001     56493
005     20200423204437.0
017 _ _ |a This version is available at http://dx.doi.org/10.1088/0034-4885/70/3/R02 Copyright © IOP Publishing Ltd.
024 7 _ |a 10.1088/0034-4885/70/3/R02
|2 DOI
024 7 _ |a WOS:000244875800003
|2 WOS
024 7 _ |a 2128/2608
|2 Handle
037 _ _ |a PreJuSER-56493
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |a Botti, S.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Time-dependent density-functional theory for extended systems
260 _ _ |a Bristol
|b IOP Publ.
|c 2007
300 _ _ |a 357
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Reports on Progress in Physics
|x 0034-4885
|0 8247
|v 70
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a For the calculation of neutral excitations, time-dependent density functional theory (TDDFT) is an exact reformulation of the many-body time-dependent Schrodinger equation, based on knowledge of the density instead of the many-body wavefunction. The density can be determined in an efficient scheme by solving one-particle non-interacting Schrodinger equations -the Kohn-Sham equations. The complication of the problem is hidden in the unknown -time-dependent exchange and correlation potential that appears in the Kohn-Sham equations and for which it is essential to find good approximations. Many approximations have been suggested and tested for finite systems, where even the very simple adiabatic local-density approximation (ALDA) has often proved to be successful. In the case of solids, ALDA fails to reproduce optical absorption spectra, which are instead well described by solving the Bethe Salpeter equation of many-body perturbation theory (MBPT). On the other hand, ALDA can lead to excellent results for loss functions (at vanishing and finite momentum transfer). In view of this and thanks to recent successful developments of improved linear-response kernels derived from MBPT, TDDFT is today considered a promising alternative to MBPT for the calculation of electronic spectra, even for solids. After reviewing the fundamentals of TDDFT within linear response, we discuss different approaches and a variety of applications to extended systems.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Schindlmayr, A.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB20916
700 1 _ |a Del Sole, R.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Reining, L.
|b 3
|0 P:(DE-HGF)0
773 _ _ |a 10.1088/0034-4885/70/3/R02
|g Vol. 70, p. 357
|p 357
|q 70<357
|0 PERI:(DE-600)1361309-1
|t Reports on progress in physics
|v 70
|y 2007
|x 0034-4885
856 7 _ |u http://dx.doi.org/10.1088/0034-4885/70/3/R02
|u http://hdl.handle.net/2128/2608
856 4 _ |u https://juser.fz-juelich.de/record/56493/files/Schindlmayr_tddft.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/56493/files/Schindlmayr_tddft.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/56493/files/Schindlmayr_tddft.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/56493/files/Schindlmayr_tddft.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:56493
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |2 StatID
|0 StatID:(DE-HGF)0510
|a OpenAccess
920 1 _ |k IFF-1
|l Quanten-Theorie der Materialien
|d 31.12.2010
|g IFF
|0 I:(DE-Juel1)VDB781
|x 0
970 _ _ |a VDB:(DE-Juel1)88661
980 _ _ |a VDB
980 _ _ |a JUWEL
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
980 1 _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21