000056188 001__ 56188 000056188 005__ 20180211180507.0 000056188 0247_ $$2DOI$$a10.1007/s10832-007-9032-7 000056188 0247_ $$2WOS$$aWOS:000251795200006 000056188 037__ $$aPreJuSER-56188 000056188 041__ $$aeng 000056188 082__ $$a620 000056188 084__ $$2WoS$$aMaterials Science, Ceramics 000056188 1001_ $$0P:(DE-Juel1)VDB32996$$aShiratori, Y.$$b0$$uFZJ 000056188 245__ $$aNoncentrosymmetric phase of submicron NaNbO3 crystallites 000056188 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2007 000056188 300__ $$a273 - 280 000056188 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000056188 3367_ $$2DataCite$$aOutput Types/Journal article 000056188 3367_ $$00$$2EndNote$$aJournal Article 000056188 3367_ $$2BibTeX$$aARTICLE 000056188 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000056188 3367_ $$2DRIVER$$aarticle 000056188 440_0 $$03263$$aJournal of Electroceramics$$v19$$x1385-3449$$y4 000056188 500__ $$aRecord converted from VDB: 12.11.2012 000056188 520__ $$aThe temperature and pressure characteristics of a noncentrosymmetric crystal modification of NaNbO3 were studied by Raman spectroscopy. A transition towards the bulk-like structure of NaNbO3 occurs in the temperature range from 280 to 360 degrees C. High-pressure Raman spectroscopy revealed successive pressure-induced phase transitions at around 2, 6.5 and 10 GPa. Raman scattering profiles recorded above 7 GPa correspond to those reported for the bulk. The temperature-induced spectral changes were completely reversible between -150 and 450 degrees C. Those induced by pressure were almost reversible from ambient pressure up to 15.9 GPa. Piezoresponse force microscopy demonstrated the occurrence of piezoelectric activity for submicron NaNbO3 crystals with particle size ranging from 200 to 400 nm. The noncentrosymmetric crystallographic structure plays a critical role for the enhancement of piezoelectricity. 000056188 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0 000056188 588__ $$aDataset connected to Web of Science 000056188 650_7 $$2WoSType$$aJ 000056188 65320 $$2Author$$aniobates 000056188 65320 $$2Author$$aphase transition 000056188 65320 $$2Author$$aRaman spectroscopy 000056188 65320 $$2Author$$apiezoelectricity 000056188 65320 $$2Author$$asize effect 000056188 7001_ $$0P:(DE-HGF)0$$aMagrez, A.$$b1 000056188 7001_ $$0P:(DE-HGF)0$$aKasezawa, K.$$b2 000056188 7001_ $$0P:(DE-HGF)0$$aKato, M.$$b3 000056188 7001_ $$0P:(DE-Juel1)VDB60095$$aRöhrig, S.$$b4$$uFZJ 000056188 7001_ $$0P:(DE-Juel1)VDB42216$$aPeter, F.$$b5$$uFZJ 000056188 7001_ $$0P:(DE-Juel1)130894$$aPithan, C.$$b6$$uFZJ 000056188 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b7$$uFZJ 000056188 773__ $$0PERI:(DE-600)1472395-5$$a10.1007/s10832-007-9032-7$$gVol. 19, p. 273 - 280$$p273 - 280$$q19<273 - 280$$tJournal of electroceramics$$v19$$x1385-3449$$y2007 000056188 8567_ $$uhttp://dx.doi.org/10.1007/s10832-007-9032-7 000056188 909CO $$ooai:juser.fz-juelich.de:56188$$pVDB 000056188 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt bis 2009 000056188 9141_ $$y2007 000056188 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000056188 9201_ $$0I:(DE-Juel1)VDB786$$d31.12.2010$$gIFF$$kIFF-6$$lElektronische Materialien$$x0 000056188 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1 000056188 970__ $$aVDB:(DE-Juel1)88136 000056188 980__ $$aVDB 000056188 980__ $$aConvertedRecord 000056188 980__ $$ajournal 000056188 980__ $$aI:(DE-Juel1)PGI-7-20110106 000056188 980__ $$aI:(DE-82)080009_20140620 000056188 980__ $$aUNRESTRICTED 000056188 981__ $$aI:(DE-Juel1)PGI-7-20110106 000056188 981__ $$aI:(DE-Juel1)VDB881