001     56188
005     20180211180507.0
024 7 _ |2 DOI
|a 10.1007/s10832-007-9032-7
024 7 _ |2 WOS
|a WOS:000251795200006
037 _ _ |a PreJuSER-56188
041 _ _ |a eng
082 _ _ |a 620
084 _ _ |2 WoS
|a Materials Science, Ceramics
100 1 _ |a Shiratori, Y.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB32996
245 _ _ |a Noncentrosymmetric phase of submicron NaNbO3 crystallites
260 _ _ |a Dordrecht [u.a.]
|b Springer Science + Business Media B.V
|c 2007
300 _ _ |a 273 - 280
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Electroceramics
|x 1385-3449
|0 3263
|y 4
|v 19
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The temperature and pressure characteristics of a noncentrosymmetric crystal modification of NaNbO3 were studied by Raman spectroscopy. A transition towards the bulk-like structure of NaNbO3 occurs in the temperature range from 280 to 360 degrees C. High-pressure Raman spectroscopy revealed successive pressure-induced phase transitions at around 2, 6.5 and 10 GPa. Raman scattering profiles recorded above 7 GPa correspond to those reported for the bulk. The temperature-induced spectral changes were completely reversible between -150 and 450 degrees C. Those induced by pressure were almost reversible from ambient pressure up to 15.9 GPa. Piezoresponse force microscopy demonstrated the occurrence of piezoelectric activity for submicron NaNbO3 crystals with particle size ranging from 200 to 400 nm. The noncentrosymmetric crystallographic structure plays a critical role for the enhancement of piezoelectricity.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a niobates
653 2 0 |2 Author
|a phase transition
653 2 0 |2 Author
|a Raman spectroscopy
653 2 0 |2 Author
|a piezoelectricity
653 2 0 |2 Author
|a size effect
700 1 _ |a Magrez, A.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Kasezawa, K.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Kato, M.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Röhrig, S.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB60095
700 1 _ |a Peter, F.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB42216
700 1 _ |a Pithan, C.
|b 6
|u FZJ
|0 P:(DE-Juel1)130894
700 1 _ |a Waser, R.
|b 7
|u FZJ
|0 P:(DE-Juel1)131022
773 _ _ |a 10.1007/s10832-007-9032-7
|g Vol. 19, p. 273 - 280
|p 273 - 280
|q 19<273 - 280
|0 PERI:(DE-600)1472395-5
|t Journal of electroceramics
|v 19
|y 2007
|x 1385-3449
856 7 _ |u http://dx.doi.org/10.1007/s10832-007-9032-7
909 C O |o oai:juser.fz-juelich.de:56188
|p VDB
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.12.2010
|g IFF
|k IFF-6
|l Elektronische Materialien
|0 I:(DE-Juel1)VDB786
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)88136
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21