ¢ = £1. The Hamiltonian is a 2 X 2 matrix in spin-space and is now
hermitian and not symmetric. Complex magnetic structures lower frequently the symmetry of
the problem and more states have to be calculated or a much larger fraction of the BZ (cf.
Sect.2.6) has to be sampled, respectively, pushing the computational effort to the limits of mod-
ern supercomputers. In case of collinear magnetism, e.g. ferro-, ferri-, or antiferromagnetism,
o - B, reduces to o, - By, the Hamiltonian is diagonal in spin space, the magnetization density
m, is then given by spin-up and -down densities, m.(r) = n;(r) — n;(r), and the effort of a
magnetic calculation is just twice that of a nonmagnetic one. In general, the magnetic moment
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Fig. 4: Right: Typical loop structure of a first-principles code based on density functional
theory as applied solid state materials. Left: Schematic flow-chart for self-consistent density-
functional calculations e.g. as realized by a FLAPW calculation.

M = [drm(r) is a vector quantity, and the search of the magnetic structure can be done
dynamically bearing similarities to the dynamical structure optimization combining molecular
dynamics and simulated annealing. Therefore, everything said in this chapter on structural op-
timization applies to both, the atomic and the magnetic structure. Throughout the paper, the
spin label is dropped for convenience. More information on the treatment of magnetism can be
found in the chapter A.5 “Magnetism in Density Functional Theory” by G. Bihlmayer.

2.4 The Eigenvalue Problem

In all-electron methods eigenvalue problem Eq.(7) is solved for all occupied states 7 but typi-
cally subject to different boundary conditions. As shown schematically in Fig. 5 we distinguish
core electrons from valence electrons. The former have eigenenergies which are at least a couple
of Rydbergs below the Fermi energy, the potential they experience is to an excellent approx-
imation spherically symmetry and the wavefunctions have no overlap to neighboring atoms.
The eigenvalue problem of these states are solved applying the boundary conditions of isolated
atoms, which is numerically tackled by a shooting method. Valence electrons in a crystalline
solid form electron bands and the eigenvalue problem of is solved subject to the Bloch bound-
ary conditions. The eigenstate is classified by the band index v and a three-dimensional Bloch
vector k within the first Brillouin zone, (: € {kr}). Some materials contain chemical elements
with states (e.g. bp states of 4f elements or W, p states of early transition metals) intermedi-
ate between band and core states and those are coined semi-core states. These are high-lying
and extended core states and particular care has to be taken on their treatment since their treat-
ment as core states can cause significant errors in total energy, force and phonon calculations.
According to the different treatment of the electrons, we decompose the charge density in the
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Fig. 5: Schematic representation of the energy position of valence, semi-core and core electrons
in periodic potential.

valence, semi-core and core densities
n(r> = nval(r) + nsc(r) + ncore(r)a (12)

the latter being spherically symmetric. The charge densities are calculated according to Eq.(1).
Wavefunctions and energies of core states give access to hyperfine quantities such as isomer
shifts, hyperfine fields and electric field gradient as well as chemical shifts of core levels.
There are many possible ways to solve the Kohn-Sham equations for valence electrons. Fre-
quently, a variational method is chosen by which a wavefunction v, (r) of Bloch vector k and
band index v is sought as a linear combination of basis functions ¢, (k, r)

Mz

Uy (T cpn (k) (13)

n=1

satisfying the Bloch boundary conditions. ¢}, are the expansion coefficients of the wavefunc-
tion (coefficient vector), and /N is the number of basis functions taken into account. By this
expansion, the eigenvalue problem

Hiio (r) = eiathia (1) (14)
is translated in into an algebraic eigenvalue problem of dimension NV
(H(k) — ex,S(k))ck, =0 vk € BZ (15)

for the coefficient vector ¢y, corresponding to the eigenvalues ¢y,. The Hamilton H nn’ (k) and
overlap matrices S™" (k) are hermitian or real symmetric, depending on the point symmetry
of the atomic structure. If the basis functions are orthonormal, i.e. (p,|p.) = 6™, as for
example in case of simple planewaves, then the overlap matrix S, defined as

Smm (k) = /Q o (k, 1) (k, ) d>r (16)

becomes diagonal, S™" (k) = ™", and the generalized eigenvalue problem Eq.(15) becomes
of standard type. €2 is the volume of the unit cell.
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In general, the general eigenvalue problem is reduced to a standard one using the Cholesky
decomposition. It can be shown (e.g. Stoer [13]), that any hermitian and positive definite matrix
can be decomposed into a matrix product of a lower triangular with only positive diagonal
elements matrix and its transposed. Clearly, the overlap matrix satisfies these conditions and
can be written S = LL'". Therefore, Eq.(15) becomes

HCi = SiLLtrCi, (17)
multiplying from the left with L=! and introducing a unit matrix we finally find
Px; = g;x;, (13)

after we have P defined as P = L™'H(L™!)"" and x; = L'"c;. Thus, the generalized eigenvalue
problem has been reduced to a simple one. The eigenvectors c; can be obtained by the back-
transformation, ¢; = (L") "1x;.

The choice of the most efficient numerical algorithm to solve Eq.(15) depends on the number
of basis functions N and the number M of states v taken into account. If M/N >~ 0.1,
direct numerical diagonalization schemes are employed, for example parallelized eigenvalue
solver taken from the ScaL.APACK library package. If M/N <~ 0.1 or if N is too large to
fit the eigenvalue problem into the memory of a computer the eigenvalue problem is solved
iteratively. Any iterative solution of an eigenvalue problem can be divided into two parts: (i)

the determination of the iterative improvement of the state vector cﬁ;j[m} at iteration step m by

multiplying the Hamiltonian with the state vector to obtain the update ¢ :
o =Y Y (), (19)
and (ii) the orthonormalization of the wave functions
> gt =5, (20)

(iii) Frequently, each iteration step is accompanied by a direct sub-space diagonalization of a
dimension proportional to M, on which Hamiltonian H is projected. If the multiplication of
H - ¢ can be made fast by expressing the Hamiltonian in terms of dyadic products or convolu-
tions as in norm-conserving or ultra-soft pseudo-potentials minimizing thereby the number of
multiplications, iterative methods become particular beneficial.

2.5 The CPU Time Requirement

The number of basis functions N is determined by the required precision P of a calculation and
by the volume (2 of the unit cell or the number of atoms in the unit cell, V4, respectively. The
precision P is controlled by the finest real-space resolution the basis functions can resolve. For
three-dimensional unit cells N scales as N oc P3. In general, the triple (Ny, M, N), the number
of k-vectors in the BZ used, the number M of states v considered, and the number of basis
functions N are determined by the required precision of the calculation and by the volume
of the unit cell. These parameters determine the CPU-time and memory requirements of the
calculations. Keeping the loop-structure in mind exhibited in Fig. 4, typically the calculational
CPU time scales as

N3 direct diagonalization

21
Miee(MNIn N 4+ NM?) iterative diagonalization D

CPU o< Nup -« Niger - Nk {
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Fig. 6: Test of convergence carried out by the FLAPW method of (absolute) total energy and
magnetic moment as function (i) of the number of the LAPW basis functions (see two left figures)
for a 7 layer Fe(100) film and (ii) number of special k-points in the IBZ (see two right figures)
for an 11 layer Fe(110) film. The calculations of (i) were carried out for the rkm-parameters
rkm = 7.5, 8.0, 8.5, 9.0, 9.5, 10.0 corresponding to N = 67, 80, 96, 114, 137, 158 basis
functions.

where M., gives the number of eigenvalue iterations. This gives just a gross estimate as for
iterative methods based on the Car-Parrinello idea where self-consistency iterations and eigen-
value iterations can be combined to directly minimize total energy functional Nyip - Niter - Miter
depends on many details. The scaling relation for precision scaling is:

the number of k-points: Ny o< PJ (22)
the number of basis functions /V: N « P3, (23)

where P is the precision controlling the k-point summation, e.g. of the force, the total energy or
the electron density. Assuming that the volume €2 of the unit cell is proportional to the number
of atoms N4, the scaling relation for volume scaling is:

the number of k-points: Nk o 1/Ny, (24)
the number of states v: M o< Ny, (25)
the number of basis functions /V: N o Ny, (26)

From these considerations it is argued to develop electronic structure methods (cf. Sect. 3) with
efficient basis sets to reduce their number N, to develop algorithms to accelerate the conver-
gence (cf. Sect. 2.7) and to employ an efficient k-point integration scheme (cf. Sect. 2.6).

2.6 Brillouin-Zone Integration and Fermi Energy

The calculation of the electron density, total energy, force or stress tensor for infinite periodic
solids require the integration of functions over the Brillouin zone that depend on the Bloch
vector and the energy band. These integrations stretch only over the occupied part of the band,
i.e. over the region of the Brillouin zone where the band energy ¢, (k) (v is the band index) is
lower than the Fermi energy. Hence, the integrals are of the form

1 3
/B ) > hik) &k (27)

Vi
Bz V,E)/(k)<EF
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where f is the function to be integrated, e.g. f = 1 for the total number of electrons, f = ¢ for
the eigenvalue sum and so on. Numerically, these integrations are performed on a discrete mesh
in the Brillouin zone. In fact the effort of the BZ integration is in practice significantly reduced
by employing the point group symmetry, where the integration is reduced to the irreducible
wedge of the BZ (IBZ). There are different methods, that can be used to perform the integration,
e.g. the special points method [14, 15] and the tetrahedron method [16, 17, 18]. The special
points method is a method to integrate smoothly varying periodic functions of k. The function
to be integrated has to be calculated at a set of special points in the IBZ, each of which is
assigned a weight. Thus, the BZ integration is transformed into a sum over a set of k-points. At
each k-point a sharp energy cut-off is introduced to include only those state in the summation
whose energy is below the Fermi energy. Thus, the integrals become:

é/}gz Yo oak) Ek— > > fk) wk) (28)

ev(K)<Ep kelBZ v,e, (k)<Ep

Alternatively, this integration can be viewed as an integration over the whole Brillouin zone,
where the function to be integrated is given by a product of the function f with a step func-
tion that cuts out the region of the Brillouin zone, where the band energy is above the Fermi
energy. Clearly, the resulting function does not satisfy the condition of being smoothly vary-
ing. Therefore, the special k-points method does not converge very quickly, and rather many
k-points are needed to obtain accurate results. On the other hand this method is simple to im-
plement, because the weights depend only on k and the band energy (via the step function) at
each k-point. Another problem arises from this “sharp” differentiation between occupied and
empty bands (parts of bands). Let’s consider a band that is very close to the Fermi energy at
a certain k-point. During the iterations the energy of this band might rise above or drop below
the Fermi energy. This leads to sudden changes in the charge density, which can slow down or
even prevent the convergence of the density. These sudden changes are clearly a result of the
discretization in momentum space. To avoid this problem, the sharp edges of the step function
are smoothened, e.g. by introducing a so-called temperature broadening in the context of a the
Fermi function (e(*~Fr)/ksT 1)~ rather than the step function. The temperature 7" or energy
Tkp are an additional external parameters adjusted to obtain the best convergence.

2.7 Achieving Self-Consistency

According to Sect. 2.2 the Kohn-Sham equation Eq.(7) are Schrodinger-like independent-particle
equations which must be solved subject to the condition that the effective potential field Vg (r) =
Vext (r) + Vi (r) 4+ Vie(r) and the density field n(r) are consistent. The electron density 7 (r)
that minimizes the energy functional is a fix-point of the mapping

n'(r) = F{n(r)}. (29)
1.e. it solves
F{no(r)} =0, with F{n(r)} = F{n(r)} — n(r). (30)

(The same can be formulated for the potential.) Typically, the density is expanded into a large
set of basis functions. Thus, in actual calculations, the charge density is a coefficient vector
of dimension Ng ~ 8 x N (N defined as in Eq.(13) and Eq.(30) constitutes a system of Nq
nonlinear equations, which can be solved by iteration:

n"(r) = F{n™(r)}. 31
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Convergence Behaviour of the Different Mixing Methods
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Fig. 7: Comparison of the convergence of charge density calculated by different methods for a
non-magnetic bce Fe crystal using the FLAPW method. Calculations are carried out for mixing
parameter o = 0.04. + corresponds to simple mixing, and different Quasi-Newton methods: *
Broyden’s 1st method, © Broyden’s 2nd method, [ generalized Anderson method. The distance
of the residual vector vs. number of iterations is plotted semi-logarithmically [19].

A starting density n(”) (r) can be constructed by a superposition of atomic densities. A straight
mapping as is suggested in Eq.(31) is in general divergent. Convergence can be achieved if the
output density F'{n"(r)} is mixed with the input density n"(r).

The simplest and slowest of such mixing schemes is the so-called “simple mixing”, which
converges only linearly. The density for the next iteration is constructed as a linear combination
of n(™ and F{n™} according to:

a0 — (1 = @)™ 1 aF{n™} = n™ 4+ aF{n™}, (32)

where « is the so-called mixing parameter. If it is chosen small enough, the iteration converges
and is very stable. However, for the type of systems one is interested in, « is very small, requir-
ing many hundreds of iterations. In spin-polarized calculations different mixing parameters can
be used for the charge and the magnetization density. Usually, the spin mixing parameter can
be chosen far larger than the parameter for the charge density.

In the Newton-Raphson method, the functional F{n} is linearized around the approximate
solution n(™.

Fin) % F) + T 0, i) = SR

In actual calculations the Jacobian J is a N X Nq matrix. Similar to the well-known Newton
method to find zeros of one-dimensional functions, the next approximation to ng, n™*Y, is
determined from the requirement, that the linearized functional in Eq.(33) vanishes at p(m+1),
Thus, n™* is given by:

(33)

nmt) = pm — [ {nlm}] ' Fnmy. (34)
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In opposite to the simple mixing, the Newton-Raphson method converges quadratically. The
major drawback of this method is the difficulty to evaluate the Jacobian. Even if the functional
F{n} were known, the evaluation would be cumbersome due to the enormous size of J{n}.
In addition, the Jacobian has to be inverted where the amount of calculation scales with cube
of the dimension. A further problem is that the convergence radius is rather small so that the
method can only be used if n(™ is already very close to 7.

The development of the Quasi-Newton methods made it possible to exploit the advantages of the
Newton-Raphson method, i.e. to make use of the information that is contained in the Jacobian,
for problems where the Jacobian cannot be calculated or its determination is too demanding.
Rather than computing the Jacobian each iteration, an approximate Jacobian is set up and im-
proved iteration by iteration. From the linearization of F{n} in Eq.(33) we find the following
condition for the Jacobian, which is usually called Quasi-Newton condition:

An(™ — [j(m)}_l AF (™) (35)

Quasi-Newton methods converge super-linearly and have a larger convergence radius than the
Newton-Raphson method. Since the Jacobian is build up iteration by iteration, the “history”
of the previous iterations is memorized in 7, whereas the Jacobian of the Newton-Raphson
method depends only on the previous iteration. In this sense the Newton-Raphson method is
self-corrective [53], it “forgets” inadequately chosen corrections. The Quasi-Newton methods
sometimes need to be restarted, if the iteration converges only slowly. This can happen if
the starting density is very far from 7y or when physical or numerical parameters that affect
the calculations are changed during the iteration. Eq.(35) does not determine the Jacobian
uniquely, instead Eq.(35) constitutes a system of N equations for Né unknowns. The various
Quasi-Newton schemes differ by the ansatz how the new information is used to build the inverse
Jacobian. The quality of the convergence is measured by the distance of the residual vector:

dnimy = [|F{n ™} = [|F{n™} = nl™]]. (36)

3 The Electronic Structure Methods

The quest to solve the Kohn-Sham equation (7) efficiently for periodic solids, solids with sur-
faces and interfaces, clusters and molecules has lead to a wide spectrum of very successful
and efficient electronic structure methods. Treating isolated clusters or molecules, methods
based on localized orbitals are frequently selected going hand in hand with the chemical in-
tuition of a system in question. Considering methods applicable to periodic solids, frequently
algorithms are chosen where the Bloch boundary condition can be included in the basis set.
Guiding principles to develop electronic structure methods are obtained by having a closer look
at the mathematical nature of the Schrodinger-like Kohn-Sham equation Eq.(7) with the kinetic
energy operator A and the 1/r singularity at the nucleus with the simultaneous necessity to
calculate the xc-potential V,..[n]|(r) and the Hartree potential Viz[n|(r).

The planewave basis is obviously a very good choice, as the planewave is diagonal to the
Laplace operator A appearing in both the the kinetic energy operator and in the Poisson equa-
tion to calculate the Hartree potential (cf. Eq.(8)), and for a function expanded in planewaves,
its power is also completely expressible by a planewave expansion. This property is needed for
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Fig. 8: Very rough and schematic overview of electronic structure methods indicating a rich
spectrum of methods developed for different purposes, applications, geometries and symmetries,
chemical elements and materials requiring different approximations.

calculating the charge density from the wave function. Thus, using a planewave basis set the
calculation of the kinetic energy, charge density and the Hartree potential are obtained by simple
algebraic expressions. The calculation of the Vi (r) best performed if the charge density is ex-
pressed in real-space. The discrete fast Fourier transformation (FFT) provides a fast algorithm
to communicate between both spaces. However, planewave basis sets do not converge at the
presence of the 1/r singularity. Thus, planewave basis-sets can only be used in the context of a
pseudopotential approximation to the true potential where the 1/7 potential has been replaced
by an appropriate smooth potential (For details see chapter A.8 of K. Schroeder: Car-Parrinello
Molecular Dynamics and Reaction Kinetics).

All-electron methods have to cope with the 1/r singularity. Since this singularity cannot be
dealt with variationally, one typically works here with basis functions, which are the numerical
solution of (—A + Vg — Ej)p = 0 of the effective (spherical) potential containing the 1/r
singularity, computed in a sphere around the atom at a given energy parameter F;. These basis
functions treat the singularity exactly. The matching of this wavefunction in such a sphere to
the rest of the crystal outside the sphere divides the all-electron methods with regard to the
eigenvalue dependence of the basis set into two groups: The nonlinear methods as for example
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the Korringa, Kohn and Rostocker (KKR) method and the APW method, and the linear methods
, of which the most commonly used are the linear muffin-tin orbital method (LMTO) [20]
(see also chapter A.12 of E. Pavarini: Building Model Hamiltonians for Strongly Correlated
Materials), the augmented spherical [21] and the APW-based schemes, e.g. FLAPW method.
The choice of the electronic structure method for surface science application, depends on the
chemical elements involved, the symmetry of the system and depends on the physical and chem-
ical questions to be answered, and as such also on the relevant geometrical model to treat a sur-
face. Surfaces provide open structures and a correct treatment of the shape of the charge density,
the one-electron potential is required. This is offered by so-called full-potential methods such
as the PP-PW, PAW, FLAPW, FPLMTO and KKR methods. Ab initio molecular dynamics and
transition-state calculations are most efficiently calculated by PP-PW and PAW method. All-
electron methods on the other hand offer a precise treatment of 3d and 4 f electrons, magnetism
is included rigorously, correlation beyond the local-density approximation enters naturally in
those methods and nuclear quantities [22] e.g. isomer shift, hyperfine field, electric field gradi-
ent (EFG), and core level shift are calculated routinely. At the end a couple of methods proved
powerful to cope with the various demands of surface chemistry and physics.

4 Surface Models

Considering the expense of the calculation and physical problem in mind, one of the most cru-
cial steps in computational science is the creation of relevant geometric models. Many, but by
no means all phenomena in surface science are relatively short-range in nature. This makes it
possible to choose geometric models which are small enough to be tractable to today’s elec-
tronic structure methods yet still large enough to be physically meaningful. Systems containing
of the order of 100 transition-metal atoms or 300 hundred semiconductor elements of group III,
IV, V per unit cell can be treated on a first-principles level with today’s programs and computer
hardware, of course depending on details of the systems in question. A particular choice de-
pends on the physical and chemical questions to be answered, and each geometric model has
its strengths and limitations. In the following, we will discuss the most common geometric
models for electronic structure calculations of surfaces (cf. Fig. 9) and outline their range of
applicability.

Conceptually the most satisfying surface geometry is that of a semi-infinite solid. This geometry
can be used fro the simple jellium model of surfaces. In the jellium model, the positive charge
of the atomic nuclei is simply represented by a uniform constant positive background inside the
solid and zero outside an appropriately chosen surface plane. Effectively, the system is thus
reduced to a one-dimensional problem and the distribution of the electrons are then calculated
using DFT.

The use of a semi-infinite solid is much more difficult if a full three-dimensional solution of
the DFT problem is attempted. However, it is reasonable to assume that any material becomes
bulk-like at a certain distance away from the surface. A priori, one does not know that distance,
but the electronic screening length is a good measure. This results to about 10 layers underneath
the surface for transition metals and semiconductors and about 20 layers for sp-metals such as
Al Bi or Pb. In the top layers or the so-called ”surface region”, the electronic wave functions
are then chosen to match the bulk states inside the solid and satisfy the vacuum boundary con-
ditions above the surface. Green function techniques are used, for example, in the Korringa,
Kohn and Rostocker (KKR) or in the Full-Potential Linearized Augmented (FLAPW) Green
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semi-infinite solid repeated slab single slab cluster
or thin film
jellium PP-PW, PAW FLAPW Localized Orbital
layer KKR FLAPW Localized Orbital methods (numerical,
Green functions FPLMTO methods STO’s, Gaussians)
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Fig. 9: Geometric models for practical surface calculations. The geometry of a semi-infinite
solid is mainly used for jellium calculations and methods employing Green functions and match-
ing techniques. Standard band structure methods using three-dimensional periodicity can be
directly applied to a repeated slab geometry. These standard methods include the pseudo-
potential plane-wave methods (PP-PW), the projector augmented plane wave method (PAW),
the full-potential linearized augmented planewave (FLAPW) method, the full-potential lin-
earized muffin-tin orbital (FPLMTO) and the LMTO method. Much CPU time can be saved
using the single slab geometry, which treats the semi-infinite surface on both sides of the slab
accurately. The FLAPW method has been implemented for the single slab geometry, which also
can be used with localized orbital methods. The cluster geometry is amenable for localized
orbital methods with numerical functions, Slater type orbitals (STO’s) or Gaussian as basis set,
as used for molecular quantum chemical calculations [23].

function methods [24, 25], which provide the necessary mathematical apparatus to accomplish
this matching procedure [26].

A simple, but effective geometric surface model is the repeated slab geometry (cf. Fig. 9) calcu-
lations of surfaces (cf. Fig. 9). Thin films consisting of about 10 to 20 layers are repeated in the
direction perpendicular to the surface. The slabs are chosen thick enough to approach bulk-like
behavior near the center of each slab and the spacing is taken large enough so that any artifi-
cial interactions across the vacuum region between the slabs are minimized. About 10 to 20 A
are usually sufficient to fulfill the requirement. For such a geometry, any three-dimensional
electronic structure method able to treat open structures can be used. The most common ap-
proaches for three-dimensional electronic structure calculations are the pseudopotential plane
wave (PP-PW) method, the full-potential linearized augmented planewave (FLAPW) method,
and the full-potential linearized muffin-tin orbital (FPLMTO) method. Practical applications
of these approaches are limited by the number of atoms in the three-dimensional supercell.
Thus, a compromise needs to be found between slab thickness, space between the slabs, and the
computational effort.



A8.18 Stefan Bliigel

One way to overcome at least one of these limitations is the use of a single-slab geometry
(cf. Fig. 9). The slab still has to be thick enough to achieve bulk-like behavior in its interior,
but the correct vacuum boundary conditions of the semi-infinite vacuum on both sides of the
slab are full-filled. Besides the more accurate description of the vacuum, the surface state and
the workfunction, to computational effort may be reduced to 50% of the effort required in an
supercell approach of a repeated slab model.

Finally, surface can be modeled by finite clusters. This approach has been widely used for
the investigation of chemisorption, since it allows the application of standard quantum chem-
istry programs. While reasonable structural information such as adsorption geometries can be
obtained with relatively small clusters consisting of 10 or 20 atoms, much larger clusters of
preferably well over 100 atoms are required to achieve reliable results for sensitive quantities
such as adsorption energies or the distinction between different adsorption sites with similar en-
ergy. However, even for large clusters, termination effects can have unpredictable side effects.

S5 APW-like Concepts to solve the Kohn-Sham Equations

In this section, we introduce step-by-step the full-potential linearized augmented planewave
(FLAPW) method [27, 28], to solve the density-functional equations for a crystalline solid and
with emphasis for an ultrathin film (a review is given by D. J. Singh [29]). The method orig-
inates from the APW method proposed by Slater [30, 31, 32]. Great progress of the APW
methodology was achieved as the concept of linear methods [33, 20, 34, 35, 36], was intro-
duced by Andersen and first applied by Koelling and Arbman using a model potential within the
muffin-tin approximation. The linearized APW (LAPW) method reconciled the linear-algebra
formulation of the variational problem with the convergence properties of the original formula-
tion and allowed a straight forward extension of the method to the treatment of crystal potentials
of general shape. The treatment of the potential and charge density without shape approxima-
tion [37, 38] and the implementation of the total energy [28] let to the development of FLAPW
bulk [27, 38, 39, 40, 41, 42, 43, 44] film codes [27, 44, 45, 46]. It was during this time that
the power and accuracy of the method were demonstrated to the community, largely through a
series of calculations of surface and adsorbate electronic structures (for a review see Wimmer
et al. [47]). These and other demonstrations established the FLAPW method as the method of
choice for accurate electronic structure calculations for a broad spectrum of applications.

Constant conceptual and technical developments and refinements such as the proposal and im-
plementation of the scalar-relativistic approximation (SRA) [48], the spin-orbit interaction by
second variation [50], and the possibility to calculate forces [51, 52] acting on the ions to carry
out structure optimizations, quasi-Newton methods [53] to accelerate the self-consistency itera-
tions, the iterative diagonalization techniques [54, 55, 56], the proposal of a new efficient basis
sets, the LAPW+LO [57] and APW+lo [58] basis, in which the APW basis is amended by local
orbitals (lo), the extension of the method to non-collinear magnetism [59], to the wire geome-
try [60], to calculations of the quasiparticle self-energy in the GW approximation [61], and the
recent formulation and application of the scattering problem in semi-infinite crystals [24, 25, 26]
has made APW-like methods, and for our discussion the FLAPW method, a robust, versatile and
flexible method, at reasonable computational expense. It is an all-electron method, that means,
one works with a true crystal potential, which diverges as 1/r at the nucleus, as opposed to
the pseudo-potential (for a review see Ref. [62, 63]), in which the singularity is removed. The
method and the breadth of applications has benefited from the large growth of available com-
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Fig. 10: Left figure: Volume of unit cell partitioned into muffin-tin spheres of two different types
of atoms and the interstitial region . Right figure: Actual self-consistent effective potential as
obtained from an FLAPW calculation.

puting power and parallelization strategies.

5.1 The APW Concept

There are many possible ways to solve the Kohn-Sham equations. Frequently, a variational
method is chosen by which a wavefunction vy ,,(r) of Bloch vector k and band index v is sought
as a linear combination of basis functions ¢(r) satisfying the Bloch boundary conditions. The
most straightforward choice would be to expand the wavefunction into planewaves or Fourier
series, respectively,

vk, v) = Z o vexpli(k + G)rl. (37)

[k+G|<Kmax

Here G are all reciprocal lattice vectors up to the largest value of K., and cﬁy are varia-
tional coefficients. The planewave basis set has some important advantages: Planewaves are
orthogonal, they are diagonal in momentum space and the implementation of planewave based
methods is rather straightforward due to their simplicity. The credit goes to Slater [30] having
realized that owing to the singularity of the crystal potential at the nucleus, electron wavefunc-
tions are varying very quickly near it, the planewave expansion would converge very slowly,
large wavevectors (K ,.) would be needed to represent the wavefunctions accurately, which
makes the set-up and diagonalization of the Hamiltonian matrix in terms of planewaves imprac-
ticable if not impossible. Even with the modern computer hardware, the planewaves are used
only in the context of pseudopotential which allow an accurate description of the wavefunctions
between the atoms, but avoid the fast oscillations near the core. Thus, less basis functions are
needed.

In the APW method the space is partitioned into spheres centered at each atom site, the so-called
muffin-tins (MTs), and into the remaining interstitial region (cf. Fig. 10). The MT spheres do
not overlap and they are typically chosen such that they nearly (to allow for structural relax-
ations) fill the maximal possible space. Inside the muffin-tins, the potential is approximated
to be spherically symmetric, and in many implementations the interstitial potential is set con-
stant. The restrictions to the potential are commonly called shape-approximations. Noting that
planewaves solve the Schrodinger equation in a constant potential, Slater suggested to replace
the Bessel functions j;(Kr) in the Rayleigh decomposition of the planewave inside the sphere
by radial functions u;(K,7), which match the Bessel functions in value at the sphere radius
Ryrr and whose product with the spherical harmonics Y7,(¥) are the solutions in a spherical
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potential. It is this procedure what is understood by the term augmentation. Thus, the single
wavefunctions 1, (r) are expressed as trial functions

Yio(™) = Y & palkr) (38)

|G+k|< Kmax

in terms of the APW basis functions:

i(k+G)r interstitial region

e
va(k,r) = Z aZG(k)ul(r“]E)YL(f“) muffin-tin p (39)
lm

The position r inside the spheres p located at 7+ (cf. Fig. 10) is given with respect to the center
of each sphere. L abbreviates the quantum numbers [ and m and w; is the regular solution of the
radial Schrédinger equation

2 2 2
{ B h l(lt1>+V(r)—E}Tuz(7’):0 (40)

omor: ' 2m r

to the energy parameter £;. Here, V() is the spherical component of the potential V' (r). The
coefficients

a’S (k) = ak(k + G) = 4rr exp(ikT“)ilYL*(K)];([((—Ri;), K=k+G 41)

l

are determined from the requirement, that the wavefunctions are continuous at the boundary
of the muffin-tin spheres in order for the kinetic energy to be well-defined. The variational
coefficients c® uniquely determine the wavefunction in the interstitial region.
If FE were kept fixed, used only as a parameter during the construction of the basis, the Hamilto-
nian could be set up in terms of this basis. This would lead to a standard secular equation for the
band energies where for a given k-point in the Brillouin zone (BZ) a set of band energies F, are
determined. Unfortunately, it turns out, that the APW basis does not offer enough variational
freedom if F is kept fixed. An accurate description can only be achieved if the energies are set
to the corresponding band energies L ,. In this case the Hamiltonian matrix H depends not
only on k, H(k), but also on Ex ., H(EkJ,), and the latter can no longer be determined by a sim-
ple diagonalization. Since the u;’s depend then on the band energies, the solution of the secular
equation becomes a nonlinear problem, which is computationally much more demanding than a
secular problem. One way of solving this problem is to fix the energy £ and scan over k to find
a solution, i.e. find one band at the time, instead of diagonalizing a matrix to find all the bands
at a given k. Thus, in Slater’s formulation of the method £ enters as an additional non-linear
variational parameter varying the shape of the functions w; till the optimal shape is found for
the band energies Ey ,, one has looked for. There are several other limitations connected to the
APW method. One is rather obvious, when v, (R) in Eq.(41) becomes zero at the MT boundary,
the radial function and the planewave becomes decoupled, known as the asymptote problem.
Others are beyond the scope of the chapter. Further information about the APW method can be
found in the book by Loucks [32], which also reprints several early papers including Slater’s
original publication [30].
There is one remaining point. Please notice that the APW method produces per construction
principle wavefunctions with a discontinuity in the slope at the muffin-tin boundary. Due to
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Fig. 11: Square of the LAPW basisfunction generated for G = 0 and k at the origin (T -point)
(left) and boundary (M-point) (right) of the Brillouin zone of a 3-layer thin film of Cu(100). The
cuts are taken in the {110} plane. The basisfunctions are optimally suited to represent 4s states
of Cu (left) and 4p states (right).

these discontinuous first derivatives the secular equation in the APW basis

> (pelH - ewlpe) + (el Tslea))eg, =0 (42)
G/

contains a second term due to the matrix elements ()| — V?|1)) of the kinetic energy operator T
commonly defined as T = —V?2, which is replaced by (V|V1)), leading then via Green’s the-

on

+(—) indicates just outside and inside the muffin-tin sphere. The matrix elements of Ty are pro-
uy(R)

orem to the appearance of additional surface integrals Ty oc [ ¢* [(@)7 —(%9) J dS, where

portional to the difference of the logarithmic derivatives from the function u;, D(w|E) =

uw(R)’
and that of an empty sphere D(j|E) = ;ig—g, taken at the sphere boundary. The logarithmic

derivatives are related to the phase shifts in scattering events. Thus, the second term in Eq.(42)
can be interpreted describing the scattering of a planewave coming from the crystal at the sphere
of the atoms. It is well-known that the logarithmic derivatives and the phase shifts are energy
dependent quantities, which explains the explicit energy dependence of the APW Hamiltonian
in particular, and all nonlinear electronic structure methods in general.

5.2 The LAPW Basisfunctions

To avoid the problems connected with the APW method resulting from the energy dependence
of the Hamiltonian, in the middle of the seventies linearized methods were invented by Ander-
sen [20] and Koelling and Arbman [34]. Based on an idea proposed by Marcus [36], the basis
functions u; in the muffin-tins were supplemented by their energy derivatives 1, but both, v,
and wu;, are now evaluated at a fixed energy £;. The original energy dependence of the radial
basis-function is thereby replaced by the Taylor series:
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terminated after the linear term. In this way, the wavefunctions are affected by an error which
is quadratic in the deviation of the eigenvalue £ from the energy parameter £, the error in the
eigenvalues enter only to fourth order [34]. With this extension, the explicit form of the basis
functions is now:

exp(i(k + G)r) interstitial

Vel T\ 5, (@S0t (1) + HC A (1)) Vi () muffintin .

(44)

Examples of LAPW basisfunctions are shown in Fig. 11. The values of the coefficients af;f(k)
and bfrf'(k) are determined to ensure continuity in value and derivative of the basis functions
across the muffin-tin boundary. Thereby, also the surface integrals [ 1* (g—i’) dS which were
encountered in the APW method disappear. In this way, the energy dependence of the Hamilto-
nian is removed, simplifying the eigenvalue problem, Eq.(15), to a standard problem of linear
algebra. Instead of working with u; and 1, several LAPW implementations follow the ASW
idea, working only with u; but for two different energy parameters F; and E;. As we see below
working with w; and 1; is rather elegant.

If H ¢, denotes the spherical Hamiltonian in Eq.(40), @ can be determined from the energy
derivative of this equation at £:

oeiy = Bl + ). (45)

The normalization of the radial functions is usually chosen like: !

RH
/ r2uf‘2dr =1 (46)
0

and the energy derivatives, uf , are orthogonal to the radial functions, i.e.
RH
/ r2ul'i) dr =0 (47)
0

a relation, which will simplify the calculation of the elements of the Hamilton matrix.
Stimulated by the idea of the LAPW basis set, one may ask to improve the basis set by match-
ing only the 1st derivative continuously, but also higher derivatives working with higher energy
derivatives of u;. This approach has actually been followed by Takeda and Kiibler [64] using n
energy parameters to match the wavefunction continuously till the (n — 1)st derivative. How-
ever, it turned out that such wavefunctions are variationally very stiff and the convergence of
the results with respect of the number of basis functions is rather slow. This can be understood
by following this procedure up to the extreme were the wavefunction matches to all derivatives.
Then we know, the u; must be the Bessel function j; or the planewave, respectively. We have
already argued before that this requires an infinite number of planewave to describe the wave-
function at the 1/r singularity. Thus, it is a great merit of the LAPW basis set, that the basis set
is linear, but nearly as efficient as the APW method. The speed of convergence with respect to
the number of basisfunctions can even be improved by the introduction of local orbitals.

'In the many LAPW-codes, the electrons in the muffin-tin are treated in the scalar-relativistic approxima-
tion [49]. This means that a two-component wavefunction is used and the normalization conditions are modified
accordingly. For the continuity conditions, only the “large component” of the radial function is taken into account.
To keep the formalism as simple as possible, in the following we will discuss only the non-relativistic case.
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Fig. 12: Schematic drawing of the logarithmic derivative, %, for | = 0 as function of the
energy. The asymptotes indicate where the nodes of the wavefunction pass through the muffin-
tin radius. They separate the branches labeled 15, 2s and 3s.

The energies F; are chosen to minimize the linearization errors, i.e. in the center of gravity of
the [-like bands. It should be noticed here, that the choice of the energy parameter in a certain
sense also determines the nodal structure of the wavefunction. A basis function, where the [ = 1
energy parameter is chosen to describe a 2s-like wavefunction in a certain muffin-tin, will not
be suitable to describe a 3s or a 1s state. The energy parameter is then said to be within the
2s branch (cf. Fig. 12). The flexibility of the basis function of course also depends on the size
of the muffin-tin radius, R, so that with the choice of a smaller R in some cases two branches
can be forced to “collapse” to a single branch [65]. On the other hand, a smaller flexibility
allows to separate core- from valence states in a calculation. Thus, in a typical calculation only
high-lying valence states are calculated (e.g. 3s, 3p, 3d), while very localized states (e.g. 1s, 2s,
2p) are excluded from the calculation. These states are then treated in a separate, atomic like,
calculation using the [ = 0 part of the muffin-tin potential.

As a final point, we will address the question how large [ should be in a realistic calculation.
Since the a and b coefficients in Eq.(44) should ensure continuity across the muffin-tin boundary,
the plane-wave cutoff, GG, and the [ cutoff, /., are normally chosen to match: A planewave
with wavevector G, (given in inverse atomic units) has Gy,.x/7 nodes per atomic unit. A
spherical harmonic with [ = [, has 2[,,,, nodes along a great circle on the muffin-tin sphere,
i.e. there are [y, /(7 R) nodes per atomic unit. Therefore, a reasonable choice of the cutoffs is
lmax = RGmax, typically 1.« = 8 is chosen.

5.3 The FLAPW-Method in Film Geometry for Surfaces and Thin Films

Today, the physics of surfaces and films is an field of major interest and investigation. However,
surfaces are difficult to treat, because they break the translational symmetry, i.e. there is only the
2-dimensional symmetry parallel to the surface left to be used to reduce the problem, and a semi-
infinite problem is left perpendicular to the surface. In our approach surfaces are approximated
by thin films, typically 10—15 atomic layers thick. Obviously, this approximation, which is
called the thin-slab approximation, can only yield good results if the interaction between the two
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Fig. 13: The unit cell in film calculations contain two semi-infinite vacuum regions.

surfaces of the film is week enough, so that each of them shows the properties of the surfaces of
an ideal semi-infinite crystal. In the case of film calculations space is divided into three distinct
regions, the muffin-tins, the interstitial and the vacuum region (cf. Fig. 13). The interstitial
region now stretches from —D /2 to D/2 in z-direction, which is defined to be the direction
perpendicular to the film. The representation of the wavefunctions inside the muffin-tin spheres
remains exactly the same as in the bulk case. Since the periodicity along the z-direction is lost,
the unit cell extends principally from —oco to oo in z-direction. Still the wavefunctions can
be expanded in terms of planewaves. However, the wavevectors perpendicular to the film are
not defined in terms of D, but in terms of D, which is chosen larger than D to gain greater
variational freedom. Therefore, the planewaves have the form

. , 2
pac, (K r) = GItkn G with Gy = %, (48)

where G and k| are the 2-dimensional wave- and Bloch vectors, 1 is the parallel component of
r and GG, is the wavevector perpendicular to the film. The basis functions in the vacuum region
are constructed in the same spirit as the functions in the muffin-tins. They consist of planewaves
parallel to the film, and a z-dependent function ug, (kj, z), which solves the corresponding one-
dimensional Schrodinger equation Eq.(49), plus its energy derivative ug, (kj, 2).

n* o* h? 2
“omaz T V)~ Bret 50 (G k)7 g ue (k, 2) = 0 )
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FEyac is the vacuum energy parameter and Vp(z) is the planar averaged part of the vacuum
potential. As in the case of u; in the muffin-tins, the function ug, (kj, 2) is calculated from
a Schrodinger-like equation, which can be obtained by deriving Eq.(49) with respect to the
energy.

h2 62 h2 k 2 . k k
_%@ + %(z) — Evac —I— %(GH —I— ”) UG“< ||,Z) — UGH( H’Z’/) (50)

The resulting basis functions have the form
‘deltelt (kH’ I‘) = {CLG“G’L (kH)uGH (kH7 Z) + bGHGL (k”)fLG“ (k”, Z)} (G k) )r (€28

The coefficients ag, ¢, (k|) and bg ¢, (k) are determined in exactly the same way as it is
done for the muffin-tins by requiring that the functions are continuous and differentiable at the
vacuum boundary. It should be mentioned, that the vacuum basis functions offer less variational
freedom than the basis set in the interstitial region does. This can be seen by noting that there
are only two functions, ug, and g, times the corresponding planar planewave, to be matched
to all planewaves of the interstitial region with the same G . But there are generally far more
than two different G| ’s, i.e the number of basis functions in the vacuum region is significantly
smaller than in the interstitial region. However, this can be improved rather easily. In Eq.(49)
only one energy parameter F, . is used. Instead one can used a whole series of parameters E’

vac
to cover an energy region. A possible choice of the energy parameters could be B!, = ESL =
FEooe— %GQ , which leads correspondingly to G| dependent basis functions UGG, (k”, z). For
more details see Ref. [67]. In general, however, the present approximations is accurate, the
energy spectrum of the electrons in the vacuum region is small due to the work-function.

Finally we would like to summarize the basis set used for thin film calculation with the FLAPW

method.

( UGitkyr) iGLz interstitial
{ac.‘cu (kug, (ky, 2)
eaye (k. r) = +ba a. (kg (K, 2)} elGitar vacuum (52)
D aiC (Kuy(r) Y () + b5 (k)i (r) Y (F) MT*
\ L

This expansion has been suggested by H. Krakauer, M. Posternak and A. J. Freeman [45].

The expansion of the charge density n and the potential is very similar to expansion of the
wavefunction. In the interstitial-region the two quantities are expanded into three-dimensional
planewaves, inside the muffin-tins they are represented by spherical harmonics and radial func-
tions, which are stored on an exponential mesh and in the vacuum they are expanded into two-
dimensional planewave and z-depended functions. Of course, the charge density and the poten-
tial posses the lattice symmetry. Therefore, the expansion into planewaves is more general than
necessary. The planewaves can be replaced by symmetrized planewaves, the so called stars @37
for the interstitial region and the two-dimensional stars ®2P(r) for the vacuum region. Thus,
the charge density and potential is expanded in the form:

> ns®3P(r) r € interstitial region
n(r) = ¢ > ns(2)®?P(r) r € vacuum (53)
>, nk(r)K,(f) reMT*
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and the Hamiltonian and overlap matrix consists now of three terms: the interstitial, muffin-tin
sphere and the vacuum contribution, paying tribute that the space is now partitioned in three
regions

H=H;+Hyr+Hy and S=S;4+Syur+ Sy. 54)

ns(2)®2P contain important information for the analysis and interpretation of STM topography
and spectroscopy results on the basis of the Tersoff-Hamann model [68] as worked out by
Heinze et al. [69].

6 The Green function method of Korringa, Kohn and Ros-
toker

The multiple-scattering method of Korringa, Kohn and Rostoker (KKR) for the calculation of
the electronic structure of materials was introduced in 1947 by Korringa [73] and in 1954 by
Kohn and Rostoker [74]. In order to solve the Schrodinger equation, the scattering properties
of each scattering center (atom) are determined in a first step and described by a scattering
matrix, while the multiple-scattering by all atoms in the lattice is determined in a second step
by demanding that the incident wave at each center is the sum of the outgoing waves from
all other centers. In this way, a separation between the potential and geometric properties is
achieved.

A further significant development of the KKR scheme came when it was reformulated as a
KKR Green function method [75, 76]. By separating the single-site scattering problem from the
multiple-scattering effects, the method is able to produce the crystal Green function efficiently
by relating it to the Green function of free space via the Dyson equation. In a second step the
crystal Green function can be used as a reference in order to calculate the Green function of
an impurity in the crystal [77], again via a Dyson equation. This way of solving the impurity
problem is extremely efficient, avoiding the construction of huge supercells which are needed
in wavefunction methods.

The development of screened, or tight-binding, KKR was a further breakthrough for the nu-
merical efficiency of the method [78]. Via a transformation of the reference system remote
lattice sites are decoupled, and the principal layer technique allows the calculation time to scale
linearly with the number of atoms. This is especially useful for layered systems (surfaces, in-
terfaces, multilayers) and allows the study of, e.g., interlayer exchange coupling or ballistic
transport through junctions.

A short list of successful applications of the KKR method for electronic structure of solids,
combined with density-functional theory, includes bulk materials [80], surfaces [81], interfaces
and tunnel junctions [82], and impurities in bulk and on surfaces [83]. Spectroscopic proper-
ties [84] and transport properties [79, 85] have also been studied within this method. The KKR
scheme can incorporate the Dirac equation, whenever relativistic effects become important [86]
and was also applied to treat non-collinear magnetism [87].

6.1 Green Function Method

In density functional calculations the solution of the Kohn-Sham equations for the single par-
ticle wave functions ¢, (r) and the corresponding eigenvalues ¢,, the single particle energies,
represents the central problem. Thus most of electronic structure calculations follow this route,
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i.e. calculating eigenfunctions ¢, and eigenvalues ¢,. However, the calculation of ¢, and ¢,
can be avoided, if instead the single particle Green function G(r,r’; E) of the Kohn-Sham equa-
tion is determined, since this quantity contains all the information about the ground state. In
particular the charge density and the local density of states can be directly calculated from the
Green function, which is the solution of the Schrodinger equation for an energy £ with a source
at position r’:

(=0?+V(r)— E)G(r,Y;E) = —§(r — 1) (55)
with atomic units 5%/2m = 1 used. Using the spectral representation for the (retarded) Green
function ba (B ()

r)yr(r
G ' B4 e) = eV /ol 56
(r,x'; E + i€) . F+ic— (56)

it is easy to show that the charge density n(r) can be directly expressed by an energy integral
over the imaginary part of the Green function:

2 [Er
n(r)=2 Y |¢a(r)|2:——/ dE ImG(r,r; E) (57)

™
Eq<Ep

This relation directly allows calculation of the charge density from the imaginary part of the
Green function, which can be interpreted as the local density of states at the position r. The
local density of states of a particular atom in a volume V' is obtained by integrating over this
volume

ny(E) = —% /Vdrlm G(r,r; E) (58)

In this way the evaluation of the wave-functions v, (r) can be avoided. Due to the strong energy-
dependent structure of the density of states, the evaluation of the energy integral is usually very
cumbersome and typically about 10? energy points are needed in an accurate evaluation of this
integral.

The numerical effort can be strongly decreased, if the analytical properties of the Green function
G(z) for complex energies z = E + iI" are used. Since G(z) is analytical in the whole complex
energy plane, the energy integral can be transformed into a contour integral in the complex

energy plane
Er

n(r) = — 2 Im dzG(r,r; z) (59)
T Ep

where the contour starts at an energy E'z below the bottom of the valence bands, goes into the
complex plane and comes back to the real axis at the Fermi level. Since for complex energies
all structures of the Green function are broadened by the imaginary part I', the contour integral
can be accurately evaluated using rather few energy points, typically 20-30, leading to a large
saving of computer time. In this way Green function methods are competitive to diagonalization
methods. Additional advantages occur for systems with two- or three-dimensional symmetry,
since as a result of the energy broadening the k—integration over the Brillouin zone requires for
complex energies much less k—points. In the evaluation of the contour integral, special care
is necessary for the piece of the path close to Er, since here the full structure of G(E) on
the real axis reappears. Therefore the energy mesh should become increasingly denser when
approaching Ep.
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The integration over a complex energy contour can also be extended to finite temperatures by
using the analytical properties of the Fermi-Dirac distribution. Here the essential point is that
the contour close to £ is replaced by a sum over Matsubara energies z; = Ep +im(2j — 1)kT,
) = 1,2,.... Then only complex energies are needed, since the energy point closest to Er has
still an imaginary part of w&7". This is of particular advantage, when a discrete k£-mesh is used,
like e.g. in the special points method.

The real problem is the evaluation of the Green function for the system of interest. Since we
want to avoid evaluation of all eigenvalues ¢, and wave functions ¢, we rather calculate the

Green function ¢ 1 ]

= = 60
E+ie—H E+ie—H,-V ©0)

of a system with Hamiltonian H = H, + V to the Green function G, = {E +ic — H,} ' of a

reference system, which is analytically known or easy to calculate. Then G(E') can be obtained

from the Dyson equation

G(E)

G(E) - GO(E> + GO(E) VG(E> - GO m (61)
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Fig. 14: (A) is a schematic view of a host system prototype showing a perfect surface charac-
terized by collinear magnetism while (B) is a schematic view of a system characterized by two
perturbations: first by the presence of an impurity sitting in the surface layer and second by
taking into account noncollinear magnetism. The extension of the perturbation is delimited by
a pink color.
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For instance, for a bulk crystal one starts with the free space Green function G,(H, = —d?),
such that V' is the sum of the potentials of all atoms. For the surface Green function, G, is
identified with the bulk Green function, such that V' is the difference between the potentials at
the surface and in the bulk. Analogously for a cluster of adatoms on a surface one starts again
with the surface Green function GG, (Fig.14), such that V' represents the change of the ad-cluster
potential with respect to the surface potential including the perturbation of the potentials of the
neighboring host atoms. Most important is, that the perturbed potential V' is well localized near
the impurities, while the perturbed wavefunctions are not localized and accurately described by
the Dyson equation.
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Such impurity problems are often described by an ’Ersatzgeometry’, e.g. an impurity in a rel-
atively small cluster of atoms or by a supercell geometry with a periodic array of impurities.
In these cases the boundary conditions for the wave functions are changed violently, since e.g.
for a cluster all wave functions are restricted to the size of the cluster. Therefore the introduc-
tion of the host Green function GG, solves the so-called "embedding problem”, since it correctly
describes the embedding of the impurity in the infinite surface system.

6.2 KKR representation of the Green function

As mentioned earlier, in the method of Korringa, Kohn and Rostoker (KKR) [75] the Schrodinger
equation is solved by multiple scattering theory, describing the propagation of a wave in the
solid as a repetition of single scattering events at the different atoms. Thus first the single scat-
tering event of the wave at the potential of the different single atoms n is calculated, described
by the single site ’t-matrix” ¢,,/, and then the multiple scattering at the given arrangement of the
atoms in the crystal. The resulting equations show a beautiful separation between potential and
structural properties, which are typical for the KKR method. In the following we summarize
the most important results.

In the KKR-Green function method one divides the whole space into non—overlapping and
space—filling cells centered at positions R™ (similar to Fig. 10). In each cell the electrons are
scattered by potentials v", which in this section are assumed to be spherically symmetric and
centered at R™. By introducing cell-centered coordinates the Green function G(r + R", 1’ +
R™; E) can then be expanded in each cell as a function of r and r’ into spherical harmonics:

GRy+1,Ry+1,E) = —iVEY R}(re; E)H}(rs; E)dpw
L

+ > Ri(r; E)Gi1(E)RE(x; E) (62)

Lr'

Here r and r’ are restricted to the cells n and n’ and r~ and r~ denote the one of the two vectors
r and r’ which has the smaller or larger absolute value. The R} (r; F) and H}(r; F) are the
product of spherical harmonics and radial eigenfunctions to the central potential v™(r):

Ry (r; E) = R}'(r; E) YL(7), (63)
Hp(r; E) = H}'(r; E) YL(7). (64)

Here R?(r, E) is the regular solution which varies at the origin as 7' and which represents
the solution for an incoming spherical Bessel function j;(v/Er)Y7(7), while H ;' 1s the corre-
sponding irregular solution varying as 1/r"*1 at the origin and being identical with the spherical
Hankel function 7, (\/Er) outside the range of the potential. Both radial functions are connected
by the Wronskian relation, which guarantees that the first term in Eq.(62) represents the exact
Green function for the single potential v"(r) in free space. Since this term satisfies already the
source condition —d(r — r’) for the Green function of Eq.(55), the second term is source free
and contains in the double angular momentum expansion only the regular solutions R} and Rz/,.
By construction, the expression (62) for the Green function satisfies in each cell n the general
solution of the Schrodinger equation (55) for the Green function, while the matrix %ﬁ’, (E), the
so-called structural Green function, describes the connection of the solutions in the different
cells and thus contains all the information about the multiple scattering problem, which is in this
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way reduced to the solution of an algebraic problem. The clear separation between the single—
site properties, described by the radial solutions R7(r) and H7(r) and the multiple scattering
properties as described by the matrix G} L,, is the main advantage of the KKR method.

In principle, the structural Green function matrix G%%,(E) can be determined by matching the
solutions of the neighboring cells at the cell boundaries. However at the cell boundaries the
angular momentum expansion converges rather slowly, so that presumably a large /., cut-off
would be needed. The more elegant and at the same time more efficient way consists in using
the power of multiple scattering theory, where the Green function is basically only needed in
the inner region of the cell, where the potential is strong, so that the [—convergence represents
no problem. As shown by Beeby and others [75], the structural Green function matrix can be
determined from the corresponding matrix ¢ in free space by the Dyson equation

%l/(E) = QZL/ Z gLL” tl” (E) %///ITLLII(E) (65)

IIL//

where the ¢-matrix ¢} for the potential v"(r) is given by

R
tH(E) = / 2 dr j(vVEr) v"(r) R (r; E) (66)
0
The derivation of this equation is lengthy and straightforward, so that we refer for this to the
literature cited above. An elementary derivation, valid also for the full-potential case, has been
given by Zeller [88].

In practice, the host structural Green functions are first calculated in k-space using matrix in-
version; a subsequent Fourier transform gives us the real-space quantities. We write, then,

Gru(ki B) = Y Gy (B) e R (67)

n/

(which, due to translational symmetry, is independent of n). The algebraic Dyson equation
Eq.(65) becomes

Gru(k E) = gru(& E) + Y grir(k; E) tw(E) G (k; E) (68)
I

(the t-matrix is independent of n, again due to translational symmetry). Here g,/ are the
reference structural green function of the original system before perturbing it by the surface.
This original system can be for example free space. The structural Green functions G/ and
9o, and the ¢t-matrix t;, are considered as matrices in L and L', and (68) is solved by matrix
inversion after a cutoff at some [ = [,,, for which the ¢-matrix becomes negligible (usually
{max = 3 or 4 suffices). The result is

o / 1 e n__ n' o
() :V—/ BB ek R R )[<1—g(k; E)t(E))
BZ JBZ

where the integral is over the Brillouin zone volume Vgy. For the calculation of the charge
density or of the density of states, only the on-site term n = n/, G}7,(FE), is needed.

Here, the t-matrix t(E ) depends on the atom-type 1 and on angular—momentum indexes (it is
site-diagonal, (t )““ = 1}" 0,,,»)- The structure constants g(k; E) are considered as a matrices in
both (L, L') and (y, i), and thus the computational effort for the matrix inversion increases as
O(N3). A considerable speed-up can be achieved for large systems by using the concept of the
screening transformation.

-1
gk E)} (69)

Lr’
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6.3 Two-dimensional systems: finite-thickness slabs and half-infinite crys-
tals

The extension of the KKR method to the treatment of layered systems, such as surfaces and
interfaces, is straightforward, and most efficient within the screened KKR formalism, where
O(N) scaling can be achieved (where N is the number of layers).

When treating a layered system, a surface-adapted geometry is used, in the sense that the two-
dimensional periodicity of the atomic layers parallel to the surface (or interface) is exploited
while the direction perpendicular to these layers is treated as if these were different atoms in
a unit cell. The Fourier transforms are done now within the two-dimensional surface Brillouin
zone (SBZ), and the corresponding integration is over all k| in the SBZ. Thus, we have

G () = — / 2y MR R) ik ()
ASBZ SBZ
(1= @k B) at(E) 6 )] (70)

where now R are in-plane position vectors of the two-dimensional Bravais lattice, while y*
are vectors connecting atomic positions in different layers; Agpy is the area of the SBZ.

In the case of surfaces, the vacuum is described by empty sites, meaning that the lattice structure
is continued into the vacuum but no nuclei are positioned there. In this way, the vacuum po-
tential and charge density are calculated within the multiple-scattering formalism on the same
footing as the bulk. In practice, three or four monolayers of vacuum sites are enough for the
calculation of the electronic structure; Eq.(70) can be cut-off after that.

Depending on the problem, one can choose to use a slab of finite thickness in order to represent
a surface or interface, or one can choose to take half-infinite boundary conditions. In the latter
case, and starting from a “boundary” layer, the crystal is continued by periodically repeating
the potential of this boundary layer to all subsequent layers up to infinity. One is then faced
with a problem of inverting an infinite matrix, which due to the screening transformation has
a tridiagonal form, in order to find the Green function in the region of interest. This is done
efficiently by the decimation technique [89]. which is based on a iterative inversion of matrices
of doubled size at each step. In this way the number of layers which are included in the Green
function grows exponentially with the number of steps, and the limit of the half-infinite crystal
is rapidly achieved.

Once the structural Green function G%%,(E) of the ideal crystal is known (e.g. surface), the
Green function Tz/,(E ) for the crystal with impurity can be evaluated by a modified Dyson
equation

nn' Pinn! E Znn'! n' ~m''n’' n n on
LL' — LL' _'_ GL " Atl// L"L! 5 Atl = tl — tl (71)

n//L//

where At} is the difference ¢} — gl" between the ¢-matrices in the perturbed and in the ideal
lattice. Since this difference, determined by the perturbation of the potential, is restricted to the
vicinity of the impurity, the Green function in this subspace can be easily determined in real
space by matrix inversion. The rank of the matrices to be inverted is given by the number n, of
perturbed potentials times the number (/,,,x + 1)2 of angular momenta used. Here [, is the
maximum angular momentum used in the calculations, e.g. [;,.x = 3.

For a single impurity it is often sufficient to neglect the perturbation of the neighboring host
atoms and to take into account in Eq.(71) only the perturbation due to the impurity potential
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into account. This so-called single site approximation gives a quite reasonable description of
the electronic structure of the impurity and is the essential ingredient of the coherent poten-
tial approximation for random alloys. For a more accurate description the perturbations of the
neighbors have to be included. The size of the perturbation naturally increases, if impurity pairs,
trimers or larger clusters of impurities are included. One should finally add that the structural

o
Green function G}, describes the correct embedding in the local environment. Therefore the

calculation of G%’, represents the high entrance fee one has to pay in Green function calcula-
tions.
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