000056338 001__ 56338 000056338 005__ 20240610121126.0 000056338 0247_ $$2DOI$$a10.1103/PhysRevLett.98.128103 000056338 0247_ $$2WOS$$aWOS:000245135400060 000056338 0247_ $$2Handle$$a2128/7677 000056338 037__ $$aPreJuSER-56338 000056338 041__ $$aeng 000056338 082__ $$a550 000056338 084__ $$2WoS$$aPhysics, Multidisciplinary 000056338 1001_ $$0P:(DE-Juel1)VDB37578$$aNoguchi, H.$$b0$$uFZJ 000056338 245__ $$aSwinging and Tumbling of Fluid Vesicles in Shear Flow 000056338 260__ $$aCollege Park, Md.$$bAPS$$c2007 000056338 300__ $$a128103 000056338 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000056338 3367_ $$2DataCite$$aOutput Types/Journal article 000056338 3367_ $$00$$2EndNote$$aJournal Article 000056338 3367_ $$2BibTeX$$aARTICLE 000056338 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000056338 3367_ $$2DRIVER$$aarticle 000056338 440_0 $$04925$$aPhysical Review Letters$$v98$$x0031-9007 000056338 500__ $$aRecord converted from VDB: 12.11.2012 000056338 520__ $$aThe dynamics of fluid vesicles in simple shear flow is studied using mesoscale simulations of dynamically triangulated surfaces, as well as a theoretical approach based on two variables: a shape parameter and the inclination angle, which has no adjustable parameters. We show that, between the well-known tank-treading and tumbling states, a new "swinging" state can appear. We predict the dynamic phase diagram as a function of the shear rate, the viscosities of the membrane and the internal fluid, and the reduced vesicle volume. Our results agree well with recent experiments. 000056338 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0 000056338 588__ $$aDataset connected to Web of Science 000056338 650_7 $$2WoSType$$aJ 000056338 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b1$$uFZJ 000056338 773__ $$0PERI:(DE-600)1472655-5$$a10.1103/PhysRevLett.98.128103$$gVol. 98, p. 128103$$p128103$$q98<128103$$tPhysical review letters$$v98$$x0031-9007$$y2007 000056338 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevLett.98.128103 000056338 8564_ $$uhttps://juser.fz-juelich.de/record/56338/files/FZJ-56338.pdf$$yOpenAccess$$zPublished final document. 000056338 8564_ $$uhttps://juser.fz-juelich.de/record/56338/files/FZJ-56338.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000056338 8564_ $$uhttps://juser.fz-juelich.de/record/56338/files/FZJ-56338.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000056338 8564_ $$uhttps://juser.fz-juelich.de/record/56338/files/FZJ-56338.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000056338 909CO $$ooai:juser.fz-juelich.de:56338$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000056338 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt bis 2009 000056338 9141_ $$y2007 000056338 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed 000056338 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000056338 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement 000056338 9201_ $$0I:(DE-Juel1)VDB782$$d31.12.2010$$gIFF$$kIFF-2$$lTheorie der Weichen Materie und Biophysik$$x0 000056338 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x1 000056338 970__ $$aVDB:(DE-Juel1)88360 000056338 9801_ $$aFullTexts 000056338 980__ $$aVDB 000056338 980__ $$aConvertedRecord 000056338 980__ $$ajournal 000056338 980__ $$aI:(DE-Juel1)ICS-2-20110106 000056338 980__ $$aI:(DE-Juel1)VDB1045 000056338 980__ $$aUNRESTRICTED 000056338 980__ $$aFullTexts 000056338 981__ $$aI:(DE-Juel1)IBI-5-20200312 000056338 981__ $$aI:(DE-Juel1)IAS-2-20090406 000056338 981__ $$aI:(DE-Juel1)ICS-2-20110106 000056338 981__ $$aI:(DE-Juel1)VDB1045