000056452 001__ 56452
000056452 005__ 20180211170341.0
000056452 0247_ $$2DOI$$a10.1088/0741-3335/49/11/008
000056452 0247_ $$2WOS$$aWOS:000250727000008
000056452 037__ $$aPreJuSER-56452
000056452 041__ $$aeng
000056452 082__ $$a530
000056452 084__ $$2WoS$$aPhysics, Fluids & Plasmas
000056452 084__ $$2WoS$$aPhysics, Nuclear
000056452 1001_ $$0P:(DE-Juel1)132115$$aGibbon, P.$$b0$$uFZJ
000056452 245__ $$aStability of nanostructure targets irradiated by high intensity laser pulses
000056452 260__ $$aBristol$$bIOP Publ.$$c2007
000056452 300__ $$a1873 - 1883
000056452 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000056452 3367_ $$2DataCite$$aOutput Types/Journal article
000056452 3367_ $$00$$2EndNote$$aJournal Article
000056452 3367_ $$2BibTeX$$aARTICLE
000056452 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000056452 3367_ $$2DRIVER$$aarticle
000056452 440_0 $$04996$$aPlasma Physics and Controlled Fusion$$v49$$x0741-3335
000056452 500__ $$aRecord converted from VDB: 12.11.2012
000056452 520__ $$aNanostructure surfaces are especially promising as highly absorbing targets for high-peak-power sub-picosecond laser-matter interaction. Efficient hot electron, fast ion and thermonuclear neutron production with moderate laser intensity have already been reported. Despite these experimental successes, theoretical investigations on the use of porous targets for the efficient generation of K alpha and thermal x-ray emission remain scarce. In this report we use simple physical arguments combined with three-dimensional kinetic simulations to establish the timescales for the destruction of porous targets heated by a PWclass laser pulse.
000056452 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing$$cP41$$x0
000056452 588__ $$aDataset connected to Web of Science
000056452 650_7 $$2WoSType$$aJ
000056452 7001_ $$0P:(DE-HGF)0$$aRosmej, O.N.$$b1
000056452 773__ $$0PERI:(DE-600)1473144-7$$a10.1088/0741-3335/49/11/008$$gVol. 49, p. 1873 - 1883$$p1873 - 1883$$q49<1873 - 1883$$tPlasma physics and controlled fusion$$v49$$x0741-3335$$y2007
000056452 8567_ $$uhttp://dx.doi.org/10.1088/0741-3335/49/11/008
000056452 909CO $$ooai:juser.fz-juelich.de:56452$$pVDB
000056452 9131_ $$0G:(DE-Juel1)FUEK411$$bSchlüsseltechnologien$$kP41$$lSupercomputing$$vScientific Computing$$x0
000056452 9141_ $$y2007
000056452 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000056452 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0
000056452 970__ $$aVDB:(DE-Juel1)88591
000056452 980__ $$aVDB
000056452 980__ $$aConvertedRecord
000056452 980__ $$ajournal
000056452 980__ $$aI:(DE-Juel1)JSC-20090406
000056452 980__ $$aUNRESTRICTED