000056261 001__ 56261 000056261 005__ 20180211172356.0 000056261 0247_ $$2pmid$$apmid:17369338 000056261 0247_ $$2pmc$$apmc:PMC1907130 000056261 0247_ $$2DOI$$a10.1128/AEM.02994-06 000056261 0247_ $$2WOS$$aWOS:000246680500024 000056261 037__ $$aPreJuSER-56261 000056261 041__ $$aeng 000056261 082__ $$a570 000056261 084__ $$2WoS$$aBiotechnology & Applied Microbiology 000056261 084__ $$2WoS$$aMicrobiology 000056261 1001_ $$0P:(DE-HGF)0$$aGabriel, F. L. P.$$b0 000056261 245__ $$aElucidation of the ipso-substitution mechanism for side-chain cleavage of alpha-quaternary 4-nonylphenols and 4-t-butoxyphenol in Sphingobium xenophagum Bayram 000056261 260__ $$aWashington, DC [u.a.]$$bSoc.$$c2007 000056261 300__ $$a3320 - 3326 000056261 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000056261 3367_ $$2DataCite$$aOutput Types/Journal article 000056261 3367_ $$00$$2EndNote$$aJournal Article 000056261 3367_ $$2BibTeX$$aARTICLE 000056261 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000056261 3367_ $$2DRIVER$$aarticle 000056261 440_0 $$08561$$aApplied and Environmental Microbiology$$v73$$x0099-2240$$y10 000056261 500__ $$aRecord converted from VDB: 12.11.2012 000056261 520__ $$aRecently we showed that degradation of several nonylphenol isomers with alpha-quaternary carbon atoms is initiated by ipso-hydroxylation in Sphingobium xenophagum Bayram (F. L. P. Gabriel, A. Heidlberger, D. Rentsch, W. Giger, K. Guenther, and H.-P. E. Kohler, J. Biol. Chem. 280:15526-15533, 2005). Here, we demonstrate with 18O-labeling experiments that the ipso-hydroxy group was derived from molecular oxygen and that, in the major pathway for cleavage of the alkyl moiety, the resulting nonanol metabolite contained an oxygen atom originating from water and not from the ipso-hydroxy group, as was previously assumed. Our results clearly show that the alkyl cation derived from the alpha-quaternary nonylphenol 4-(1-ethyl-1,4-dimethyl-pentyl)-phenol through ipso-hydroxylation and subsequent dissociation of the 4-alkyl-4-hydroxy-cyclohexadienone intermediate preferentially combines with a molecule of water to yield the corresponding alcohol and hydroquinone. However, the metabolism of certain alpha,alpha-dimethyl-substituted nonylphenols appears to also involve a reaction of the cation with the ipso-hydroxy group to form the corresponding 4-alkoxyphenols. Growth, oxygen uptake, and 18O-labeling experiments clearly indicate that strain Bayram metabolized 4-t-butoxyphenol by ipso-hydroxylation to a hemiketal followed by spontaneous dissociation to the corresponding alcohol and p-quinone. Hydroquinone effected high oxygen uptake in assays with induced resting cells as well as in assays with cell extracts. This further corroborates the role of hydroquinone as the ring cleavage intermediate during degradation of 4-nonylphenols and 4-alkoxyphenols. 000056261 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0 000056261 588__ $$aDataset connected to Web of Science, Pubmed 000056261 650_2 $$2MeSH$$aBiodegradation, Environmental 000056261 650_2 $$2MeSH$$aCyclohexanes: metabolism 000056261 650_2 $$2MeSH$$aCyclohexenes 000056261 650_2 $$2MeSH$$aGas Chromatography-Mass Spectrometry 000056261 650_2 $$2MeSH$$aMetabolic Networks and Pathways 000056261 650_2 $$2MeSH$$aMolecular Structure 000056261 650_2 $$2MeSH$$aOxygen: metabolism 000056261 650_2 $$2MeSH$$aOxygen Isotopes: metabolism 000056261 650_2 $$2MeSH$$aPhenols: metabolism 000056261 650_2 $$2MeSH$$aSphingomonas: chemistry 000056261 650_2 $$2MeSH$$aSphingomonas: growth & development 000056261 650_2 $$2MeSH$$aSphingomonas: metabolism 000056261 650_7 $$00$$2NLM Chemicals$$aCyclohexanes 000056261 650_7 $$00$$2NLM Chemicals$$aCyclohexenes 000056261 650_7 $$00$$2NLM Chemicals$$aOxygen Isotopes 000056261 650_7 $$00$$2NLM Chemicals$$aPhenols 000056261 650_7 $$00$$2NLM Chemicals$$acyclohexadienone 000056261 650_7 $$0104-40-5$$2NLM Chemicals$$a4-nonylphenol 000056261 650_7 $$0122-94-1$$2NLM Chemicals$$a4-butoxyphenol 000056261 650_7 $$07782-44-7$$2NLM Chemicals$$aOxygen 000056261 650_7 $$2WoSType$$aJ 000056261 7001_ $$0P:(DE-HGF)0$$aCyris, M.$$b1 000056261 7001_ $$0P:(DE-HGF)0$$aJonkers, N.$$b2 000056261 7001_ $$0P:(DE-HGF)0$$aGiger, W.$$b3 000056261 7001_ $$0P:(DE-Juel1)129325$$aGünther, K.$$b4$$uFZJ 000056261 7001_ $$0P:(DE-HGF)0$$aKohler, H.-P. E.$$b5 000056261 773__ $$0PERI:(DE-600)1478346-0$$a10.1128/AEM.02994-06$$gVol. 73, p. 3320 - 3326$$p3320 - 3326$$q73<3320 - 3326$$tApplied and environmental microbiology$$v73$$x0099-2240$$y2007 000056261 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC1907130 000056261 909CO $$ooai:juser.fz-juelich.de:56261$$pVDB 000056261 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0 000056261 9141_ $$y2007 000056261 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000056261 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1 000056261 970__ $$aVDB:(DE-Juel1)88224 000056261 980__ $$aVDB 000056261 980__ $$aConvertedRecord 000056261 980__ $$ajournal 000056261 980__ $$aI:(DE-Juel1)IBG-2-20101118 000056261 980__ $$aUNRESTRICTED 000056261 981__ $$aI:(DE-Juel1)IBG-2-20101118 000056261 981__ $$aI:(DE-Juel1)ICG-3-20090406