000056060 001__ 56060
000056060 005__ 20180211172432.0
000056060 0247_ $$2DOI$$a10.1016/j.physb.2005.12.161
000056060 0247_ $$2WOS$$aWOS:000237329500158
000056060 037__ $$aPreJuSER-56060
000056060 041__ $$aeng
000056060 082__ $$a530
000056060 084__ $$2WoS$$aPhysics, Condensed Matter
000056060 1001_ $$0P:(DE-HGF)0$$aSato, K.$$b0
000056060 245__ $$aCurie temperatures of dilute magnetic semiconductors from LDA+U electronic structure calculations
000056060 260__ $$aAmsterdam$$bNorth-Holland Physics Publ.$$c2006
000056060 300__ $$a639 - 642
000056060 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000056060 3367_ $$2DataCite$$aOutput Types/Journal article
000056060 3367_ $$00$$2EndNote$$aJournal Article
000056060 3367_ $$2BibTeX$$aARTICLE
000056060 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000056060 3367_ $$2DRIVER$$aarticle
000056060 440_0 $$04907$$aPhysica B: Condensed Matter$$v376$$x0921-4526
000056060 500__ $$aRecord converted from VDB: 12.11.2012
000056060 520__ $$aThe magnetic properties of dilute magnetic semiconductors (DMS) are calculated by using the local density approximation + U(LDA + U) method. In the LDA + U, occupied d-states in (Ga, Mn)As are predicted at lower energy than in the LDA and p-d exchange interaction explains calculated concentration dependence of Curie temperature very well. In (Ga, Mn)N, unoccupied d states are predicted at higher energy by LIDA + U, resulting in higher Curie temperatures than in LDA at high concentrations due to the suppression of the anti-ferromagnetic super-exchange interaction. (c) 2006 Elsevier B.V. All rights reserved.
000056060 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000056060 588__ $$aDataset connected to Web of Science
000056060 650_7 $$2WoSType$$aJ
000056060 65320 $$2Author$$adilute magnetic semiconductor
000056060 65320 $$2Author$$aCurie temperature
000056060 65320 $$2Author$$aLDA plus U
000056060 7001_ $$0P:(DE-Juel1)130612$$aDederichs, P. H.$$b1$$uFZJ
000056060 7001_ $$0P:(DE-HGF)0$$aKatayama-Yoshida, H.$$b2
000056060 773__ $$0PERI:(DE-600)1466579-7$$a10.1016/j.physb.2005.12.161$$gVol. 376-377, p. 639 - 642$$p639 - 642$$q376-377<639 - 642$$tPhysica / B$$v376-377$$x0921-4526$$y2006
000056060 8567_ $$uhttp://dx.doi.org/10.1016/j.physb.2005.12.161
000056060 909CO $$ooai:juser.fz-juelich.de:56060$$pVDB
000056060 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000056060 9141_ $$aNachtrag$$y2006
000056060 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000056060 9201_ $$0I:(DE-Juel1)VDB32$$d31.12.2006$$gIFF$$kIFF-TH-III$$lTheorie III$$x1
000056060 970__ $$aVDB:(DE-Juel1)87604
000056060 980__ $$aVDB
000056060 980__ $$aConvertedRecord
000056060 980__ $$ajournal
000056060 980__ $$aI:(DE-Juel1)PGI-2-20110106
000056060 980__ $$aUNRESTRICTED
000056060 981__ $$aI:(DE-Juel1)PGI-2-20110106