000056449 001__ 56449
000056449 005__ 20180211172316.0
000056449 0247_ $$2DOI$$a10.1088/1742-5468/2007/04/P04010
000056449 0247_ $$2WOS$$aWOS:000246577900006
000056449 037__ $$aPreJuSER-56449
000056449 041__ $$aeng
000056449 082__ $$a530
000056449 084__ $$2WoS$$aMechanics
000056449 084__ $$2WoS$$aPhysics, Mathematical
000056449 1001_ $$0P:(DE-HGF)0$$aHijar, H.$$b0
000056449 245__ $$aNon-equilibrium work theorems for the two-dimensional Ising model
000056449 260__ $$aBristol$$bIOP Publ.$$c2007
000056449 300__ $$aP04010
000056449 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000056449 3367_ $$2DataCite$$aOutput Types/Journal article
000056449 3367_ $$00$$2EndNote$$aJournal Article
000056449 3367_ $$2BibTeX$$aARTICLE
000056449 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000056449 3367_ $$2DRIVER$$aarticle
000056449 440_0 $$013281$$aJournal of Statistical Mechanics : Theory and Experiment$$v4$$x1742-5468
000056449 500__ $$aRecord converted from VDB: 12.11.2012
000056449 520__ $$aThe distribution functions of the work performed on a two-dimensional Ising model under the influence of an external magnetic field which is switched on and off are studied. These distributions are calculated by means of Monte Carlo simulations for temperatures below and above, as well as close to the critical temperature, Tc, and for different rates of the switching processes. For this system the Jarzynski and the Crooks fluctuation theorems are veri. ed. It is found that Crooks fluctuation theorem provides a faster method for evaluating free energy differences in this system with respect to the Jarzynski equality. As expected, for temperatures far from Tc the convergence of the results is faster than for T similar or equal to Tc, where a slower switching rate is needed. Results obtained from the theorems of Crooks and Jarzynski are compared with thermodynamic integration calculations and it is found that they agree very well within error bars.
000056449 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing$$cP41$$x0
000056449 588__ $$aDataset connected to Web of Science
000056449 650_7 $$2WoSType$$aJ
000056449 65320 $$2Author$$aclassical Monte Carlo simulations
000056449 7001_ $$0P:(DE-HGF)0$$aQuintana, J.$$b1
000056449 7001_ $$0P:(DE-Juel1)132274$$aSutmann, G.$$b2$$uFZJ
000056449 773__ $$0PERI:(DE-600)2138944-5$$a10.1088/1742-5468/2007/04/P04010$$gVol. 2007, p. P04010$$pP04010$$q2007<P04010$$tJournal of statistical mechanics: theory and experiment$$v2007$$x1742-5468$$y2007
000056449 8567_ $$uhttp://dx.doi.org/10.1088/1742-5468/2007/04/P04010
000056449 909CO $$ooai:juser.fz-juelich.de:56449$$pVDB
000056449 9131_ $$0G:(DE-Juel1)FUEK411$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x0
000056449 9141_ $$y2007
000056449 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000056449 9201_ $$0I:(DE-Juel1)VDB62$$d31.12.2007$$gZAM$$kZAM$$lZentralinstitut für Angewandte Mathematik$$x0
000056449 970__ $$aVDB:(DE-Juel1)88586
000056449 980__ $$aVDB
000056449 980__ $$aConvertedRecord
000056449 980__ $$ajournal
000056449 980__ $$aI:(DE-Juel1)JSC-20090406
000056449 980__ $$aUNRESTRICTED
000056449 981__ $$aI:(DE-Juel1)JSC-20090406