000056383 001__ 56383
000056383 005__ 20240610121127.0
000056383 0247_ $$2DOI$$a10.1209/0295-5075/78/10005
000056383 0247_ $$2WOS$$aWOS:000246296300005
000056383 0247_ $$2ISSN$$a0295-5075
000056383 0247_ $$2Handle$$a2128/22925
000056383 037__ $$aPreJuSER-56383
000056383 041__ $$aeng
000056383 082__ $$a530
000056383 084__ $$2WoS$$aPhysics, Multidisciplinary
000056383 1001_ $$0P:(DE-Juel1)VDB37578$$aNoguchi, H.$$b0$$uFZJ
000056383 245__ $$aParticle-based mesoscale hydrodynamic techniques
000056383 260__ $$aLes Ulis$$bEDP Sciences$$c2007
000056383 300__ $$a10005
000056383 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000056383 3367_ $$2DataCite$$aOutput Types/Journal article
000056383 3367_ $$00$$2EndNote$$aJournal Article
000056383 3367_ $$2BibTeX$$aARTICLE
000056383 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000056383 3367_ $$2DRIVER$$aarticle
000056383 440_0 $$01996$$aEurophysics Letters$$v78$$x0295-5075
000056383 500__ $$aRecord converted from VDB: 12.11.2012
000056383 520__ $$aDissipative particle dynamics (DPD) and multi-particle collision (MPC) dynamics are powerful tools to study mesoscale hydrodynamic phenomena accompanied by thermal fluctuations. To understand the relations of these types of mesoscale simulation techniques in more detail, we propose two new methods, which are intermediate between DPD and MPC-DPD with multibody thermostat (DPD-MT), and MPC-Langevin dynamics (MPC- LD). The key features are applying a Langevin thermostat to the relative velocities of pairs of particles or multi-particle collisions, and whether or not to employ collision cells. The viscosity of MPC-LD is derived analytically, in very good agreement with the results of numerical simulations. Copyright (c) EPLA, 2007.
000056383 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000056383 588__ $$aDataset connected to Web of Science
000056383 650_7 $$2WoSType$$aJ
000056383 7001_ $$0P:(DE-HGF)0$$aKikuchi, N.$$b1
000056383 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b2$$uFZJ
000056383 773__ $$0PERI:(DE-600)1465366-7$$a10.1209/0295-5075/78/10005$$gVol. 78, p. 10005$$p10005$$q78<10005$$tepl$$v78$$x0295-5075$$y2007
000056383 8567_ $$uhttp://dx.doi.org/10.1209/0295-5075/78/10005
000056383 8564_ $$uhttps://juser.fz-juelich.de/record/56383/files/0610890.pdf$$yOpenAccess
000056383 8564_ $$uhttps://juser.fz-juelich.de/record/56383/files/0610890.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000056383 909CO $$ooai:juser.fz-juelich.de:56383$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000056383 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000056383 9141_ $$y2007
000056383 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000056383 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000056383 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000056383 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000056383 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review
000056383 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000056383 9201_ $$0I:(DE-Juel1)VDB782$$d31.12.2010$$gIFF$$kIFF-2$$lTheorie der Weichen Materie und Biophysik$$x0
000056383 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x1
000056383 970__ $$aVDB:(DE-Juel1)88467
000056383 9801_ $$aFullTexts
000056383 980__ $$aVDB
000056383 980__ $$aConvertedRecord
000056383 980__ $$ajournal
000056383 980__ $$aI:(DE-Juel1)ICS-2-20110106
000056383 980__ $$aI:(DE-Juel1)VDB1045
000056383 980__ $$aUNRESTRICTED
000056383 981__ $$aI:(DE-Juel1)IBI-5-20200312
000056383 981__ $$aI:(DE-Juel1)IAS-2-20090406
000056383 981__ $$aI:(DE-Juel1)ICS-2-20110106
000056383 981__ $$aI:(DE-Juel1)VDB1045