001     56189
005     20180211182229.0
024 7 _ |2 DOI
|a 10.1002/pssr.200701003
024 7 _ |2 WOS
|a WOS:000244882400018
037 _ _ |a PreJuSER-56189
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Materials Science, Multidisciplinary
084 _ _ |2 WoS
|a Physics, Applied
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Szot, K.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB2799
245 _ _ |a Nanoscale resistive switching in SrTiO3 thin films
260 _ _ |a Weinheim
|b Wiley-VCH
|c 2007
300 _ _ |a R86
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physica Status Solidi - Rapid Research Letters
|x 1862-6254
|0 16681
|v 1
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The local conductivity of SrTiO3 thin films epitaxially grown on SrRuO3-buffered SrTiO3 single crystals has been investigated in detail with an atomic force microscope equipped with a conducting tip (LC-AFM). These experiments demonstrate that the conductivity of SrTiO3 thin films originates from nanoscale well-conducting filaments connecting the surface to the SrRuO3 bottom electrode. The electrical conduction of the filaments is shown to be reversible modulated over several orders of magnitude by application of an appropriate electrical field. We analyze the resistive switching by addressing individual filaments with the AFM tip as well as by scanning areas up to the mu m scale. Temperature dependent measurements reveal that resistive switching on a macroscopic scale can be traced down to the insulator-to-metal transition of the independently switchable filaments.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Dittmann, R.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB5464
700 1 _ |a Speier, W.
|b 2
|u FZJ
|0 P:(DE-Juel1)125382
700 1 _ |a Waser, R.
|b 3
|u FZJ
|0 P:(DE-Juel1)131022
773 _ _ |a 10.1002/pssr.200701003
|g Vol. 1, p. R86
|p R86
|q 1|0 PERI:(DE-600)2259465-6
|t Physica status solidi / Rapid research letters
|v 1
|y 2007
|x 1862-6254
856 7 _ |u http://dx.doi.org/10.1002/pssr.200701003
909 C O |o oai:juser.fz-juelich.de:56189
|p VDB
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0020
|a No peer review
920 1 _ |d 31.12.2010
|g IFF
|k IFF-6
|l Elektronische Materialien
|0 I:(DE-Juel1)VDB786
|x 0
920 1 _ |d 14.09.2008
|g CNI
|k CNI
|l Center of Nanoelectronic Systems for Information Technology
|0 I:(DE-Juel1)VDB381
|x 1
|z 381
920 1 _ |d 31.12.2009
|g UA
|k UA
|l Unternehmensentwicklung und Außenbeziehung
|0 I:(DE-Juel1)VDB841
|x 2
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)88137
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-7-20110106
980 _ _ |a I:(DE-Juel1)VDB381
980 _ _ |a I:(DE-Juel1)FS-20090406
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)PGI-7-20110106
981 _ _ |a I:(DE-Juel1)VDB381
981 _ _ |a I:(DE-Juel1)FS-20090406
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21