000056258 001__ 56258
000056258 005__ 20180211165023.0
000056258 0247_ $$2pmid$$apmid:17538866
000056258 0247_ $$2DOI$$a10.1055/s-2007-965257
000056258 0247_ $$2WOS$$aWOS:000252496800005
000056258 037__ $$aPreJuSER-56258
000056258 041__ $$aeng
000056258 082__ $$a580
000056258 084__ $$2WoS$$aPlant Sciences
000056258 1001_ $$0P:(DE-HGF)0$$aFares, S.$$b0
000056258 245__ $$aStomatal uptake and stomatal deposition of ozone in isoprene and monoterpene emitting plants
000056258 260__ $$aOxford [u.a.] :Wiley- Blackwell$$bWiley-Blackwell - STM$$c2008
000056258 300__ $$a44 - 54
000056258 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000056258 3367_ $$2DataCite$$aOutput Types/Journal article
000056258 3367_ $$00$$2EndNote$$aJournal Article
000056258 3367_ $$2BibTeX$$aARTICLE
000056258 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000056258 3367_ $$2DRIVER$$aarticle
000056258 440_0 $$010981$$aPlant Biology$$v10$$x1435-8603
000056258 500__ $$aRecord converted from VDB: 12.11.2012
000056258 520__ $$aVolatile isoprenoids were reported to protect plants against ozone. To understand whether this could be the result of a direct scavenging of ozone by these molecules, the stomatal and non-stomatal uptake of ozone was estimated in plants emitting isoprene or monoterpenes. Ozone uptake by holm oak (Quercus ilex, a monoterpene emitter) and black poplar (Populus nigra, an isoprene emitter) was studied in whole plant enclosures (continuously stirred tank reactors, CSTR). The ozone uptake by plants was estimated measuring ozone concentration at the inlet and outlet of the reactors, after correcting for the uptake of the enclosure materials. Destruction of ozone at the cuticle or at the plant stems was found to be negligible compared to the ozone uptake through the stomata. For both plant species, a relationship between stomatal conductance and ozone uptake was found. For the poplar, the measured ozone losses were explained by the uptake of ozone through the stomata only, and ozone destruction by gas phase reactions with isoprene was negligible. For the oak, gas phase reactions of ozone with the monoterpenes emitted by the plants contributed significantly to ozone destruction. This was confirmed by two different experiments showing a) that in cases of high stomatal conductance but under low CO(2) concentration, a reduction of monoterpene emission was still associated with reduced O(3) uptake; and b) that ozone losses due to the gas phase reactions only can be measured when using the exhaust from a plant chamber to determine the gas phase reactivity in an empty reaction chamber. Monoterpenes can therefore relevantly scavenge ozone at leaf level contributing to protection against ozone.
000056258 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000056258 588__ $$aDataset connected to Web of Science, Pubmed
000056258 650_2 $$2MeSH$$aButadienes: metabolism
000056258 650_2 $$2MeSH$$aHemiterpenes: metabolism
000056258 650_2 $$2MeSH$$aMonoterpenes: metabolism
000056258 650_2 $$2MeSH$$aOzone: metabolism
000056258 650_2 $$2MeSH$$aPentanes: metabolism
000056258 650_2 $$2MeSH$$aPlant Stomata: metabolism
000056258 650_2 $$2MeSH$$aPopulus: metabolism
000056258 650_2 $$2MeSH$$aQuercus: metabolism
000056258 650_7 $$00$$2NLM Chemicals$$aButadienes
000056258 650_7 $$00$$2NLM Chemicals$$aHemiterpenes
000056258 650_7 $$00$$2NLM Chemicals$$aMonoterpenes
000056258 650_7 $$00$$2NLM Chemicals$$aPentanes
000056258 650_7 $$010028-15-6$$2NLM Chemicals$$aOzone
000056258 650_7 $$078-79-5$$2NLM Chemicals$$aisoprene
000056258 650_7 $$2WoSType$$aJ
000056258 65320 $$2Author$$aozone uptake
000056258 65320 $$2Author$$astomatal conductance
000056258 65320 $$2Author$$aisoprene
000056258 65320 $$2Author$$amonoterpenes
000056258 65320 $$2Author$$aphotosynthesis
000056258 65320 $$2Author$$areaction chambers
000056258 7001_ $$0P:(DE-HGF)0$$aLoreto, F.$$b1
000056258 7001_ $$0P:(DE-Juel1)129345$$aKleist, E.$$b2$$uFZJ
000056258 7001_ $$0P:(DE-Juel1)VDB1780$$aWildt, J.$$b3$$uFZJ
000056258 773__ $$0PERI:(DE-600)2026390-9$$a10.1055/s-2007-965257$$gVol. 10, p. 44 - 54$$p44 - 54$$q10<44 - 54$$tPlant biology$$v10$$x1435-8603$$y2008
000056258 8567_ $$uhttp://dx.doi.org/10.1055/s-2007-965257
000056258 909CO $$ooai:juser.fz-juelich.de:56258$$pVDB
000056258 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000056258 9141_ $$y2008
000056258 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000056258 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1
000056258 970__ $$aVDB:(DE-Juel1)88220
000056258 980__ $$aVDB
000056258 980__ $$aConvertedRecord
000056258 980__ $$ajournal
000056258 980__ $$aI:(DE-Juel1)IBG-2-20101118
000056258 980__ $$aUNRESTRICTED
000056258 981__ $$aI:(DE-Juel1)IBG-2-20101118
000056258 981__ $$aI:(DE-Juel1)ICG-3-20090406