000056188 001__ 56188
000056188 005__ 20180211180507.0
000056188 0247_ $$2DOI$$a10.1007/s10832-007-9032-7
000056188 0247_ $$2WOS$$aWOS:000251795200006
000056188 037__ $$aPreJuSER-56188
000056188 041__ $$aeng
000056188 082__ $$a620
000056188 084__ $$2WoS$$aMaterials Science, Ceramics
000056188 1001_ $$0P:(DE-Juel1)VDB32996$$aShiratori, Y.$$b0$$uFZJ
000056188 245__ $$aNoncentrosymmetric phase of submicron NaNbO3 crystallites
000056188 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2007
000056188 300__ $$a273 - 280
000056188 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000056188 3367_ $$2DataCite$$aOutput Types/Journal article
000056188 3367_ $$00$$2EndNote$$aJournal Article
000056188 3367_ $$2BibTeX$$aARTICLE
000056188 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000056188 3367_ $$2DRIVER$$aarticle
000056188 440_0 $$03263$$aJournal of Electroceramics$$v19$$x1385-3449$$y4
000056188 500__ $$aRecord converted from VDB: 12.11.2012
000056188 520__ $$aThe temperature and pressure characteristics of a noncentrosymmetric crystal modification of NaNbO3 were studied by Raman spectroscopy. A transition towards the bulk-like structure of NaNbO3 occurs in the temperature range from 280 to 360 degrees C. High-pressure Raman spectroscopy revealed successive pressure-induced phase transitions at around 2, 6.5 and 10 GPa. Raman scattering profiles recorded above 7 GPa correspond to those reported for the bulk. The temperature-induced spectral changes were completely reversible between -150 and 450 degrees C. Those induced by pressure were almost reversible from ambient pressure up to 15.9 GPa. Piezoresponse force microscopy demonstrated the occurrence of piezoelectric activity for submicron NaNbO3 crystals with particle size ranging from 200 to 400 nm. The noncentrosymmetric crystallographic structure plays a critical role for the enhancement of piezoelectricity.
000056188 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000056188 588__ $$aDataset connected to Web of Science
000056188 650_7 $$2WoSType$$aJ
000056188 65320 $$2Author$$aniobates
000056188 65320 $$2Author$$aphase transition
000056188 65320 $$2Author$$aRaman spectroscopy
000056188 65320 $$2Author$$apiezoelectricity
000056188 65320 $$2Author$$asize effect
000056188 7001_ $$0P:(DE-HGF)0$$aMagrez, A.$$b1
000056188 7001_ $$0P:(DE-HGF)0$$aKasezawa, K.$$b2
000056188 7001_ $$0P:(DE-HGF)0$$aKato, M.$$b3
000056188 7001_ $$0P:(DE-Juel1)VDB60095$$aRöhrig, S.$$b4$$uFZJ
000056188 7001_ $$0P:(DE-Juel1)VDB42216$$aPeter, F.$$b5$$uFZJ
000056188 7001_ $$0P:(DE-Juel1)130894$$aPithan, C.$$b6$$uFZJ
000056188 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b7$$uFZJ
000056188 773__ $$0PERI:(DE-600)1472395-5$$a10.1007/s10832-007-9032-7$$gVol. 19, p. 273 - 280$$p273 - 280$$q19<273 - 280$$tJournal of electroceramics$$v19$$x1385-3449$$y2007
000056188 8567_ $$uhttp://dx.doi.org/10.1007/s10832-007-9032-7
000056188 909CO $$ooai:juser.fz-juelich.de:56188$$pVDB
000056188 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000056188 9141_ $$y2007
000056188 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000056188 9201_ $$0I:(DE-Juel1)VDB786$$d31.12.2010$$gIFF$$kIFF-6$$lElektronische Materialien$$x0
000056188 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000056188 970__ $$aVDB:(DE-Juel1)88136
000056188 980__ $$aVDB
000056188 980__ $$aConvertedRecord
000056188 980__ $$ajournal
000056188 980__ $$aI:(DE-Juel1)PGI-7-20110106
000056188 980__ $$aI:(DE-82)080009_20140620
000056188 980__ $$aUNRESTRICTED
000056188 981__ $$aI:(DE-Juel1)PGI-7-20110106
000056188 981__ $$aI:(DE-Juel1)VDB881