
FORSCHUNGSZENTRUM JÜLICH GmbH
Zentralinstitut für Angewandte Mathematik

D-52425 Jülich, Tel. (02461) 61-6402

Technical Report

JULI Project - Final Report

Ulrich Detert, Andreas Thomasch*, Norbert Eicker**,
Jeff Broughton*** (Eds.)

FZJ-ZAM-IB-2007-05

March 2007

(last change: 2.4.2007)

(*) IBM Deutschland GmbH
(**) ParTec Cluster Competence Center GmbH
(***) QLogic Corporation

JULI Project

Final Report
- March 2007 -

Ulrich Detert (Forschungszentrum Jülich GmbH)

Andreas Thomasch (IBM Deutschland GmbH)

Norbert Eicker (ParTec Cluster Competence Center GmbH)

Jeff Broughton (QLogic Corporation)

 (Editors)

The JULI project aimed at developing and evaluating a parallel compute cluster based on
IBM's BladeCenter H with JS21 nodes, QLogic’s InfiniPath network components and
ParTec’s ParaStation software. The project was carried out as a collaboration of
Forschungszentrum Jülich GmbH, IBM Deutschland GmbH, QLogic Corporation1 and
ParTec Cluster Competence Center GmbH. This report details the milestones and results of
the project.

1 Project Overview
The JULI project was targeted to evaluate a prototype of a next generation of cluster computing as a joint
research activity of partners from industry and academia. The aim was to integrate a first-of-a-kind cluster
architecture based on PowerPC processor technology, InfiniPath interconnect and ParaStation cluster
middleware. While each of these components existed individually before the JULI project, their
combination into a “best-of-breed” cluster was new. It required the development of an InfiniPath adapter
card in a blade form factor, firmware, driver, and MPI support as well as porting of various software
components to SLES10 for PowerPC. Partners of the project were: Forschungszentrum Jülich GmbH,
IBM Deutschland and IBM Deutschland Entwicklung GmbH, QLogic Corporation and ParTec Cluster
Competence Center GmbH. The project started in March 2006 with the availability of the first prototype
hardware and ended in December 2006 with the evaluation of the integrated system. Some concluding
work was done in the beginning of 2007.

The project was structured in two phases, phase 1 being focused on hardware and basic software
integration, phase 2 being related to software integration, cluster development and application case
studies. The following list marks important milestones in the two phases:

Phase 1

• Development of hardware prototypes: QLogic InfiniPath HighSpeed daughter card, Voltaire
Pass-Through module (IBM, QLogic, Voltaire)

1 Former PathScale before acquired by QLogic in April 2006 and becoming QLogic’s System Interconnect Group.

1

• Enable basic system functions: Operating system and device driver support, basic low-level
communication (IBM, QLogic, FZ Jülich)

• More complex integration tests: CSM, QLogic MPI on a larger system of up to 14 JS21 blades
(IBM, QLogic, FZ Jülich)

• Final integration with full size system of 62 blades; cluster ready for prototype interconnect
evaluation (IBM, QLogic, FZ Jülich)

• Shipment of full size cluster to Forschungszentrum Jülich; cluster ready for further evaluation by
FZ Jülich (IBM, QLogic, FZ Jülich)

Phase 2

• Verification of the prototype cluster by a larger set of synthetic benchmarks (FZ Jülich)

• Integration of batch system into the prototype cluster (IBM, FZ Jülich)

• Integration of ParaStation into the prototype cluster (ParTec, FZ Jülich)

• Early user access to prototype cluster with selected real-world applications (FZ Jülich)

• Integration of GPFS (General Parallel File System) into the prototype cluster (IBM, FZ Jülich)

• Verification of usability, stability, scalability and maintainability of the integrated system (FZ
Jülich)

At the time of delivery, this special solution was not expected to have production-ready reliability and
performance, but to allow a serious evaluation with customer application codes running on this new
cluster computing platform.

2 System Configuration (Ulrich Detert, Olaf Mextorf, Andreas Thomasch)

The following section describes the target system architecture and its components. This includes hardware
and software components. The system was developed in several steps as indicated in the previous section.
The configuration given here outlines the final target system's architecture [3].

Figure 1 depicts the basic system configuration. The system includes four BladeCenter H chassis for
compute nodes, each equipped with 14 JS21 blades, and one chassis with 6 blades for management, front-
end and I/O nodes.

Two Nortel switches in each chassis provide for Ethernet connectivity: they connect 14 ports that attach
to the blades to six external ports. The external ports can be connected to other Nortel switches in other
BladeCenter-H chassis, or to a separate Ethernet switch. The Gig-E network comprises two physical
networks, one for administrative tasks and cluster control, the other for GPFS I/O. The InfiniPath host
channel adapters in each node connect via Voltaire IB Pass-Through modules in each chassis to the
central Voltaire ISR9096 IB switch. The IB 4x network has a peak transfer rate of 1 GB/s per link and
direction.

Each JS21 compute blade forms an SMP node with 2 dual core PowerPC 970 MP processors (2.5 GHz)
and 4 GB memory (533 MHz DDR2/ECC). Each PPC 970 core can execute 2 Multiply-Add instructions
per clock cycle. Thus, a node delivers 40 GFLOPS peak, and the full system with 56 compute nodes has
2.24 TFLOPS peak. The JS21 includes two on-board Ethernet ports. In the compute nodes and login
node, the single-port InfiniPath HCA (in CFF-e form factor) is used as the HPC interconnect for MPI
traffic.

The physical layout of the system is given in Figure 2. The system comprises two racks, one holding the

2

56 compute blades, the corresponding Pass-Through modules and the Voltaire switch, the other
containing one blade chassis with the 6 service nodes, a DS4100 storage subsystem and the 48-port Gig-E
Cisco switch. The DS4100 storage subsystem is equipped with 14 disks SATA 400 GB, 7200 rpm. It is
directly connected to the four I/O nodes through Fibre Channel, using a BladeCenter optical pass-through
module and a small form-factor (SFF) Qlogic FC adapter card in the I/O nodes.

Figure 1: System configuration

The software stack of the JULI system includes the following components:

• Linux operating system SLES10, kernel 2.6.16, with modifications for InfiniPath adapter cards
and GPFS-specific kernel modules

• IBM Blade firmware SLOF 645 with InfiniPath support

• IBM Cluster Systems Management (CSM) 1.5

• ParaStation 4

• QLogic InfiniPath drivers 2.0

• QLogic MPI 2.0

• IBM GPFS 3.1

• IBM XLF 10.1 Fortran Compiler

• IBM XLC 8.0 C/C++ Compiler

• gcc 4.1 GNU C Compiler, gfortran Fortran Compiler

• Mathematical libraries: IBM ESSL 4.2, GotoBLAS 1.07, LAPACK 3.0, ScaLAPACK 1.7.2

3

• Torque 2.1 batch system

• IBM LoadLeveler 3.4 batch system

• IBM TSM 5.2 backup client

Figure 2: Physical layout

3 System Evaluation
System evaluation was done during all steps of the project. This included functionality and performance
tests of the integrated hardware and software components, assessment of the usability and maintainability
of all significant procedures and features and the evaluation of performance and scalability of selected
applications and benchmarks on the cluster.

The following sections summarize the results in selected areas.

3.1 Development and Bring-Up

3.1.1 Hardware Bringup (Heiko Schick)

The following paragraphs describe how the hardware bringup was done for project JULI.

4

For the JULI project we used Slimine Open Firmware (SLOF) for the IBM JS21 instead of the official
firmware image, because support for PCI Express devices, Message Signaled Interrupts and the QLogic
InfiniPath InfiniBand HCA was not in place when the project was started.

To support the QLogic InfiniPath/InfiniBand HCA it was necessary to initialize the PCI Express bus
correctly and enable Message Signalled Interrupts (MSIs). The device is addressed via the memory space:
the firmware has to program the BASE Address Registers (BARs) by writing the corresponding address
to the configuration space of the PCI device.

In SLOF this initialization is done by routines that are responsible to do the whole bus walk. During the
bus walk SLOF also geographically addresses the PCI slots via the PCI controller. The PCI bus is
enumerated according to the vendor ID, device ID for each possible combination of buses, devices, and
functions.

To make sure that this setup was done properly, the first step was to verify that the IBM JS21 and the
QLogic InfiniPath device are working together. Problems in this area will prevent firmware and Linux to
recognize the device. After the device was recognized, the next logical step was to verify, if the BAR
setup was done correctly and no overlapping memory windows occurred.

Message Signaled Interrupts were verified via a small inbound IB (loopback) tests, because the
InfiniBand subnet management is complex and problem determination is very difficult. Because of that,
an InfiniBand loopback connector was plugged to the QLogic InfiniPath device instead of a switch. This
test also verified all data paths (for PCI Express it is essential that all lanes are working in all possible
combinations without problems).

An InfiniBand subnet consists of Host Channel Adapters (HCA), switches and routers. The subnet
management is done by an application, which is called Subnet Manager (SM). The SM is responsible for
discovering, configuring, activating and managing the subnet. Typically the Subnet Manager is an
application that is running directly on the InfiniBand switch. The counterpart of the SM is the Subnet
Manager Agent (SMA). A Subnet Manager Agent is in every device (or system) and generates or
responds to control packets called Subnet Management Packets (SMPs). In most cases the SMA
configures all local components via SMPs that are sent via the unreliable datagram service. To activate an
InfiniBand port the SM communicates with the SMA and sets the port attributes (e.g. LID) via SMPs.

In general the outbound test has passed successfully when the IB port is active, because of the
communication, which was already done between the SMA and the SM. Problems in this area mostly
indicate that DMAs or interrupts (MSIs) are not working correctly.

The last step of the hardware bringup was to execute further IB tests (e.g. stress-runs and link handling on
disruption) and to do micro-benchmarking on the main scenarios (e.g. latency).

3.1.2 System Installation (Torsten Bloth)

To provide a tested and fully configured hardware environment to FZ Jülich, IBM installed the prototype
cluster in the IBM labs in Böblingen. The InfiniBand cabling itself was the tricky part of the hardware
installation. Such cabling was never done before at same scale within the IBM BladeCenter environment.
The challenge was to place all 62 thick cables in a regular 19" server rack and not disturb the airflow of
each of the BladeCenter chassis.

To get started rapidly with the initial software bring-up the whole cluster was installed with the help of
SuSE’s AutoYast. The setup of CSM was planned as a future task. Later on, the kernel was patched with
necessary patches for MSI and SLOF support and distributed to the whole cluster. With this new kernel
image it was now possible to flash the new firmware and to enable the InfiniBand HCAs.

5

For getting a first feeling of the whole system, the cluster was stressed with some basic performance tests.
The InfiniBand HCA came with a fully featured package, including the driver, the MPI library and low
level test programs. Those test programs were very helpful to get the IB interconnection up and running.
We started with simple loopback tests and scaled up to all nodes.

The next test was done with the IMB suite [9], a set of benchmarks targeted at measuring the most
important MPI functions. The benchmark starts with simple point-to-point tests (like ping-pong) and ends
up at an all-nodes “All-To-All” test.

The last test and also an indication for the computational performance of the cluster was the popular HPL
(High Performance Linpack) benchmark [11]. As for other tests we started with settings for only one node
and scaled up to the whole 56 node setup. The scale-up was as expected and as estimated before. More
details on the IMB and Linpack benchmarks are given later in this report.

3.1.3 Network (Olaf Mextorf)

The network of the JULI cluster was set up using three separate IP subnets mainly for cluster
management traffic (CSM, ParaStation), for filesystem traffic (NFS, GPFS) and for the evaluation of IP-
over-InfiniBand (IPoIB).

Regarding the network design given in Figure 1, the maximum throughput of Ethernet traffic between any
two blade chassis is limited to 6 GBit/s (in each of the two Gigabit networks). By default, the IBM
Cluster1350 configuration contains only a single Ethernet wire from each of the 2 Nortel switches at each
chassis to the central Cisco switch, resulting in only 1 GBit/s in each network. Especially when looking at
the four file servers located in a single chassis, this is a potential bottleneck for blades from other chassis
in accessing services (NFS, GPFS) from these servers. To provide more aggregate Ethernet bandwidth
between chassis, we established and tested Gigabit Ethernet channeling (IEEE 802.3ad LACP) between
the Nortel and the Cisco switch (the Cisco Catalyst 4948G is able to handle 48 GBit/s full duplex Ethernet
traffic).

For a further increase in peak-bandwidth available for a single blade, other BladeCenter hardware options
exist (like a copper pass-through module which would provide full GE bandwidth to each blade). Such
options have not been studied in project JULI.

Concerning the management of the components, the CLI of the Nortel switches, based on a set of “full
screen menus”, are a little bit unusual and not as convenient as the de facto standard - the line oriented
Cisco IOS - is. Especially the configuration is a kind of unreadable compared to IOS. At the chassis
management (aMM) we suffered a little from a very primitive IP-stack implementation, giving not even
the possibility to define dedicated routes but only a default route. Assuming a certain necessity for
accessing the aMM from some workstations outside the dedicated and isolated management IP-subnet for
management reasons (especially in the case of all blades of a chassis being in trouble), the only possibility
of protecting the aMM is by externally implemented Access Control Lists (ACL), e.g. at the Cisco
Catalyst.

Regarding the network configuration of the blades we decided after some trouble at the beginning,
especially related to hardware changes, to have the configuration of the Ethernet adapters based on their
unique and system wide identical PCI slot position instead of the MAC address, giving even a better
environment for scripting all over the cluster. In addition we raised the MTU size at the blades and
configured Jumbo frames at the network components to increase the network throughput, especially
during the GPFS tests. During the GPFS-tests we used the SPAN-feature (Switch Port Analyzer) of the
central Cisco Catalyst switch for an in depth view into the GPFS traffic and some analysis of the
performance.

6

3.2 CSM (Karsten Kutzer, Michael Hennecke)

As CSM is being used as the management software on the FZJ supercomputers, one of the project goals
was to set up CSM [12] on the JULI cluster. Initially, an early version of CSM 1.5 for SLES10 has been
used and later updated to the generally available CSM 1.5.1. Most of this work was standard CSM
installation. Some insights from the installation are summarized below.

3.2.1 Hardware Control

To perform hardware control functions for a node, CSM needs to access a hardware control point and a
console server for the node. For BladeCenter nodes, these functions are both performed by the
BladeCenter's Advanced Management Module. In the node definition, PowerMethod=blade and
ConsoleMethod=blade are set, and the HWControlPoint and ConsoleServerName fields are set to point to
the aMM's IP name/address. A blade within that chassis can then be addressed by the HWControlNodeId
and ConsolePortNum fields. After this setup, the CSM HW control commands rpower and rconsole
worked as expected, as did the derived comands like csmstat.

One lesson learned with this setup was that there are actually two separate "service users" required on the
aMM, which CSM uses to connect for HW control and console access:

• For rpower, the default superuser profile USERID is assumed by CSM, and no setup is needed on
the aMM.

• For rconsole, a new ID with only "Blade Server Remote Console Access" authority is needed on
the aMM. CSM assumes a profile named RMTCON, and also assumes a default password for that
user.

While CSM assumes default passwords for these users, they should be changed to site-specific passwords
in the aMM menus. To change the passwords on the CSM side, you can use the systemid command.
Assuming the password is the same for all chassis, this password can be set globally for all nodes with the
blade PowerMethod, using the -p PowerMethod option:

 systemid -p blade USERID # then enter USEIRD's password
 systemid -c -p blade RMTCON # then enter RMTCON's password

If individual chassis have different passwords, those can still be set individually using aMM's hostname
rather than the -p PowerMethod option.

3.2.2 Provisioning and Node Installation

With CSM, the lshwinfo command can be used to aquire information about the blades (like their UUID
identifiers), which can then be used to create the node definitions for CSM. It can be run with the -p
PowerMethod option to provide information for all blades, or the -c <aMM-ip-addr> option to access a
specific BladeCenter H management module.

The getadapters command can be used to get the MAC addresses of the nodes, which are needed for node
installation. For BladeCenter nodes, the collection method can be specified as -m hwstat. The
csmsetupyast command will automatically invoke getadapters to determine the information on network
adapters, if it is not already stored in the node definiton at the time csmsetupyast is invoked.

To prepare node installation in a SLES environment, the CSM command csmsetupyast is used. It will
copy the SLES product CDs to a location that CSM can later use (typically /csminstall/Linux/SLES). This
step only needs to be done for the first node and can be suppressed for subsequent node installs. The
csmsetupyast command then prepares the installation through the SUSE AutoYaST mechanism: it sets up
necessary system services like DHCP (adding the nodes to be installed into /etc/dhcpd.conf) and tftpboot,

7

configures an Apache or NFS server, and also adapts the image files to be used with AutoYaST. CSM
ships some AutoYaST XML tempates which can be customized by the administrator if needed.

3.3 System Administration and Maintenance (Ulrich Detert)

3.3.1 Hardware Control

As outlined in the previous section, hardware control on the JULI cluster is implemented as a two-level
procedure. On the blade center level, the Advanced Management Module (aMM) gives access to each
single blade center chassis comprising up to 14 JS21 blades, switch modules, pass-through modules,
power modules, fan packs, blowers, the front panel controls and a media tray. On the cluster level, CSM
combines aMM functionality into a cluster-wide hardware monitoring and control system. This is realized
by remote logins from the CSM management node to the aMM instance related to a given blade or blade
center component.

aMM comes in two flavours: GUI based or CLI based. The aMM GUI is very handy for all sorts of
hardware maintenance on individual blades or blade center components. The following list summarizes
the most important features of the GUI for this purpose:

• System status (power status, LEDs, event log, power consumption, hardware and firmware vital
product data)

• System control (blade and I/O module power on/power off/restart, firmware upgrade)

• MM control (login profiles, alert configuration, network settings)

The command line interface comprises essentially the same functions as the aMM GUI. On the JULI
cluster it is mainly used to gain console access to individual blades during HW maintenance.

CSM combines aMM functions into cluster-wide management functions. The following list highlights
some important CSM commands:

• rpower - power on/power off/reset/power status of individual blades or blade selections

• csmstatus - cluster status

• rconsole - console login

• reventlog - collect individual blade center event logs (useful for archiving and monitoring cluster-
wide hardware event logs)

3.3.2 Maintenance Procedures

During the development and evaluation phase of the JULI cluster, maintenance and administration
procedures were somewhat different from regular procedures as expected for production-like systems.
This was partly caused by the numerous changes applied to hardware and software during the project,
partly by the fact that JULI runs with modified firmware and kernel. This especially complicated
maintenance tasks like replacing a blade by new hardware. For the same reason, RAS features like the
mirroring of system disks could not be tested during the course of the project. It is expected that future
firmware releases supporting InfiniPath will fully comply to standard maintenance procedures and, thus,
eliminate deficiencies of the prototype JULI firmware.

Another inconvenience with respect to system administration showed up in the storage area. When
defining additional Fibre Channel LUNs on the DS4100 storage device, the device numbering on the
Linux nodes connected to DS4100 was shifted by the number of newly allocated LUNs. The reason for

8

this is that the Fibre Channel devices are detected before the local disks. The only current workaround for
this problem is to rename the local devices in the boot loader configuration and also in the Linux file
system table (/etc/fstab); otherwise the renumbering will render unbootable nodes (unless the new boot
device is manually specified as an option to the boot loader at boot time).

Apart from these complications, maintenance and administration of the JULI cluster is well supported by
the respective software components. CSM, as already mentioned, provides for full hardware control and,
in addition to that, cluster configuration and monitoring features and proved to be very reliable and
flexible in the tested Linux cluster environment. The integration of additional software components for
user administration (NIS), data management (NFS and GPFS) and job handling (Torque and LoadLeveler)
was straightforward and the coexistence of QLogic MPI and the IBM and GNU compilers revealed no
problems.

3.4 CPU and Memory (Norbert Eicker, Thomas Lippert)

3.4.1 Architecture

JULI consists of 56 IBM JS21 BladeServers. Each BladeServer is equipped with 2 Dual-Core PowerPC
970MP CPUs running at 2.5 GHz [17]. The PowerPC CPU has a pipelined, super-scalar architecture.
Each core features two full-blown floating-point units (FPU) with 21 stages. Every FPU allows one
double-precision multiply-add operation per cycle. Altogether this leads to a theoretical peak-performance
of 10 GFlop/s per core.

Furthermore, each PPC 970MP CPU carries a vector-extension, called VMX-unit. It is - more or less -
comparable with Intel's and AMD's SSE units. However, a VMX can only handle single-precision
numbers. Since the VMX-unit is also fully pipelined and capable to conduct one multiply-add operation
on 128-bit registers in every cycle, the peak-performance for single-precision operations even reaches 20
GFlop/s per core. (In real life this theoretical number is limited by memory bandwidth, however.)

Each core has its own L1 and L2 cache hierarchy. While the L1 cache is segmented into 32 kB for data
and 64 kB for instructions, the 1 MB L2 cache is used for both data and instructions. The main difference
besides its size is the latency of the cache access. While it takes 2 cycles to fetch data from L1 cache, the
processor has to wait 14 cycles until data from the L2 cache are available.

The latency of the main memory (4 GB) is significantly larger and amounts to O(100) cycles. Of course,
the bandwidth of the main memory is much smaller than that of the cache as well, and depends on the
actual type of memory used. For the JS21 blades two varieties of DDR2 memory are available; slower
SDRAM modules, running at 400 MHz, and faster ones, clocked with 533 MHz. In fact, we were able to
test both types of memory. This enabled us to study the memory sub-system in detail and to analyze the
effects of the different memory-speeds on both synthetic low-level benchmarks and real-world
applications.

3.4.2 The Lmbench Test

In order to determine the on-node capabilities of JULI we ran the lmbench suite [6, 7] containing low-
level performance benchmarks on one of JULI's compute-blades. We will discuss two sets of results in
more detail: on the one hand, results concerning the raw compute-performance, i.e. the critical parameters
of the FPU engines of the PPC CPU, on the other hand, measurements of the capabilities of the memory
sub-system [8].

As mentioned above, during the JULI project the compute-nodes have been equipped with two different
types of memory modules: JULI started with 400 MHz DDR2 SDRAM modules and upgraded to faster

9

memory running at 533 MHz. This enables us to make interesting comparisons concerning the effects of
the memory bandwidth.

FPU Performance

The latencies and throughput values of the PPC 970MP processor are given in the data-sheet. They are
redisplayed in columns 2 and 3 of Table 1. We confirmed the specifications by carrying out the
corresponding test within the lmbench suite.

Operation Latency Throughput Single Double

Add 6 2/cycle 2.38 2.38

Mult 6 2/cycle 2.38 2.38

Div 33 2/28 cycles 13.1 13.1

Table 1: FPU execution times in ns for PPC 970MP from lmbench

The benchmark results are presented in columns 4 and 5. Based on a cycle-time of 0.4 ns - in
correspondence with a 2.5 GHz processor clock - the results agree with the values in the data-sheet. This
gives us confidence that results reported from lmbench are reliable and the PPC CPUs work properly.

Memory Bandwidth

Another set of results from the lmbench suite is discussed with the aim to understand the memory sub-
system of the JS21 blades. The corresponding numbers are presented in Table 2.

The upper part of the table shows results obtained with the older and slower memory (400 MHz), the
lower part results are obtained with the faster modules (533 MHz). The four lines of each block show the
outcome of the test running with 1, 2 or 4 instances simultaneously. Column 2 denotes the number of
instances. The difference between the two lines referring to two instances is due to the cores that are used
within a single test as indicated in column 3.2

Columns 4 and 5 of table Table 2 show the results for consecutive reads and writes to the main memory
testing the memory bandwidth of the system. The results for read operations are significantly larger than
for write operations. In HPC practice this should be no major problem since for most algorithms the
reading access to memory dominates the write operations.

Furthermore, it is interesting to see that for one instance of the test the performance between the two types
of memories only differs slightly. For the two instances on the same socket it doesn't change at all. The
interpretation of these results is that in these cases the actual bottleneck is not the main memory but the
sustained bandwidth of the processor socket.

On the other hand, using all four cores of the JS21 system we see a bandwidth gain of more than 20%
between slower and faster memory.

2 The lmbench suite allows to pin processes on processor-cores. In our runs two different tests with 2
instances were made: One running the processes on core 0 and 1, the other putting them on cores 0 and 2.
Accordingly, in the first case, we run two processes on cores residing on the same processor-socket and in
the second case we execute on a single core on the two different sockets of the JS21 system

10

Nevertheless, it is clearly visible that for all applications with a performance characteristic that is sensitive
to memory bandwidth - as is the case for many applications in HPC - we cannot expect a linear scaling
within a node, even if there is no communication between the processes. Even for the faster memory the
total read-bandwidth obtained for four processes is only twice as big as the one we see for one process.
This is due to two effects: on the one hand, it is a consequence of the JS21 system architecture; the main
memory is connected to the northbridge of the system and has a peak bandwidth of 8.5 GB/s while each
processor socket is able to handle 5.0 GB/s of throughput3. On the other hand, a single core can read from
memory with 2.8 GB/s while the two cores on the same socket can increase this value only by less than
50%.

MHz Procs Cores BW [MB/s] Latency [ns]

read write L1 L2 mem

400

1 any 2750 1740 1.19 5.2 40.7

2
0 1 4000 2280 1.19 5.24 60.5

0 2 4480 2295 1.19 5.24 52.2

4 0 1 2 3 5090 2280 1.19 5.24 99.5

533

1 any 2830 1810 1.19 5.2 39.1

2
0 1 4020 2590 1.19 5.24 60.0

0 2 4870 2730 1.19 5.24 45.3

4 0 1 2 3 6141 2635 1.19 5.24 81.6

Table 2: Results for bandwidth and latency from lmbench’s memory test suite

In the last 3 columns of Table 2 results for the memory latency are presented. As naively expected, the
results for the L1 and L2 caches in columns 6 and 7 show no dependence concerning the type of memory
used. The 8th column exhibits the latency of the access to main memory. Here effects of the type of
memory only show up if the instances of the test make use of both sockets. We interpret this as follows:
while for one process we see the actual latency of 40 ns, the number of 60 ns in the case of two instances
on one socket is due to congestion within the processor socket. Furthermore the latency for two processes
pinned on different sockets is increased due to rivaling accesses to the main memory, which - at least
partly - can be weakened by faster memory.

3.5 InfiniPath Network

3.5.1 Concept (Norbert Eicker)

The InfiniPath network [18, 19] of JULI is devoted to MPI applications. 10-Gigabit technology is used
for this network: QLogic's implementation of the InfiniBand standard called InfiniPath. Its most
remarkable feature is an extremely low latency compared to other implementations of InfiniBand. The
main difference of the InfiniPath implementation lies in the architecture of the host channel adapter
(HCA). While all other solutions use a full-fledged CPU in order to implement the protocol, QLogic was

3 This problem is also found on the current Intel XEON architecture. AMD's Opteron platform has a
memory controller within each processor socket and can avoid these problems.

11

able to map the logic on a state machine and to realize it within an ASIC.

While QLogic's solution is based on a special hardware implementation, the wire-protocol is perfectly
conforming with the InfiniBand standard. As a result, standard InfiniBand switches can be employed. In
the case of JULI, a Voltaire ISR 9096 switch has been chosen with three line-cards summing up to a total
of 72 ports.

3.5.2 MPI Ping-Pong and Ring Test Performance (Ulrich Detert)

Ping-pong and ring message tests have been used to asses the MPI performance on a basic level. More
detailed MPI performance data are given in the “Benchmarks and Applications” section below. Figure 3
shows the uni-directional bandwidth of a ping-pong message within a SMP node (intra) and between
nodes (inter). In addition, the mean bandwith per communication pair is given for a ring message sent in
store-and-forward manner across all 56 nodes (224 tasks). The latter test has been used mainly as a
functionality test and not so much as a performance test. Still, it gives some hints as to which
communication performance to expect for real-world applications. The communication pattern for the
ring test is such that messages are sent from processor 0 to 1, 2 and 3 within a SMP node, and then
crossing borders from processor 3 in one node to processor 0 in the next node. Thus, one inter-node
message is sent after three intra-node messages on each node.

Figure 3: MPI performance

3.5.3 IP over InfiniPath (Ulrich Detert)

The InfiniPath network implementation allows to use the IP protocol over InfiniBand/InfiniPath by way
of specific kernel modules (ipath_ether). Even though this was not formally part of the project, IP over
InfiniPath has been configured and tested on the JULI cluster. It is not used under production conditions,
however, since the InfiniPath network is mainly devoted to MPI trafic. Furthermore, IP over InfiniPath
can currently not be used for GPFS data transfer: Due to the limited space in a blade, the CFF-e
InfiniPath adapter and the current SFF FC adapter do not fit into one blade simultaneously.

The following table compares TCP/IP performance for Gigabit Ethernet and InfiniPath. Notice that no
specific effort has been undertaken to tune the IP over InfiniPath communication performance.

12

MTU Ping Latency Bandwidth

Gig-E 1500 ~ 0.1 ms 118 MB/s

Gig-E 9000 ~ 0.1 ms 124 MB/s

InfiniPath 16384 ~ 0.05 ms 244 MB/s

Table 3: IP Network performance

3.6 ParaStation (Ralph Krotz)

3.6.1 JULI Cluster Monitoring

The ParaStation® GridMonitor is a versatile system monitor for Linux-based compute clusters. A
multiplicity of information from different devices and services from a cluster may be read, evaluated and
stored. The GridMonitor provides the administrator with various aspects of the available information,
from an overall status of all configured clusters to in-depth details of nodes and devices. Data can be
grouped with respect to different aspects and are visualized using a web browser.

Furthermore, parameters may constantly be monitored and the administrator may be informed, if
required.

Data Gathering Process (Collector)

All available data is retrieved and managed by a so called collector. All data is retrieved using dedicated
agents for each device or service. These agents support various protocols, like e.g. SNMP. To minimize
overall system and network load, only data requested by a client application is read from the agents by the
collector. If no one is interested, no data is transferred and therefore no compute cycles and network
bandwidth are used. The collector is especially designed to handle problems like dead nodes, broken
network connections and limited network bandwidth, commonly found in cluster environments.

The collector gathers various data from different information sources available within a cluster, des-
cribing:

13

• compute nodes
• file servers and front-end nodes
• network devices
• storage devices
• runtime systems

Available parameters not only include operating system values, like system load, network counters or
temperatures, but also parameters supplied by runtime systems like batch queuing systems, information
provided by network switches or Blade Center Management Modules.

Each parameter is cached within the collector for the configured decay time. Using intelligent caching
algorithms, multiple reading of data is avoided.

Data can be stored to and retrieved from a database. Thereby, a data history is available, e.g. for plotting
diagrams. Parameters and sample frequencies can be configured independently. 'Virtual' parameters can
be computed, monitored and stored to the database based on actual read data, e.g. the total system load as
sum of all node load values.

Each known numerical value can be compared against an upper and lower limit. In case this value under-
runs or over-runs those limits, an event will be generated. To constantly monitor these parameters,
reading cycles can be defined.

Events describing abnormal situations within a cluster can be generated by monitoring parameter limits,
node availability, etc. Events will be stored within the database and reported by email.

Beside the actual data, the collector also provides information about the type of available data. Based on
this parameter type system, it's easy for a graphical user interface to construct dynamic selection boxes
without actually reading the data and thereby wasting network bandwidth and compute cycles. This
parameter type system also enables a user interface to include new parameters without modifying the
scripts or page layout. E.g., newly added nodes will be recognized and shown automatically.

Monitoring data like temperatures or fan speeds within a node requires the lmsensors package or IPMI
access for reading the values. Currently lmsensors is not supported by the JULI cluster hardware.
Alternatively those values are available via SNMP. Due to the inconvenient format (output of human
readable text strings instead of simple numbers) adapting the collector is more complicated but currently
under development.

Graphical client (GUI)

The graphical user interface (GUI), based on a web server and PHP scripts, provides a comfortable access
to the data, provided by one or more collectors. The information are grouped within various views, like
multi-cluster or cluster dedicated overview and details, node overview and details, or cluster-wide para-
meter lists. Each web browser may be used to display these pages.

Views may be modified by pull-down menus defining the time range for lists and graphs, which icons to
show, sort order, or columns to sort by.

The graphical user interface also provides information about currently pending events and event history.
Parameters can be graphically shown as history diagrams for periodically sampled data, or bar and radar
charts for current data.

14

Beside the predefined data views, a “parameter browser” is implemented within the graphical user
interface. The parameter browser is a generic tool to display each particular parameter known to the
collector.

The JULI cluster utilizes Apache 2 as web server running on the management node.

Parameters are organized in a hierarchical way by using table and record entries. Each table provides
indices and parameters, whereas each record only holds parameters. These parameters may be scalar
parameters, like integers, floats or strings, or again may be tables or records. Examples for indices are
host names or switch names.

Parameters may be provided by each data source known to the collector, therefore the parameter browser
is e.g. also a SNMP (or MIB) browser. The data source is transparent to the parameter browser; therefore
the user does not have to take care from which source the actual data is read. Arbitrary parameters may be
shown together, like network counters of a node and switch.

The selected data is shown using a matrix layout, similar to a calculation sheet. It is organized in rows and

15

columns, where the scalar parameters and indices show up in columns. Using pull-down menus, the
matrix may be sorted increasing or decreasing by columns. All column data may be visualized using
diagrams.

Software packaging

The GridMonitor is available as three RPM packages. These packages are:

• pscollect: includes the central collector, database and agents,

• psgridmon: comprises all PHP scripts and configuration files for the web server providing the
graphical user interface,

• psgridmon-doc: provides all the documentation (HTML, PDF and man pages).

Installation of the pscollect package is required on all cluster nodes, the psgridmon packages must
be installed on the web server node. Installing the psgridmon-doc packages is not required, but
highly recommended. In particular, installing this package on the web server will provide online
documentation within the GridMonitor.

3.7 Storage

3.7.1 NFS (Ulrich Detert)

As a first step into user-oriented cluster utilization, NFS was used for cluster-wide access to user data
residing on the DS4100 storage subsystem. NFS proved to be stable especially when statically mounted.
The use of the automounter worked, but seemed not to be very appropriate for a large number of nodes
and home directories. Cross-mounting of multiple file systems from different server nodes, temporarily,
lead to NFS stale file handle problems. This turned out to be a known bug in the Linux kernel and could
be solved by an appropriate workaround (no_subtree_check server export option). No specific effort was
made to further investigate the functionality or performance of NFS, since the main focus for cluster
storage management was on GPFS.

3.7.2 GPFS (Karsten Kutzer, Michael Hennecke)

IBM GPFS [13] has been the global parallel filesystem shared across the IBM supercomputers at FZ
Jülich for a couple of years already. As part of project JULI, GPFS version 3.1 has also been implemented
on the JS21 cluster.

GPFS is IBM's parallel cluster filesystem, available on AIX since 1998 and on Linux since 2001. It
provides parallel access to the same file or different files from a heterogeneous set of nodes, within a
single GPFS cluster or even across multiple GPFS clusters. Because data and metadata traffic can be
distributed across many servers as well as acoss disks, performance of data and metadata operations can
be scaled with the available hardware.

GPFS cluster nodes mount GPFS as a local filesystem with full POSIX semantics, and the GPFS daemons
running on the cluster nodes coordinate access to the disk storage. GPFS can use either a SAN attachment
mode where all nodes in the cluster have direct access to the disk storage, or a Network Shared Disk
(NSD) mode where only a few NSD servers have direct access to the disk storage, and data transport
between the NSD servers and the other GPFS nodes is through a TCP/IP based network. The latter is
more typical for HPC clusters, it is also used in project JULI where Gigabit Ethernet is used as the LAN.

16

By defining a primary and a backup NSD server for each disk, GPFS can also be configured to be highly
available, so it will keep operational even in the event of a complete loss of a server. Disk storage can be
made highly available both by redundancy and RAID levels in the storage controllers, as well as through
replication mechanisms within GPFS which can be set individually for data and metadata. These features
are already used in production on the other GPFS clusters at FZJ and have not been evaluated further on
JULI.

One DS4100 storage controller with SATA disks has been configured with four RAID5 disk arrays, and
the DS4100 is connected to four JS21 nodes which act as GPFS servers. The QLogic Fibre Channel
adapter used in the JS21 is a small form factor (SFF) card, so it cannot be used in a blade in conjunction
with the InfiniPath card which has a CFF-e form factor. For this reason, the second 1 Gig-E interface on
each JS21 blade is used as the network for GPFS traffic. As an initial test, the user’s home directories
have been put under GPFS on the local storage subsystem. Eventually, the GPFS Multi-Cluster feature
will be used to access production user data that resides on the Jump p690 cluster.

To improve the TCP/IP performance, Jumbo frames have been configured on the GPFS network. This
required configuration of the Nortel switches in the BladeCenter H chassis, as well as setting the
MTU=’9000’ attribute in the adapters' configuration file (/etc/sysconfig/network/ifcfg-eth-id-<mac-addr>).

The GPFS configuration itself was not different from other GPFS setups. The management blade and the
four GPFS/NSD server nodes were configured as quorum nodes, and two of the GPFS/NSD servers also
act as cluster configuration servers and filesystem managers.

Some time was spent analysing the network performance. The network topology is different from other
clusters due to the Nortel switches in the BladeCenter H chassis, which connect 14 internal Ethernet ports
of the blades with 6 external 1Gig-E connections. Not all six ports are used in our setup.

3.8 Batch Systems

3.8.1 Torque (Birgit Naun, Norbert Eicker)

Since LoadLeveler for PowerPC under Linux was not yet available at the time the Juli project started, a
substitute batch system had to be used to start off. Torque with scheduler Maui was chosen, since this
software is Open Source and is being used on other Linux clusters at FZJ already. Torque server version
2.1.2-5 was installed on the management node. Additionally, the Torque client and Mom software
(version 2.1.2-5) had to be installed on all compute nodes and the login node. Torque is based on PBS
(Portable Batch System), an Open Source batch and resource management system, and is available as rpm
package for Linux.

Torque consists of four major components: Commands, Job Server, Job Executor and Job Scheduler. The
most important user commands are qsub for submission, qstat for monitoring and qdel for job deletion.
Operator or administrator commands like qrun, qterm, qstart, qstop or qmgr allow a very easy way to
modify the configuration or start and stop Torque daemons. For cluster computing, the pbsnodes
command is very important. It lists information about the configured nodes, or, with –l option, all nodes
marked as down. The qstat –a command can be used for job summary; job details are displayed with qstat
–f <jobid>.

Job Server (bps_server) is the central component of Torque and runs on the management node. All
commands and daemons use the administrative Ethernet network configured on JULI. The Server's main
function is to provide the basic batch services such as receiving/creating a batch job, modifying the job,
protecting the job against system crashes, and running the job (placing it into execution). The accounting
information are stored in directory /var/torque/server_priv/accounting. The Job Server has to know the list

17

of job execution nodes declared in a file in the server private directory PBS_HOME/server_priv. They can
be modified by the qmgr command and are listed by pbsnodes. The communication between the server
and all its defined pbs_mom processes allows Torque to react easily and automatically if nodes crash.

The Job Executor pbs_mom places a job into execution when it receives a copy of the job from the Server
and therefore must be run on every node that can execute jobs. Mom creates a new session identical to the
user’s login session and returns the job's output to the user.

The job scheduler Maui is implemented as a daemon controlling the site's job execution policy. Currently,
a standard and simpel FIFO policy is used on JULI. The policy and also the current batch queue structure
are subject to modification for future production requirements.

Very important for the JULI cluster is the possibility to run parallel MPI jobs executed under QLogic’s
mpirun. The node information required for execution is transported from Torque to mpirun via a nodes
file residing in the user’s file space and named in the environment variable $PBS_NODEFILE.

Following is a typical example for a batch job script under Torque:

 #PBS -l nodes=4:ppn=4
 #reserve 4 nodes with 4 processors per node
 #PBS -j oe
 ...
 # shell script
 NSLOTS=$(cat $PBS_NODEFILE | wc -l)
 mpirun -np $NSLOTS -m $PBS_NODEFILE $PBS_O_WORKDIR/myprog

3.8.2 LoadLeveler (Ulla Ehrhart)

LoadLeveler [14] version 3.4 (LoadL-full-SLES10-PPC64-3.4.0.1-0) was installed on 8 compute nodes and
the login node. There were only very few changes made to the standard configuration file: ssh was chosen
as remote shell command, accounting turned on and the location for global history files was changed,
which contain LL accounting information. The administration file was kept simple, all nodes defined had
the same specification with the login node serving as central manager. The central manager was not
running a startdaemon, thereby no jobs were started on the login node. There was one class defined on all
nodes with the possibility to use all available resources, i. e. all CPUs. Serial jobs (initially no MPI jobs)
were submitted, scheduled and executed by LoadLeveler without problems.

To start MPI jobs, i.e. parallel applications, the LoadLeveler keyword job_type=MPICH had to be
defined in the job command file. LoadLeveler will then automatically set the environment variable
LOADL_HOSTFILE with the filename that contains the host names assigned to the parallel job. Parallel
jobs were thus submitted, scheduled and executed without problem, on single nodes as well as on multiple
nodes.

Some limitations concerning memory limits under Linux should be considered. Memory cannot be
limited in LoadLeveler under Linux for the following reasons:

• As documented in the LoadLeveler-manuals, ConsumedMemory and ConsumedVirtual Memory do
not work under Linux as they require Workload Manager (WLM), which is available on AIX

• Data limit does not work (LoadLeveler can do no better than the Operating System)
• Stack limit works for stack segment areas only
• rss_limit does not work

18

The issue was transferred to IBM development. IBM intends to add more virtual memory limit support in
future releases of LoadLeveler for Linux.

3.9 Compilers and Libraries

3.9.1 Compilers (Karsten Kutzer, Michael Hennecke)

Both the gcc compiler suite and the IBM XL compilers (XLF 10.1.1, XLC/C++ 8.0.1) [15, 16] have been
used during the project. Initially, the QLogic MPI v1.3 software stack only supported gcc. With the
availability of the XL Compilers for SLES10, QLogic/PathScale also provided support for the XL
compilers starting with the QLogic MPI v2.0 release. Apart from minor issues, the porting went
smoothly.

3.9.2 Mathematical Libraries (Inge Gutheil)

The BLAS library from K. Goto Release 1.07 (GotoBLAS) was installed in 64-bit addressing mode and
with the Fortran interface for the XLF compiler. The performance of these BLAS routines was compared
with that of the ESSL BLAS (ESSL version 4.2). The BLAS 1 routine AXPY performed better with
ESSL than with GotoBLAS, whereas the BLAS 2 Routine DGEMV and the BLAS 3 Routine DGEMM
performed slightly better with GotoBLAS (Figure 4, Charts 1, 2, 3).

We also installed LAPACK version 3.0 in 64-bit addressing mode. We only tested this library with the
tests delivered with the library. All the tests were successful with GotoBLAS as well as with ESSL
BLAS.

The only parallel mathematical library installed was ScaLAPACK version 1.7.2 together with BLACS
version 1.1. Both were installed in 32-bit and 64-bit addressing mode.

We only made performance tests with the routine PDGEMM calling BLAS from ESSL. Here, we found
that the performance per node of PDGEMM was much slower than the sequential performance of
DGEMM. The performance degradation was worse, when the parallel program was executed on the four
processors of one node than when executed on four nodes with only one process per node (Figure 4,
Charts 4, 5, 6, 7).

3.10 Tools

3.10.1 Performance Tools (Bernd Mohr)

The group Performance Optimization and Programming Environments of ZAM investigated the porting
and installation of various commercial and open-source performance tools. In a first step, the standard
portable open-source performance analysis toolkits KOJAK (ZAM, Jülich, [1]), Scalasca (ZAM, Jülich,
[2]) and TAU (University of Oregon, Eugene) were ported to the JULI platform. This required only minor
changes in the configuration and installation procedures of the tools. TAU is an extensive code profiling
package. KOJAK is an event trace generation and automatic performance bottleneck search toolkit.
Scalasca is a new, more scalable version of KOJAK. All three tools were tested with various C and
Fortran MPI benchmarks and application codes in 32-bit and 64-bit execution modes. In addition to MPI
performance analysis, KOJAK and TAU also allow to measure and analyze CPU hardware counter data
through the use of the PAPI library (ICL, University of Tennessee). This however requires Linux kernel
modifications (perfmon patches) which are not available on JULI yet. The KOJAK measurement system
also supports the generation of event traces for the commercial tools Vampir (Technical University

19

Chart 1
Chart 2

Chart 3

Chart 4
Chart 5

Chart 6 Chart 7

Figure 4: Performance of BLAS routines in ESSL and Goto library

20

Dresden, Germany) and Paraver (CEPBA, Barcelona, Spain). In collaboration with the respective
vendors, these event trace visualization and analysis tools were ported to the JULI platform without any
problems.

3.10.2 SCALASCA (Brian Wylie)

The current SCALASCA toolset (broadly equivalent to v0.5 with fixes) was built and tested on JULI with
the ASC SMG2000 benchmark. The subject MPI application code was built with IBM XL compilers in
64-bit mode with the standard compilation options -O3 -qarch=ppc970 -qtune=ppc970 (version u), along
with two instrumented versions: one using selected POMP annotation directives of key routines and
phases (version p), and the other using the XL compilers' undocumented automatic instrumentation
(version k). A final measurement option was the specification of a blacklist of instrumented functions that
were not to be traced (version x).

The SMG2000 run configuration was chosen as n(64,64,32) c(0.1,1.0,10.0) and 5 solver iterations for
relatively short execution times. The 3-dimensional process mapping was determined from the MPI
prefered Cartesian topology.

Measurements were made of these four configurations with varying numbers of processes to investigate
scalability of the application itself, overheads associated with trace collection and parallel trace analysis
(with SCOUT). Similar measurements were done on JULI (up to 224 processes), Jump (up to 1024
processes) and Mare Nostrum (up to 512 processes) (see [4]).

The uninstrumented SMG2000 showed good scalability of its parallel solver on each system, and superior
performance on JULI (4.4s vs 4.6s and 6.9s with 128 processes). The instrumented versions showed the
expected dilations proportional to the amount of (traced) instrumentation. Maximal process trace sizes
grow slowly with the number of configured processes, whereas the total volume of trace data increases
linearly. The largest trace collected on JULI was some 36 GB. Opening a trace file for each process was
roughly 5 times more expensive than the serialised gathering and unification of definitions, however, both
operations scaled well and introduced insignificant overheads, compared to the final flush and close of the
trace files. Parallel trace flushing performance on JULI was typically 120 MB/s, with a best performance
of 150 MB/s (compared to 150-170 MB/s on Mare Nostrum and up to 3200 MB/s on Jump with 1024
processes).

Figure 5: SCALASCA Sceenshot

21

SCALASCA features parallel trace analysis using the SCOUT analyzer, an MPI application that loads
corresponding subject rank traces and replays communication events when calculating performance
metrics. The example screenshot from the SCALASCA analysis report explorer (CUBE) shows the
distribution of point-to-point communication time in a key section of the SMG2000 solver when
configured with 224 processes on JULI.

Initial SCOUT analyses of the larger traces suffered a significant performance degradation on JULI with
more than 64 processes, which was identified as paging when the 1GB of memory per processor was
exceeded. (Mare Nostrum and Jump have more memory per processor and avoided paging even when
handling significantly larger traces.) A minor adjustment of SCOUT data-structures provided sufficient
memory improvement to avoid paging when analyses were repeated with the new version. The result was
broadly similar performance on JULI and Mare Nostrum, both significantly faster than Jump at
comparable configurations.

The number of communication events recorded for each process configuration was the same for each
trace experiment variation, however, the number of region enter/exit events varied considerably, from a
small fraction of the total for the POMP “p” experiment to constituting the vast majority for the fully-
instrumented (non-blacklisted) experiment “k”. SCOUT trace loading times are proportional to the
(maximum) number of events in the traces, and dominate total analysis times on JULI for all of the “k”
experiments and for the “p” experiments with more than 100 processes (presumably due to filesystem
bandwidth saturation). Similar behaviour may occur on Mare Nostrum, but only at more than 500
processes. Replay analysis performance is identical for JULI and Mare Nostrum with the communication-
rich “p” experiments, however, Mare Nostrum is consistently 50% slower with the communication-poor
“k” experiments, apparently indicating superior CPU off-loading of communication processing on JULI.

Figure 6: SCALASCA performance on JULI

3.10.3 Graphical Job Monitor LLview (Wolfgang Frings)

LLview has been installed and adapted to JULI. LLview is a client-server based application which allows
to monitor the utilization of clusters controlled by batch systems like IBM LoadLeveler, PBS Pro [10],
Torque, or IBM Blue Gene/L system data base. It has been developed at the Central Institute for Applied

22

Mathematics, Research Centre Jülich.

The main part of the LLview client is the node display. It shows a small box for each processor of a SMP
node. The box color represents the job running on this processor. Furthermore, the node display contains
additional elements displaying global information about the node, like status, memory usage and CPU
load for each SMP node. When moving the mouse pointer over a processor box, the corresponding
information is highlighted in the other display elements of LLview. These elements are job list, usage bar,
information panel, and a utilization chart (Figure 7).

The data access will be done by the server part of LLview, which, for LoadLeveler, uses the data access
C-API of LoadLeveler to get the information about the node usage, running and waiting jobs. For the
batch system Torque, LLview uses a Perl script for data extraction. In both cases the information is stored
in XML format. The client part of LLview can access the data directly if the client runs on the same
machine. However, the usual way is to distribute the data by a Web server to support clients running on
local desktops. In this case, LLview accesses the data from the Web server with a user/password
authentication method. (For more information and software download see [5].)

Figure 7: LLview - Graphical monitoring of batch jobs

3.11 Benchmarks and Applications

3.11.1 The Intel MPI Benchmark (Norbert Eicker, Thomas Lippert)

Depending on the programming model, often MPI intra-node communication is required within a parallel
application4. Therefore we investigate both intra-node and inter-node communication performance. We

4 For clusters of SMP-nodes two different parallelization strategies are popular: MPI, leading to MPI
intra-node communication as examined in this section, or a hybrid model using OpenMP within the SMP-
node and MPI for inter-node communication.

23

employ the Intel MPI Benchmark (IMB) [8].

Intra-node Communication

Communication between processes allocated on the same node can be expected to be highly dependent on
the available memory bandwidth. In general, this type of operation will not require the communication-
hardware but relies on a segment of shared memory used to copy the data from the address-space of one
process to another.

The IMB is another tool well suited to get a feeling of the capabilities of the memory sub-system of the
JS21 blades. Within our tests of the intra-node communication we made use of two different
implementations of MPI: on the one hand, we employed QLogic's InfiniPath-MPI library that also
supports communication between the nodes. On the other hand, we used an implementation of MPI which
is part of ParTec's ParaStation suite. ParaStation will serve as a reference implementation of local shared-
memory communication.

Figure 8: Intra-node MPI communication bandwidth

Figure 8 shows results of IMB's sendrecv test for various combinations of MPI implementation, type of
memory modules and number of processes. We carried out tests between two processes (i.e. one pair
passing messages), both types of memory, and with both MPI implementations. The results are plotted in
the upper four graphs of Figure 8. The lower two show results obtained from runs with 2 pairs of
processes. Here, only the tests with the fast memory are presented.

It can be observed that the ParaStation MPI shows consistently better performance than InfiniPath MPI.
This is true for both types of memory and over the whole range of message lengths. In all cases one has to
discriminate two regions of results: all message-sizes smaller than 1 MB will be handled within the
caches of the involved CPU. Only messages larger than this threshold will actually be sent via the main

24

memory. Accordingly, just results for larger messages are sensitive to the different memory speeds.

As expected, the throughput per process-pair is halved, when going from one communicating pair of
processes to two pairs, as all the processes have to share the available memory bandwidth. Since one pair
is able to fill the memory channel almost completely, the additional gain of bandwidth for two pairs turns
out to be negligible.

Inter-node communication

The inter-node communication makes use of the InfiniPath MPI library. We ran all tests for both types of
memory. However, we saw almost no differences. We conclude that the memory bandwidth is not a
bottleneck for the inter-node communication.

By means of IMB's pingpong benchmark we determined the network latency on MPI level. We notice a
half round-trip time of less than 2.75 µs, which is extremely good also for InfiniBand. However, the
difference to results with InfiniPath on other PCIe Platforms - less than 2 µs - still is substantial. The
complex architecture of the JS21 blades and the long way from the PPC CPUs to the InfiniPath HCAs
presumably is responsible for this result5.

Figure 9: Inter-node MPI communication bandwidth

Further tests were carried out in order to analyze the bandwidth of the interconnect. Again we apply the
sendrecv benchmark of IMB. In Figure 9 one has to distinguish three sets of tests: the two topmost graphs
show results for communication between two processes, i.e. one pair of processes passing messages to

5 A CPU access has to move from the processor to the northbridge then over HyperTransport to the PCIe
bridge, then to the InfiniPath HCA.

25

each other. For the two graphs in the middle two pairs of processes make use of the same HCAs and
physical wires at a time. The two graphs at the bottom are for four pairs of processes.

It is remarkable that for four pairs we get approximately the results we would expect naively from wire-
speed numbers and estimates of the protocol overhead. Starting from 400 MB/s per pair, i.e. 1.6 GB/s
accumulated bandwidth, one would anticipate a result of 800 MB/s for two pairs and 1.6 GB/s for one
pair of processes. Neither of these expectations is met, actually, for one pair large messages show a
throughput of less than 1 GB/s. This is most probably a software problem, either within the InfiniPath-
MPI-library or inside one of the lower-level communication libraries that can hopefully be solved in the
future. QLogic is working on this problem.

3.11.2 Linpack (Ulrich Detert, Torsten Bloth)

The Linpack benchmark [11] had been chosen as a formal validation criterion for the successful
completion of Phase 1 of the JULI project. For the validation, no specific performance threshold had been
defined. Yet, Linpack performance measurements have been used to assess hardware and software
efficiency of the JULI cluster.

With the following parameters

• N=145500 (order of coefficient matrix A)
• NB=200 (partitioning blocking factor)
• P=14 (number of process rows)
• Q=16 (number of process columns)

the code delivers a sustained performance of 1.509 TFLOPS on 56 compute nodes (224 processors),
which is 67.36% of peak. JULI-specific optimizations in this code were the use of the GotoBLAS library
and appropriate compiler flags:

-O5 -qstrict -qtune=ppc970 -qarch=ppc970 -qmaxmem=-1 -DUSE_HUGETLB -DUSE_GOTO_ALIGN

Compared to the Power4+ based p690 cluster Jump at FZ Jülich, which delivers 5.568 TFLOPS Linpack
out of 8.9 TFLOPS peak (62.5%) on 41 nodes with 32 processors each, JULI renders 1.58 times more
Linpack performance per CPU and about 11 times the performance per floor space (considering that one
frame p690 requires roughly the same floor space as one rack of JULI).

 T/V N NB P Q Time Gflops
 --
 WR03R2L4 145500 200 14 16 1360.63 1.509e+03
 --
 ||Ax-b||_oo / (eps * ||A||_1 * N) = 0.0606912 PASSED
 ||Ax-b||_oo / (eps * ||A||_1 * ||x||_1) = 0.0105652 PASSED
 ||Ax-b||_oo / (eps * ||A||_oo * ||x||_oo) = 0.0017044 PASSED

Table 4: Linpack output (excerpt)

3.11.3 Parallel Molecular Dynamics Simulations (Godehard Sutmann)

A new parallel force-decomposition algorithm for systems, consisting of particles which interact through
short-range interactions was developed and tested on the JULI system. Molecular dynamics consist in
solving the classical equations of motion for particles, interacting through given potentials. Calculating
the forces on every particle makes it possible to integrate the system of ordinary differential equations and
thus propagating the velocities and positions of particles in physical space. Using the fact that Fij = -Fji,

26

where Fij is the force of particle j, acting on particle i, it is possible to concentrate on the upper triangular
part of the force matrix. In the case of short-range interactions, only a limited region in physical space is
needed to be explored in order to find potential interaction partners.

The new algorithm consists in first sorting particles according to a space filling Hilbert curve, thereby
placing physically close partners also close in memory. In a second step the force matrix is partitioned
according to the rule that every processor has approximately the same number of interactions to calculate.
A dynamic load balance strategy ensures to have the same amount of work on each processor within
small deviations.

Interaction partners are kept for a certain number of steps in a neighbor list, which is distributed among
the processors. Therefore every processor knows, how many particles have to be sent to other processors
or how many particles have to be received from remote processors, in order to calculate the total force on
every particle. This kind of strategy dramatically reduces the amount of data to be transfered between
processors, compared with traditional approaches, where whole vectors, containing particle positions are
transferred between processors by global communication protocols.

Another feature of the algorithm is to use asynchronous communication between processors, if possible
(Figure 10). Here it is used that while transferring data from remote processor J+1 to local processor I,
interactions are calculated already between particles of processor J and I, thereby partly hiding the
communication overhead.

Figure 10: Communication pattern of the algorithm for 32 processors. On
the left side communication is synchronized by a barrier, which optimizes
the performance. On the right side, data exchange is initialized by
asynchronous send/receive operations, which are performed during the
force loop (green color).

Benchmarks of the new algorithm were carried out on JULI, showing scalability up to 128 processors (the
maximum of used processors). Compared with the performance on the IBM p690 cluster Jump at FZ
Jülich, the execution time speeded up by roughly a factor of two (Figure 11). The feature of asynchronous
data transfer between processors could not be exploited on the JULI architecture. It was found that for

27

larger number of processors the waiting times to receive data from other processors increased, showing
that data transfer was not handled in the background, while doing computations. Even more, it was found
that it was preferable to include an explicit barrier into the code in order to synchronise the processors,
before entering into the double-loop (Figure 10), where inter-particle forces are calculated.

Figure 11: Comparison between execution times of the force-decomposition
algorithm on Jump and JULI for two different problem sizes. For small
systems, the ratio between communication and computation becomes larger,
so that the scaling gets worse. On 8 processors the performance ratio is 2.34
and 1.97 for the small and large system respectively.

3.11.4 Performance Results of QCD Code (Stefan Krieg)

Figure 12 displays measurement results for the strong and weak scaling behaviour of a Quantum
Chromodynamics (QCD) computational kernel. The measurements for strong scaling have been carried
out on a global grid with 64323 ⋅ grid points. In this case, the fixed workload is distributed among an
increasing number of processors. The plot "strong absolute" (Figure 12, Chart 1) shows the achieved total
performance in MFLOPS over the number of processors. The given reference lines are related to ideal
scaling with the performance achieved on one processor or one node, respectively. The plot "strong
relative" (Figure 12, Chart 2) shows the performance in MFLOPS per processor over the number of
processors used. The measurements on weak scaling were done with a fixed per-processor problem size
on a local grid of 44 grid points. Apart from this, the measurements are analogous to strong scaling.

28

 Chart 1: strong absolute Chart 2: strong relative

Chart 3: weak absolute Chart 4: weak relative

Figure 12: QCD strong and weak scaling

3.11.5 Quantum Computer Simulations (Guido Arnold, Marcus Richter, Binh Trieu, Thomas Lippert)

Abstract

Operational imperfections and decoherence errors are approximately modelled at gate level as an
extension of our massively parallel quantum computer simulator. Decomposing a universal set of basic
gates into plane rotations and phase shifts allows to introduce gaussian distributed angle- and phase errors
as effective imperfections of steering pulses acting on a qubit in a physical system. Combined with a
simple decoherence model we investigate the impact and the interplay of operational and decoherence
errors. We analyze the robustness of basic quantum operations and several quantum circuits such as
quantum Fourier transformation and Grovers search algorithm. We find out very different sensitivities
and describe their dependency on the system size. We provide a graphical tool that allows to investigate
the resultant error patterns of our large scale simulations in detail.

Introduction

As a first step towards the simulation of realistic many qubit quantum computer devices we implemented
a massively parallel gate level simulator which allows to simulate quantum systems up to 37 qubits
requiring 3TB of memory on high end systems like IBM Regatta p690+. The simulation of quantum

29

computers is clearly memory bounded. Highly optimized memory access and communication patterns
allow for efficient simulation using up to 1024 processors. Within the idealized framework of gate level
quantum computer simulation it is possible to approximately model the impact of gate imperfections and
decoherence by introducing a simple error model. We used the Jülich Linux Cluster (JULI) to perform
stochastic simulations on system sizes up to 32 qubits. Due to the higher aggregate bandwidth these
simulations run up to 20 percent faster than on the IBM Regatta system Jump.

Error Model

To implement a basic model of operational errors every single qubit gate can be generated from plane

rotations 




 −
=

θθ
θθ

θ
cossin

sincos
)(R and phase shifts 





= φφ ie

P
0

01
)(. This decomposition allows to

introduce gaussian distributed angle- and phase errors ε with standard deviation σ , such that
)()(εθθε += RR and)()(εφφε += PP respectively. Computation of controlled two- and more qubit

gates can be reduced to effective single qubit gate computation acting only on that part of the state vector

whose control-bit(s) are set to 1 . A simple decoherence error model (depolarizing channel) allows for a

bit-flip 





=

01

10
xσ , a phase-flip 





−

=
10

01
zσ or both 




 −
==−

01

10
zxyi σσσ with probability

3/p each. The state vector remains unchanged with probability p−1 . We assume an approximately
constant operation time for every single gate independent of the type and the qubit it operates on. After
each serial operation within the quantum circuit each of the n qubits (stochastically independent) can be
subject to one of the depolarizing operators ασ . For this we use n independent random sequences each
containing m uniformly distributed numbers, where m is the size of the ensemble (=number of
experiment repetitions).

In different experiments we study the effects of gate imperfections and decoherence depending on the
standard deviation σ and the probability p . Given a certain confidence level we want to find out
numerically thresholds for these parameters in real applications such as Quantum Fourier transformation

or Grover's search algorithm. We compute the errornorm
22),(corrpe ψψσ −= with 20 2 ≤≤ e since

ψ is normalized to 1.

These results are to be compared with future calculations from realistic (=dynamic) simulations of
quantum computer devices, taking into account the full time evolution according to a time dependent
Hamiltonian discribing both, the system and the environment.

Quantum Fourier Transformation

We want to test the robustness of the Quantum Fourier Transformation (QFT) circuit since it is the
quantum kernel of Shor's factorization algorithm. The QFT can be realized by the following circuit using

Nn 2log= qubits:

30

Erroneous Hadamard operations on qubit q are implemented as)()4/(
21

)(ππ εεε PRH q = . The

controlled phaseshifts are implemented as conditional (effective) single qubit phaseshift operations
)(φεP with k2/2πφ = . To realize the reversal of the qubit order at the end of the circuit we replace

each swap operation by a sequence of 3 controlled NOT operations:
),(),(),()(21122121 qqCNOTqqCNOTqqCNOTqqSWAP =↔ . Similar to the Controlled

Phaseshift these controlled NOT operations are implemented as effective NOT operations which can be

decomposed to allow for operational deviations:)()2/(
21

ππ εεε PRNOT = .

To analyze the error robustness of the QFT cricuit we investigate the errornorm and the qubit vectors in
dependence of),(pσ for system sizes 16,8=n with 100000 repetitions and 24=n with 10000
repetitions per experiment.

The plots suggest a critical behaviour of the system depending in σ . The system is very robust against

31

operational errors, since we find identical curves of),(2 pe σ for all 210−≤σ even for the largest
system investigated. Larger operational errors increase the errornorm the more the larger the system is.
To quantify the dependency of decoherence errors on the system size we have added the simulation
results on a 32-qubit system.

Grover's Search Algorithm

In order to search an element in an unstructured database of nN 2= entries we suppose to have an oracle

function }1,0{}1,0{: →n
kf given as kxk xf δ=)(marking the searched element at position k .

Using the f-controlled NOT gate as depicted with an ancillary qubit 0 preset to 10 −=y we can

realize Grover's quantum search algorithm as:

• initialize

∑
=

=←
N

j
N

jHx
1

10

0)0(
xHy σ←

• repeat until () :2
1

4 −≈ Nroundl π

ψψψ
kff HUHUQ

0
−=←

1+← ll

H is realized as a sequence of single qubit Hadamard gates nqH q ,,1,)(=ε whereas fU is

implemented as a generalisation of the CNOT and Toffoli gate in our simulator. Here the decomposed

εNOT acts only on those two components of the 1+n qubit state vector that encode k in binary
representation.

We simulate system sizes of 8+1, 16+1 and 23+1 qubits demonstrating the effect of operational
inaccuracies and decoherence errors on the amplitude)(kψ of the database element we are searching for,

expecting its (first) undisturbed maximum after 2274,201,12max =l Grover iterations respectively. In
case of nonvanishing decoherence we can see damping of the value of the amplitude

Np corr /11)0,(max,max −≈<= ψσψ . The superposed decoherence process growing with increasing

l leads to a maximum shifted towards maxll < . In case of operational errors we state a more robust
behaviour but switching to an appropriate deviation level we also see a clear shift and damping of the
maximal amplitude. In contrast to the QFT algorithm the σ -threshold is very sensitive to the system size.
We plot the maximal probability of finding the correct amplitude.

32

Outlook

We have analyzed the impact of gate imperfections and decoherence errors within the idealized
framework of a quantum computer simulator at gate level. We have seen that the quantum Fourier circuit
is more robust to operational inaccuracies than Grovers algorithm on comparable system sizes. We can
quantify the dependence of this sensitivity to both error sources on the system size. Combining
decoherence and operational errors we cannot see any deviation from additive errorsums, which means
that our results are compatible with non-correlation of the two error sources. Our results are to be
compared with future calculations from realistic (=dynamic) simulations of quantum computer devices,
taking into account the full time evolution according to a time dependent Hamiltonian discribing both, the
system and the environment.

In a next step we will use our massively parallel quantum computer simulator to numerically investigate
the characteristics of different error correction schemes.

4 Conclusion
In a rather short period, the JULI cluster developed from a prototype system into a fully functional,
reliable high-performance cluster suitable for production. Practically all administrative and management
functions required for day-to-day operation are available and extensive tests with real-world application
codes have shown that the system meets the expectations with respect to performance, stability and
scalability. The high-speed InfiniPath network contributes to system scalability in that it eliminates well-
known shortcomings of native InfiniBand implementations by using a low-level communication protocol
scaling well with the number of communication nodes. The GPFS parallel file system has proven to be
scalable on many other, much larger systems already and proved to be stable and reliable on the JULI
cluster also. It works well as the default file system for all user's home directories, even though, some
work still needs to be done with respect to performance tuning, at least for the rather small JULI
configuration. In comparison to the Power 4+ based p690 cluster Jump, installed at FZ Jülich for more
than three years, JULI performed very well in most benchmarks. The sustained performance per CPU on
JULI was up to twice that of Jump for realistic applications, and, measured in GFLOPS per floor scpace,
the comparison is even more impressive: 32 Power4+ CPUs on Jump deliver a peak performance of 218
GFLOPS per p690 frame, whereas 224 CPUs in one JULI compute rack render 2240 GFLOPS peak on
roughly the same floor space. According to Linpack sustained performance, one JULI rack compares to
approximately 11 frames of Jump. It should be mentioned that the multi-core architecture of the PPC 970
may impose a significant load onto the memory subsystem, depending on the characteristics of the
application code. Thus, a high computation/load-store ratio is key to good application performance.

33

During the course of the project, the replacement of 400 MHz memory modules by 533 MHz DIMMS
proved to be very beneficial.

In summary, the JULI project has shown that it is very well possible to build up a highly performing
compute cluster based on PowerPC 970 processors and InfiniPath interconnect. The deployed system is
ready for production and will continue to be used for this purpose after the completion of this project. The
developed cluster software is well suited for all management, monitoring and administrative tasks and
shows good usability, stability and scalability. The same is true for the hardware of the JULI cluster,
which ran stable for the duration of the project and gave the feeling of a robust system. Some important
RAS functions, like the mirroring of system disks, could not be tested during the project due to the
prototype character of the used firmware. It it assumed, however, that this functionality will be fully
available with future firmware versions.

Acknowledgments
Grateful acknowledgment is made to the large number of people who helped in planning and developing
the JULI cluster, in doing investigations, tests and measurements, in finding bugs and solutions and who
contributed in many other ways to this project:

FZ Jülich: Guido Arnold, Ulla Ehrhart, Wolfgang Frings, Inge Gutheil, Wolfgang Gürich, Willi
Homberg, Stefan Krieg, Olaf Mextorf, Bernd Mohr, Birgit Naun, Franz Josef Schoenebeck, Godehard
Sutmann, Felix Wolf, Klaus Wolkersdorfer, Lothar Wollschläger, Brian Wylie

IBM: Torsten Bloth, Hans Böttiger, Luigi Brochard, Kalyan Gunda, Michael Hennecke, Thomas Hesmer,
Peter Juerss, Gerd Kaufholz, Karsten Kutzer, Rudolf Land, Christoph Pospiech, Kevin Reilly, Ingolf
Salm, Heiko Schick, Otto Wohlmuth

ParTec: Ferdinand Geier, Jens Hauke, Ralph Krotz

QLogic: John Gregor, Greg Lindahl, Dave Olson, Betsy Zeller

Voltaire: Nir Gal

Above all, the authors wish to express their sincere thanks to the initiators of this project, Prof. Dr. Dr.
Thomas Lippert (FZ Jülich), Nurcan Rasig (IBM), Art Goldberg (QLogic), Scott Metcalf (QLogic), Hugo
R. Falter (ParTec), Reinhold Wagner (FZ Jülich)

References

[1] F. Wolf, B. Mohr: "Automatic performance analysis of hybrid MPI/OpenMP applications",
Journal of Systems Architecture, Special Issue "Evolutions in parallel distributed and network-
based processing", Volume 49, Issues 10-11, Pages 421-439, November 2003.

[2] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr: "Scalable Parallel Trace-Based Performance
Analysis", Proceedings of the 13th European Parallel Virtual Machine and Message Passing
Interface Conference (EuroMPI/PVM 2006), Springer LNCS 4192, Bonn, Germany, Pages
303-312, September 18-20, 2006.

[3] http://www.fz-juelich.de/zam/JULI/

34

[4] http://www.bsc.es/

[5] http://www.fz-juelich.de/zam/llview/

[6] Larry McVoy and Carl Staelin: “lmbench: Portable tools for performance analysis“,
Proceedings Winter 1996 USENIX, San Diego, CA, pp. 279-284.

[7] http://www.bitmover.com/lmbench/

[8] Norbert Eicker and Thomas Lippert: “Low-level Benchmarking of a Novel Cluster
Architecture”, to appear in “Tagungsband des KiCC’07 Workshop, Kommunikation in
Clusterrechnern und Clusterverbundsystemen”, TU Chemnitz, February 8, 2007.

[9] http://www.intel.com/cd/software/products/asmo-na/eng/cluster/clustertoolkit/219848.htm

[10] http://www.altair.com/software/pbspro.htm

[11] Jack Dongarra: "Performance of Various Computers Using Standard Linear Equations
Software", University of Tennessee, Knoxville TN, 37996, Computer Science Technical Report
Number CS - 89 - 85, February 18, 2007, url:http://www.netlib.org/benchmark/performance.ps.

[12] IBM Cluster Systems Management for AIX 5L and Linux: Planning and Installation Guide
Version 1.5.0 (SA23-1344-01).

[13] IBM General Parallel File System: Concepts, Planning, and Installation Guide Version 3.1
(GA76-0413-00).

[14] IMB Tivoli Workload Scheduler LoadLeveler V3.4: Installation Guide (GI10-0763-03).

[15] IBM XL Fortran Advanced Edition V10.1 for Linux: Installation Guide (GC09-8020-01).

[16] IBM XL C/C++ Advanced Edition V8.0 for Linux: Installation Guide (GC09-8017-01).

[17] PowerPC 970MP Microprocessor: http://www-
306.ibm.com/chips/techlib/techlib.nsf/products/PowerPC_970MP_Microprocessor

[18] Qlogic InfiniPath Install Guide Version 2.0 (IB0056101-00 C).

[19] Qlogic InfiniPath User Guide Version 2.0 (IB6054601-00 C).

35

http://www.intel.com/cd/software/products/asmo-na/eng/cluster/clustertoolkit/219848.htm
http://www.fz-juelich.de/zam/llview/

	Juli-Report_final.pdf
	JULI Project
	Final Report

