000056263 001__ 56263
000056263 005__ 20180211165433.0
000056263 0247_ $$2pmid$$apmid:17384157
000056263 0247_ $$2pmc$$apmc:PMC1914152
000056263 0247_ $$2DOI$$a10.1104/pp.107.099077
000056263 0247_ $$2WOS$$aWOS:000247075000036
000056263 037__ $$aPreJuSER-56263
000056263 041__ $$aeng
000056263 082__ $$a580
000056263 084__ $$2WoS$$aPlant Sciences
000056263 1001_ $$0P:(DE-Juel1)129358$$aMatsubara, S.$$b0$$uFZJ
000056263 245__ $$aShort- and long-term operation of the lutein-epoxide cycle in light-harvesting antenna complexes
000056263 260__ $$aRockville, Md.: Soc.$$bJSTOR$$c2007
000056263 300__ $$a926 - 941
000056263 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000056263 3367_ $$2DataCite$$aOutput Types/Journal article
000056263 3367_ $$00$$2EndNote$$aJournal Article
000056263 3367_ $$2BibTeX$$aARTICLE
000056263 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000056263 3367_ $$2DRIVER$$aarticle
000056263 440_0 $$04987$$aPlant Physiology$$v144$$x0032-0889
000056263 500__ $$aRecord converted from VDB: 12.11.2012
000056263 520__ $$aThe lutein-5,6-epoxide (Lx) cycle operates in some plants between lutein (L) and its monoepoxide, Lx. Whereas recent studies have established the photoprotective roles of the analogous violaxanthin cycle, physiological functions of the Lx cycle are still unknown. In this article, we investigated the operation of the Lx cycle in light-harvesting antenna complexes (Lhcs) of Inga sapindoides Willd, a tropical tree legume accumulating substantial Lx in shade leaves, to identify the xanthophyll-binding sites involved in short- and long-term responses of the Lx cycle and to analyze the effects on light-harvesting efficiency. In shade leaves, Lx was converted into L upon light exposure, which then replaced Lx in the peripheral V1 site in trimeric Lhcs and the internal L2 site in both monomeric and trimeric Lhcs, leading to xanthophyll composition resembling sun-type Lhcs. Similar to the violaxanthin cycle, the Lx cycle was operating in both photosystems, yet the light-induced Lx --> L conversion was not reversible overnight. Interestingly, the experiments using recombinant Lhcb5 reconstituted with different Lx and/or L levels showed that reconstitution with Lx results in a significantly higher fluorescence yield due to higher energy transfer efficiencies among chlorophyll (Chl) a molecules, as well as from xanthophylls to Chl a. Furthermore, the spectroscopic analyses of photosystem I-LHCI from I. sapindoides revealed prominent red-most Chl forms, having the lowest energy level thus far reported for higher plants, along with reduced energy transfer efficiency from antenna pigments to Chl a. These results are discussed in the context of photoacclimation and shade adaptation.
000056263 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000056263 588__ $$aDataset connected to Web of Science, Pubmed
000056263 650_2 $$2MeSH$$aAdaptation, Physiological
000056263 650_2 $$2MeSH$$aCarotenoids: metabolism
000056263 650_2 $$2MeSH$$aChlorophyll: metabolism
000056263 650_2 $$2MeSH$$aFabaceae: metabolism
000056263 650_2 $$2MeSH$$aLight-Harvesting Protein Complexes: metabolism
000056263 650_2 $$2MeSH$$aLutein: analogs & derivatives
000056263 650_2 $$2MeSH$$aLutein: metabolism
000056263 650_2 $$2MeSH$$aPhotosystem I Protein Complex: metabolism
000056263 650_2 $$2MeSH$$aPlant Leaves: metabolism
000056263 650_2 $$2MeSH$$aRecombinant Proteins: metabolism
000056263 650_2 $$2MeSH$$aSpectrum Analysis
000056263 650_2 $$2MeSH$$aSunlight
000056263 650_2 $$2MeSH$$aThylakoids: metabolism
000056263 650_2 $$2MeSH$$aTime Factors
000056263 650_7 $$00$$2NLM Chemicals$$aLight-Harvesting Protein Complexes
000056263 650_7 $$00$$2NLM Chemicals$$aPhotosystem I Protein Complex
000056263 650_7 $$00$$2NLM Chemicals$$aRecombinant Proteins
000056263 650_7 $$00$$2NLM Chemicals$$alutein-5,6-epoxide
000056263 650_7 $$0127-40-2$$2NLM Chemicals$$aLutein
000056263 650_7 $$01406-65-1$$2NLM Chemicals$$aChlorophyll
000056263 650_7 $$036-88-4$$2NLM Chemicals$$aCarotenoids
000056263 650_7 $$2WoSType$$aJ
000056263 7001_ $$0P:(DE-HGF)0$$aMorosinotto, T.$$b1
000056263 7001_ $$0P:(DE-Juel1)VDB11020$$aOsmond, C. B.$$b2$$uFZJ
000056263 7001_ $$0P:(DE-HGF)0$$aBassi, R.$$b3
000056263 773__ $$0PERI:(DE-600)2004346-6$$a10.1104/pp.107.099077$$gVol. 144, p. 926 - 941$$p926 - 941$$q144<926 - 941$$tPlant physiology$$v144$$x0032-0889$$y2007
000056263 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914152
000056263 909CO $$ooai:juser.fz-juelich.de:56263$$pVDB
000056263 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000056263 9141_ $$y2007
000056263 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000056263 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1
000056263 970__ $$aVDB:(DE-Juel1)88228
000056263 980__ $$aVDB
000056263 980__ $$aConvertedRecord
000056263 980__ $$ajournal
000056263 980__ $$aI:(DE-Juel1)IBG-2-20101118
000056263 980__ $$aUNRESTRICTED
000056263 981__ $$aI:(DE-Juel1)IBG-2-20101118
000056263 981__ $$aI:(DE-Juel1)ICG-3-20090406