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Abstract. – Dissipative particle dynamics (DPD) and multi-particle collision (MPC) dynam-
ics are powerful tools to study mesoscale hydrodynamic phenomena accompanied by thermal
fluctuations. To understand the advantages of these types of mesoscale simulation techniques in
more detail, we propose new two methods, which are intermediate between DPD and MPC —
DPD with a multibody thermostat (DPD-MT), and MPC-Langevin dynamics (MPC-LD). The
key features are applying a Langevin thermostat to the relative velocities of pairs of particles or
multi-particle collisions, and whether or not to employ collision cells. The viscosity of MPC-LD
is derived analytically, in very good agreement with the results of numerical simulations.

Soft matter systems such as polymer solutions, colloidal suspensions, vesicles, cells, and
microemulsions exhibit many interesting dynamical behaviors, where hydrodynamic flow plays
an important role, as do thermal fluctuations. Several mesoscale simulation techniques for
the flow of complex fluids accompanied by thermal fluctuations have been developed in the
last decades, such as direct simulation Monte Carlo (DSMC) [1, 2], the Lattice Boltzmann
method [3], dissipative particle dynamics (DPD) [4–12], and multi-particle collision (MPC)
dynamics [13–17]. These methods have many similarities. The most important common
feature is the local mass and momentum conservation, which is crucial to obtain hydrodynamic
behavior in the continuum limit. Since most of these methods were developed independently,
the relations between them are not well explored so far. In this letter, we clarify the relations
between the particle-based off-lattice methods, particularly DPD and MPC, and use this
insight to propose two new intermediate methods (all summarized in Fig. 1).

We start from the relations between the Langevin and the Andersen’s thermostat (AT) [18].
The underdamped Langevin equation of N particles is given by

m
dvi

dt
= −∇iU + fLT, (1)

fLT = −γvi + σξi(t), (2)

where ∇i = ∂/∂ri, m is the mass of a fluid particle, and ri and vi are the position and velocity
of the i-th particle, respectively. The force fLT represent the Langevin thermostat. To satisfy
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the fluctuation-dissipation theorem, the Gaussian white noise ξi(t) has to have the average
〈ξi,α(t)〉 = 0 and the variance 〈ξi,α(t)ξj,β(t′)〉 = 2kBTδijδαβδ(t−t′), where α, β ∈ {x, y, z} and
kBT is the thermal energy, and its amplitude σ in Eq. (1) is related to the friction constant
γ by γ = σ2. Each particle has one thermostat (heat bath), which is independent of all
other particles. This thermostat does not conserve momentum, and hence the hydrodynamic
interactions are not taken into account. We separately integrate the potential forces −∇iU
and the Langevin thermostat fLT using a multiple-time-step algorithm [19], where a shorter
time step is employed for −∇iU . The Langevin thermostat is integrated by the leapfrog
algorithm [20], which implies

vi(tn+1) = avi(tn) + bξi,n, (3)

where a =
1− γ∆t/2m

1 + γ∆t/2m
, b =

√
γ∆t/m

1 + γ∆t/2m
(4)

with vi(tn+1/2) = {vi(tn+1) + vi(tn)}/2 and ξi(tn+1/2) = ξi,n/
√
∆t. The modified Verlet al-

gorithm in Ref. [10] also gives Eq. (3). This thermostat works even with large time steps ∆t >
2m/γ. For the thermodynamically ideal gas (U = 0), Eq. (3) gives vi(tn) =

∑∞
l=0 a

lbξi,n−l−1.
This velocity exhibits a Maxwell-Boltzmann distribution with 〈vi,α(tn)vi,α(tn)〉 = kBT/m for
any ∆t. Thus, this discretized thermostat belongs to the class of generalized ATs described
in Ref. [12]. For γ∆t/2m = 1, the first term in Eq. (3) vanishes (a = 0), and a new velocity
vi(tn+1) is selected from a Maxwell-Boltzmann distribution. This corresponds to the origi-
nal Andersen’s thermostat [18]. Thus, AT can be interpreted as the discrete version of the
Langevin thermostat with γ∆t/2m = 1. This relation between the Langevin and Andersen’s
thermostat remains valid in DPD and MPC, as shown below.

The DPD thermostat is a modified Langevin thermostat, which applies the relative ve-
locities of the neighbor pairs. This implies that the thermal force in Eq. (1) is now given
by

fDT0 =
∑

j 6=i

{

−w(rij)(vi − vj) · r̂ij +
√

w(rij)ξij(t)

}

r̂ij , (5)

where rij = ri − rj , rij = |rij |, r̂ij = rij/rij , and ξji(t) = −ξij(t). This thermostat is applied
only in the direction r̂ij to conserve the local angular momentum. In DPD, a linear weight
function, with w(rij) = γ(1− rij/rcut) for rij/rcut < 1 and w(rij) = 0 otherwise, is typically
employed. Furthermore, DPD is usually combined with soft repulsive potentials U(rij) =
(A/2)(1− rij/rcut)

2 with cutoff at rcut [5], but other pairwise or multibody potentials are also
available [8]. DPD shares many features with smooth-particle hydrodynamics (SPH) [21], a
method to solve the Navier-Stokes equation in a Lagrangian representation, and a modified
version [9] of DPD corresponds to SPH with thermal fluctuations. In Shardlow’s splitting
algorithm [10], each thermostat of the ij pair is separately integrated. This algorithm with
multiple time steps gives the Andersen-thermostat version of DPD proposed by Lowe [22].
An energy-conservation version of DPD (micro-canonical ensemble), called DPD+e, has also
been proposed [6,7]. DPD+e needs an additional variable in order to exchange the momenta
of particles, since five of six degrees of freedom of a particle-pair are fixed by the conservation
of the translational (3) and angular (2) momenta. We modify the DPD thermostat to remove
angular-momentum conservation (DPD-a) for the discussions below. In this case, the thermal
force reads

fDT1 =
∑

j 6=i

−w(rij)(vi − vj) +
√

w(rij)ξij(t). (6)
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Fig. 1 – (Color online) Relations between particle-based hydrodynamic methods.

We call the versions of methods with or without angular-momentum conservation ’+a’ or
’-a’, respectively. fDT1 still keeps the translational momentum conservation. Note that the
numbers of the thermostats are NNnb/2 and 3NNnb/2 for fDT0 and fDT1, respectively, where
Nnb is the mean number of the neighbors with rij < rcut. These can be much more than the
number of degrees of freedom 3N .

MPC is a modification of DSMC to include multi-particle collision, in order to make the
algorithm more efficient in its application to fluids [13]. It is also called stochastic rotational
dynamics (SRD) [14]. The MPC algorithm consists of alternating streaming and collision
steps. In the streaming step, the particles move ballistically, ri(t+∆t) = ri(t) + vi∆t, where
∆t is the time interval between collisions. In the collision step, the particles are sorted into
cubic cells of lattice constant lc. The collision step consists of a stochastic rotation of the
relative velocities of each particle in a cell,

v
new
i = v

G
c +Ω{vi − v

G
c }, (7)

where v
G
c is the velocity of the center of mass of all particles in the cell. The matrix Ω

rotates velocities by the angle φ around an axis, which is chosen randomly for each cell. The
translational-momentum and kinetic energy are conserved in the cell. The collision cells are
randomly shifted before each collision step to ensure Galilean invariance [14]. Although MPC
fluid originally corresponds to micro-canonical ensemble, the temperature can be controlled
by an additional rescaling of the relative velocities vi − v

G
c . In MPC, the angular momentum

is not conserved and the rotational symmetry is broken by the use of cells. In DSMC [1], two
particles collide in the cell instead. Thus, the difference between DSMC and MPC is whether
collisions affect two or all particles in the cell.

An Andersen-thermostat version of MPC (MPC-AT) has also been proposed [15]. In
MPC-AT, the velocities in the collision step are obtained as

v
new
i = v

G
c + v

ran
i −

∑

j∈cell

v
ran
j /Nc, (8)

where vran
i is a velocity chosen from a Maxwell-Boltzmann distribution and Nc is the number

of particles in a cell. The summation in Eq. (8) and the other equations in MPC runs over
all particles in a cell. The velocity of the center of mass of each cell is conserved, and the
temperature is constant in MPC-AT (instead of the energy in MPC).
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Table I – Comparison between DPD and MPC methods of the Langevin dynamics and Andersen-

thermostat versions.

DPD MPC

interacting particles:
number 2 multiple
chosen by distance rij collision cell

potential interaction available available
momentum conservation:
translation yes yes
angle on/off on/off

energy conservation available available

In order to compare the various methods summarized in Table I, we have to distinguish
the differences between methods from the variations within each method. Since both of DPD
and MPC have Andersen-thermostat versions, we compare them first. Several differences
originate from the variations of each method. The MPC fluid is originally an ideal gas from a
thermodynamic point of view. It has been generalized by Ihle et al. [17] by a modification of
the collision rule to produce a nonideal-gas equation of state. However, the equation of state
can also be changed by the usual potential interactions, when the particles move according
to Newton’s equation mdvi/dt = −∇iU in the streaming step. The angular momentum
is not conserved in original MPC-AT. However, it can be conserved by the addition of an
angular-momentum constraint, such that

v
new
i = v

G
c + v

ran
i −

∑

j∈cell

v
ran
j /Nc +







mΠ
−1

∑

j∈cell

rj × (vj − v
ran
j )







× ri, (9)

where Π is the moment-of-inertia tensor of the particles in the cell. The energy can also be

conserved in MPC-AT by the velocity scaling, unew
i →

√

∑

uj
2/

∑

(unew
j )2unew

i , where the

relative velocity is ui = vi − v
G
c (MPC-AT-a) or ui = vi − v

G
c − {mΠ

−1
∑

rj × vj} × ri

(MPC-AT+a) after the procedure of Eq. (8) or (9). Note that an additional variable is not

necessary in the energy-conserved MPC-AT, since undetermined degrees of freedom remain
for Nc ≥ 3. Thus, two key features can be identified as the genuine differences between DPD
and MPC: (i) The thermostats act on the relative velocity of two (DPD) or multiple (MPC)
particles, and (ii) the interacting particles are chosen by their distance rij (DPD) or by sharing
the same collision cell (MPC).

In order to gain a deeper understanding of the relations between DPD and MPC, we
propose two new methods: DPD with a multibody thermostat (DPD-MT) and MPC-Langevin
dynamics (MPC-LD). First, we modify the DPD thermostat fDT1 into a multibody thermostat
to make DPD more similar to MPC. The number of the thermostats in fDT1 is 3NNnb/2,
which is more than the number of degrees of freedom 3N for Nnb > 2. Since the excess
thermostats do not play a role, we consider the reduction to three thermostats per particle.
We define the thermal force in DPD-MT as

fDT2 = −w0
i (vi − v

G
i ) +

√

w0
i ξi(t) +

∑

j 6=i

w(rij)







(vj − v
G
j )−

ξj(t)
√

w0
j







, (10)
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where w0
i =

∑

j 6=i w(rij), and v
G
i =

∑

j 6=i w(rij)vj/w
0
i is the weighted mean velocity. The

first term of fDT2 is the friction term of fDT1, and Nnb/2 thermostats are unified into one
thermostat between i-th particle and its neighbors. The third and fourth terms are needed to
conserve the translational momentum. The Fokker-Planck equation for DPD-MT is found to
be

∂P (X, t)

∂t
=

∑

i

{

−vi · ∇i +
(∇iU)

m
· ∂i + ∂iTi

}

P (X, t),

Ti = w0
i (vi − 2vG

i +
kBT

m
∂i) +

∑

j 6=i

w(rij)

[

v
G
j +

kBT

m

{

− 2∂j +
∑

k 6=j

w(rjk)

w0
j

∂k

}

]

, (11)

where X = {(ri,vi)|i = 1, .., N} and ∂i = ∂/∂vi. The steady state ∂P (X, t)/∂t = 0 is ob-
tained in thermal equilibrium. The angular momentum is conserved (DPD-MT+a), when the
thermostat for the i-th particle is applied only in the direction ri−r

G
i , where the weighted cen-

ter of mass is rGi =
∑

j 6=i w(rij)rj/w
0
i . We checked that Shardlow’s S1 splitting algorithm [10]

can be applied to DPD-MT.
Next, we modify the MPC method to the Langevin version (MPC-LD), with

fMPLT = −γ(vi − v
G
c ) +

√
γ







ξi(t)−
∑

j∈cell

ξj(t)

Nc







. (12)

The thermostat is applied to the relative velocities in a collision cell. MPC-LD+a is given by
the addition of the angular-momentum constraint in the cell,

fAMC =



mΠ
−1

∑

j∈cell

rj × {γvj −
√
γξj(t)}



× ri. (13)

The numbers of the thermostats in MPC-LD-a (fMPLT) and in MPC-LD+a (fMPLT + fAMC)
are 3(N−Ncell) and 3(N−2Ncell), respectively, where Ncell is the number of the cells occupied
by particles. The discrete equation for MPC-LD-a is given by the leapfrog algorithm,

vi(tn+1) = v
G
c + a{vi(tn)− v

G
c }+ b{ξi,n −

∑

j∈cell

ξj,n
Nc

}, (14)

where a and b are given by Eq. (4). Eq. (14) with γ∆t/2m = 1 corresponds to Eq. (8) of
MPC-AT. Energy conservation can be added by a rescaling of the relative velocities in each
cell. Eq. (14) resembles Eq. (7) of MPC. The correlation 〈vi(tn+1)vi(tn)〉 decreases with
increasing γ∆t/2m (MPC-LD) or angle φ (MPC). We checked that the correct (flat) radial
distribution function of the ideal gas is obtained by all MPC and DPD methods with the S1
splitting algorithm [10], unlike for some other DPD integrators such as the modified velocity-
Verlet algorithm in Ref. [5]. When only two particles are in the cell, the MPC-LD thermostat
corresponds the pairwise thermostat in DPD. The Langevin versions of DPD and MPC have
the same relation as the Anderson-thermostat versions.

The difference between DPD-MT and MPC-LD is the way in which neighboring particles
are selected. DPD-MT reduces the number of DPD thermostats. However, it does not reduce
the numerical costs of simulations, since the vectors rij of all neighboring particles have to
be calculated. In MPC-LD-a, the numerical costs are reduced; the only information about
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Fig. 2 – (Color online) Viscosity dependence of MPC-LD-a on (a) the time step ∆t at n = 3 and
(b), (c) the mean number n of particles per cell at γ∗ = 1. Symbols represent simulation data, lines
indicate the results of Eqs. (15) and (16). Viscosity and time are given in units of η0 =

√

mkBT/lc
2

and τ0 = lc
√

m/kBT , respectively. The reduced friction constant is γ∗ = γτ0/m. Error bars are
estimated from three independent runs and are much smaller than the size of the symbols.

particle positions needed is their partitioning into cells. When a very small time step is chosen,
∆t ≪ lc

√

m/kBT , particles only move a small distance compared to the cell size in ∆t; in this
case, the random-shift procedure of collision cells at each time step implies that the particles
can only react to the time average of the MPC-LD thermostats. This average gives an effective
weight wsq(rij) = |(1−xij/lc)(1−yij/lc)(1−zij/lc)| for |αij | < lc and wsq(rij) = 0 otherwise,
where α ∈ {x, y, z}. This is similar to DPD-MT with the weight function wsq(rij), where the
rotational symmetry is broken because of wsq(rij). Thus, MPC-LD can be interpreted as a
version of DPD-MT, which approximates the weight wsq(rij) by an uniform weight inside the
randomly shifted cell.

Although we have introduced DPD-MT and MPC-LD mainly to fill the missing links
in Fig. 1, they can be used for practical applications. MPC-LD and MPC-AT need less
computational costs than DPD for high densities, and have stronger thermostats than MPC.
As an example, we investigate here the viscosity of MPC-LD-a with the ideal-gas equation
of state. The viscosities of other methods will be reported elsewhere. The viscosity consists
of two contribution; the kinetic viscosity ηkin and the collision viscosity ηcol result from the
momentum transfer due to particle displacements and collisions, respectively. The theoretical
derivation of the viscosity for MPC [16] can be straightforwardly applied to MPC-LD. The
viscosities are then obtained as

ηkin =
nkBT

lc
d

[

n(1 + γ∆t/2m)2

(2γ/m)(n− 1 + e−n)
− ∆t

2

]

, (15)

ηcol =
γ(n− 1 + e−n)

12lc
d−2(1 + γ∆t/2m)

(16)

where n = 〈Nc〉 and d is the spatial dimension. We also calculate the viscosity from simulations
for simple shear flow with Lees-Edwards boundary conditions [16, 20] in three dimensions.
Fig. 2 shows that the theoretical and numerical results are in very good agreement. As ∆t
or γ/m increases, ηkin increases and ηcol decreases. Thus, the viscosity of MPC-LD can be
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varied easily.
In summary, we have proposed new mesoscale simulation techniques — DPD-MT, MPC-

LD, and variations of MPC-AT — and clarified the relations between several particle-based
hydrodynamic methods. An obvious question is now which of these methods should be used
for a given application. The answer depends on the system under investigation and the compu-
tational demands. For example, the Reynolds number and other dimensionless hydrodynamic
quantities typically have to be adjusted to match experimental conditions. In general, the
methods of the MPC group reduce computational costs compared to the DPD group, but
have the disadvantage of (weakly) breaking the rotational symmetry. We have demonstrated
here that a comparison of different simulation techniques can stimulate the development of
new methods, and that ideas developed for one technique can be employed fruitfully in other
techniques.
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[17] T. Ihle and E. Tüzel and D. M. Kroll, Europhys. Lett., 73 (2006) 664.
[18] H. C. Andersen, J. Chem. Phys., 72 (1980) 2384.
[19] M. Tuckerman and B. J. Berne and G. J. Martyna, J. Chem. Phys., 97 (1992) 1990
[20] M. P. Allen and D. J. Tildesley, Computer simulation of liquids (Clarendon Press, Oxford)

1987.
[21] J. J. Monaghan, Annu. Rev. Astron. Astrophys., 30 (1992) 543.
[22] C. P. Lowe, Europhys. Lett., 47 (1999) 145.


