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Abstract. For the calculation of neutral excitations, time-dependent density functional
theory (TDDFT) is an exact reformulation of the many-body time-dependent Schrödinger
equation, based on the knowledge of the density instead of the many-body wavefunction.
The density can be determined in an efficient scheme by solving one-particle non-
interacting Schrödinger equations - the Kohn-Sham equations. The complication of the
problem is hidden in the -unknown- time-dependent exchange and correlation potential
that appears in the Kohn-Sham equations and for which it is essential to find good
approximations. Many approximations have been suggested and tested for finite systems,
where even the very simple adiabatic local density approximation (ALDA) has often
proved to be successful. In the case of solids, ALDA fails to reproduce optical absorption
spectra, that are instead well described by solving the Bethe-Salpeter equation of many-
body perturbation theory (MBPT). On the other hand, ALDA can lead to excellent
results for loss functions (at vanishing and finite momentum transfer). In view of that and
thanks to recent successful developments of improved linear response kernels derived from
MBPT, TDDFT is today considered a promising alternative to MBPT for the calculation
of electronic spectra, even for solids. After reviewing the fundamentals of TDDFT within
linear response, we discuss different approaches and a variety of applications to extended
systems.
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1. Introduction

Most of today’s quantum mechanical theoretical research in condensed matter physics and
chemistry is not aimed at finding new fundamental interactions or basic laws - it deals
with solving the Schrödinger equation of a well-known Hamiltonian, and extracting useful
information from the solution. This Hamiltonian, however, describes a many-body problem,
and for a number of electrons well above 10 it is impossible to even dream of a full numerically
exact solution. Moreover the exact solution would yield a wealth of information that could
hardly be understood without further analysis and simplification, and contain many details
that, for a given situation or question, one is probably not interested in [1]. Therefore it
is often more appropriate to reformulate the problem from the start, working with effective
Hamiltonians or selected expectation values that are suitable for the solution of a reduced
problem. This procedure will ideally simplify both the calculation and the analysis of the
desired quantities.

Density-Functional Theory (DFT) [2] is a prominent example of such an approach. It
has been designed for the calculation of ground-state properties. It is based on knowledge of
the density n(r) instead of the full many-body wavefunction Ψ(r1, r2, ....., rN , σ1, σ2, ...., σN )
of the N -particle system. DFT can be formulated in the Kohn-Sham (KS) approach [3] where
an efficient one-particle non-interacting Schrödinger equation - the Kohn-Sham equation -
yields eigenvalues εi and orbitals ϕi(r). The orbitals and eigenvalues do in general not have
a direct physical meaning, but the former can be used to construct the true density of the
interacting system according to n(r) =

∑

i |ϕi(r)|
2. The complication of the problem is

hidden in the - unknown- exchange and correlation (xc) total energy Exc and the exchange-
correlation potential vxc[n](r) that appears in the Kohn-Sham equation. Very efficient
approximations have been proposed, such as the Local Density Approximation (LDA) [3] or
Generalised Gradient Approximations (GGA) [4, 5], and many ground state properties are
today calculated from first principles with a precision of a few percent, like lattice parameters
or phonon frequencies [6]. There exist, however, ground state properties for which even in
simple systems standard approximations do less well: cohesive energies in particular can
easily be off by 10 % in LDA (because of errors in calculating the isolated atoms that enter
this total energy difference), and failures are reported for static response properties, like the
dielectric constant ε∞, which is often substantially overestimated [7]. Other problems arise
e.g. in the description of strongly correlated systems [8], or of the van der Waals dispersion
attraction [9]. These problems in calculating ground state properties can be traced back to
limits of validity of the employed approximations.

Another problem of static ground state DFT-Kohn-Sham is the fact that excitations,
such as those measured in the optical response to a time-dependent electric field, are in
principle not accessible. This is not a question of the available approximations, but of the
fact that the theory is not meant to describe these phenomena. In fact, even if one could
calculate the exact Kohn-Sham eigenvalues, their differences would not necessarily be close
to measured excitation energies. By definition, they do not stand for electron addition or
removal energies either [10]. The fact that the Kohn-Sham gap is in general reported to be
too small with respect to measured gaps does hence a priori not tell us anything about the
quality of a chosen approximation for the exchange-correlation potential.

If one wishes to work with an efficient Hamiltonian that in principle yields eigenvalues
meant to be electron addition or removal energies, or excitation energies, more than just the
static ground state density has to be calculated. Such energies can be found in essentially
two ways.

One, by studying particle propagation and fluctuations in the system. This yields
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correlation functions that can then be related to response functions yielding e.g. linear
response for optical absorption. These correlation functions are one-or two body Green’s
functions [11] (or higher order ones, for problems beyond the scope of this review). The
one-body Green’s function (that can essentially be understood as a time-dependent particle
and hole density matrix) has phase fluctuations (or, in frequency (ω-) space, poles) given
by electron addition and removal energies, measured e.g. in photoemission or inverse
photoemission experiments. The particle-hole part of the two-particle Green’s function, in
turn, has poles at the energies of neutral excitations. A contraction of the four-point reducible
part L(r, r1, r

′, r′1, ω) of the two-particle Green’s function leads to the two-point response
functions χ(r, r′, ω) that determine measurable spectra, like absorption or electron energy loss
spectra (EELS). Many-body perturbation Theory (MBPT) yields a framework where suitable
approximations for these Green’s functions can be found; in particular the Bethe-Salpeter
Equation (BSE) is a good starting point for approximations for χ [11, 12, 13, 14]. The price
to be payed for a physically intuitive and in general quite reliable description is however
relatively high in terms of computational cost, because now quantities like L(r, r1, r

′, r′1, ω)
appear, instead of the density n(r).

Second, by actually (on paper or in the computer) exposing the system to a time-
dependent external potential and calculating the evolution of the density in time. The
response function χ, for example, can then directly be determined from the linear response

relation n(1)(r, ω) =
∫

d3r′χ(r, r′, ω)v
(1)
extr

′, ω) between the variation in the external potential
and the induced density. This route has become accessible thanks to the extension of DFT
to its time-dependent generalisation, TD-DFT [15, 16, 17, 18, 19]. Put on a rigorous basis by
the Runge-Gross theorem [16], one can understand that in TDDFT the quantum-mechanical
“trajectory” of the system under the influence of a time-dependent external potential is found
by searching for the extrema of an action (instead of the minimisation of a total energy, as
done for the ground state), by analogy to the case of classical mechanics. One obtains
hence the time-dependent Kohn-Sham equations as generalisation of the static case, and
from these, response functions describing neutral excitations of a system [20]. At this point
the difficulty resides in finding suitable approximations for the time-dependent exchange-
correlation potential vxc[n](r, t); note that now the functional dependence is on the density
in the whole space and at all past times.

Many approximations have been suggested and tested for finite systems. Even the
very simple adiabatic local density approximation (ALDA, also called Time-Dependent LDA
(TDLDA)) where vALDA

xc [n](r, t) = vLDA
xc (n(r, t)) has been proved to be very successful in

many cases [15, 21], although the lack of a long range (1/r) decay of the potential can lead
to serious problems for questions like Rydberg states [22]. The latter shortcoming of the
LDA potential is not so crucial in solids where the electron density is quite homogeneous
(compared to an atom in empty space); instead, the wrong long-range behaviour of the
linear response kernel fxc(r, r

′, t, t′) = δvxc[n](r, t)/δn(r′, t′) can cause serious problems [14].
In fact in the ALDA this kernel is proportional to δ(r− r′), whereas in non-metallic systems
it should decay as 1/|r− r′| [23]. This shortcoming already shows up, e.g., in the calculation
of polarizabilities for molecular chains [24]. In the case of absorption spectra of solids, where
the imaginary part of the dielectric function ε for vanishing wavevector q (corresponding to a
macroscopic average) is calculated, the lack of a 1/q2 divergence (stemming from the Fourier
transform of 1/|r − r′|) can lead to drastic failures. For example, the ALDA is not able to
reproduce bound excitons [14]. On the other hand, for finite momentum transfer or when the
loss function −Im(ε−1) is the quantity of interest (e.g. in Electron Energy Loss or Inelastic
X-ray Scattering spectra) this term is not dominant, and ALDA can lead to very good results
(see e.g. [25, 26, 27, 28]). For this reason, and because of recent successful developments of
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improved linear response kernels derived from MBPT [29, 30, 31, 32, 33, 34, 35], TDDFT
is today considered to be a promising alternative to MBPT for the calculation of electronic
spectra, even for solids.

This situation is the main motivation for summarising here the state-of-the art of the
TDFFT approach for extended systems. This review is centred on the calculation of linear
response, which actually constitutes the overwhelming majority of work done in the field.
Moreover, it is limited to the calculation of excitation of valence electrons. TDDFT is
also used to determine core electron spectra (see e.g. [36]); however, this case is in many
respects more similar to the situation in finite systems and will therefore not be treated
here. Complementary to the present review, a discussion of time-dependent current density
functional theory for periodic systems can be found in Ref. [37]. A comprehensive review of
many aspects of TDDFT can is Ref. [38].

After a brief review of the fundamentals of TDFFT for which several more detailed
reviews can be consulted (see e.g. [19, 37, 21]), we will concentrate on questions that are
more specific to extended systems, with a short comparison to finite systems. Rather than
giving an exhaustive summary of all results that have been obtained in this rapidly expanding
field, selected applications are presented to illustrate major points, such as the importance of
crystal local field effects or the effect of contributions derived from MBPT. A short outlook
follows the conclusions.

2. Fundamentals

As the quantum-mechanical treatment of stationary and time-dependent systems differs in
many aspects, it is not straightforward to generalize the mathematical framework of static
density-functional theory. For example, the total energy, which plays a central role in the
original Hohenberg-Kohn theorem [2], is not a conserved quantity in the presence of time-
dependent external fields, and there is hence no variational principle for it on the basis of
the density that can be exploited. In this section we start by discussing the theoretical
foundations of TDDFT with a special emphasis on the linear density-response function and
its connection to the electronic excitation spectrum. We will use atomic units throughout
the paper (i.e. e2 = ~ = me = 1).

2.1. The Runge-Gross theorem

The evolution of a (non-relativistic) spin-unpolarized interacting many-electron system is
governed by the time-dependent Schrödinger equation

i
∂

∂t
Ψ({r}, t) = Ĥ({r}, t)Ψ({r}, t) , Ψ({r}, t0) given , (2.1)

where Ĥ is the Hamiltonian operator of the system and {r} = {r1, . . . , rN} are the spatial
coordinates of the N electrons. The Hamiltonian can be written in the form

Ĥ({r}, t) =

N
∑

i=1

(

−
1

2
∇2

i + vext(ri, t)

)

+
1

2

N
∑

i6=j

v(ri − rj) , (2.2)

where vext(r, t) is the time-dependent external potential and v(ri − rj) = 1/|ri − rj | the
Coulomb interaction. Being interested in spectroscopy, we consider scenarios where the
system is initially at rest in a static potential vext(r, t) = v0

ext(r), before a time-dependent
perturbation is switched on at t = t0 in order to probe the response of the electron system.
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Under these circumstances the initial state at t0 is given by the stationary ground-state
wave function Ψ({r}, t0) = Ψ0({r}) exp(−iE0t0), where E0 denotes the ground-state energy.
This initial wave function is determined up to an irrelevant phase factor for non-degenerate
systems. By virtue of the Hohenberg-Kohn theorem it is also a functional of the static
ground-state density n(r, t0) = nGS(r). We only admit physical potentials that are finite
everywhere and vary smoothly in time, so that they can be expanded into a Taylor series
about the initial time t0

vext(r, t) =
∞
∑

k=0

ck(r)

k!
(t− t0)

k with ck(r) =
∂k

∂tk
vext(r, t)

∣

∣

∣

∣

t=t0

. (2.3)

The theoretical basis of TDDFT is the Runge-Gross theorem [16], which asserts the one-to-
one correspondence between the external potential and the density, thus playing the same role
as the Hohenberg-Kohn theorem in static density-functional theory. Of course, for a given
external potential it is always possible, in principle, to solve the time-dependent Schrödinger
equation (2.1); the density is then given by

n(r, t) = N

∫

d3r2

∫

d3r3 . . .

∫

d3rN |Ψ(r, r2, . . . , rN , t)|
2
. (2.4)

What remains to be proved, in order to demonstrate the one-to-one correspondence, is that if
two potentials vext(r, t) and v′ext(r, t) differ by more than a purely time-dependent function,
then the associated densities n(r, t) and n′(r, t) must be distinct. The addition of a purely
time-dependent function is exempt because it only changes the phase of the wave function
but not the density. One assumes that both systems evolve from the same initial ground-
state wave function Ψ({r}, t0). The expansion coefficients of the two potentials around t0
are denoted by ck(r) and c′k(r), and one defines uk(r) = ck(r)− c′k(r). If the potentials differ
by more than a purely time-dependent function, then at least one coefficient uk(r) is not a
mere constant but a spatially varying function. For the proof of the Runge-Gross theorem
given in [16] one makes use of the current density

j(r, t) = −
i

2
N

∫

d3r2

∫

d3r3 . . .

∫

d3rN {Ψ∗(r, r2, . . . , rN , t)∇Ψ(r, r2, . . . , rN , t)

−∇Ψ∗(r, r2, . . . , rN , t)Ψ(r, r2, . . . , rN , t)} , (2.5)

which can also be written in a second quantization formalism as

j(r, t) = −
i

2
〈Ψ(t)|ψ̂†(r)

[

∇ψ̂(r)
]

−
[

∇ψ̂†(r)
]

ψ̂(r)|Ψ(t)〉 , (2.6)

The time evolution of the current density can be discussed by means of the equation of
motion

i
d

dt
j(r, t) = 〈Ψ(t)

∣

∣

∣

[

ĵ(r), Ĥ(t)
]∣

∣

∣
Ψ(t)〉 . (2.7)

Moreover, j(r, t) is related to the density through the continuity equation

∂

∂t
n(r, t) = −∇ · j(r, t) . (2.8)

This identity expresses the conservation of the total particle number in a differential form:
the change in the number of electrons within a certain volume equals the flux through its
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surface. In the first step one shows that the current densities j(r, t) and j′(r, t) induced by
the two potentials differ. To this effect one examines the time derivative

i
d

dt
{j(r, t) − j′(r, t)}t=t0

= 〈Ψ0

∣

∣

∣

[

ĵ(r), Ĥ(t0) − Ĥ ′(t0)
]∣

∣

∣
Ψ0〉

= 〈Ψ0

∣

∣

∣

[

ĵ(r), v̂ext(r, t0) − v̂′ext(r, t0)
]∣

∣

∣
Ψ0〉

= in(r, t0)∇{vext(r, t0) − v′ext(r, t0)} = n(r, t0)∇u0(r) , (2.9)

which follows from the definition (2.6) together with the known evolution of the current
density (2.7). If u0(r) is not a constant, then the right-hand side is non-zero, and consequently
the derivatives of the current densities at t0 must be distinct. The potential might also differ
by a coefficient uk with k 6= 0; in this case one can take an appropriate higher time derivative

dk+1

dtk+1
{j(r, t) − j′(r, t)}t=t0

= n(r, t0)∇uk(r) , (2.10)

with the non-constant uk(r) establishing hence that at least one term in the Taylor expansions
of j(r, t) and j′(r, t) differs. This implies that the current densities themselves deviate for
t > t0. In the second step one proves that the corresponding densities also differ. For this
purpose one takes the (k+1)st time derivative of the continuity equation (2.8) and again
examine the difference

∂k+2

∂tk+2
{n(r, t) − n′(r, t)}t=t0

= −∇ ·
∂k+1

∂tk+1
{j(r, t) − j′(r, t)}t=t0

=

−∇ · {n(r, t0)∇uk(r)} (2.11)

between the two systems. If the quantity on the right-hand side is non-zero, then the
(k+2)nd terms in the Taylor expansions of n(r, t) and n′(r, t) around t0 differ, and the
densities themselves must hence deviate for t > t0. The original proof [16] refers only to
finite systems, where both the potential and the density decay to zero at large distances, but
for extended systems it is easy to see that the right-hand side of (2.11) vanishes only if uk(r)
is of the form

uk(r) = uk(0) −

∫ r

0

n(0, t0)

n(r′, t0)
Ek · dr′ , (2.12)

with an arbitrary but constant vector Ek. As the density is always positive, uk(r) then grows
beyond all bounds as |r| → ∞, which implies that at least one of the potentials vext(r, t) or
v′ext(r, t) becomes infinite. However, this case was explicitly excluded. For all finite physical
potentials the right-hand side of (2.11) is indeed non-zero. This concludes the proof of
the Runge-Gross theorem. Note that potentials of the type (2.12) are also incompatible
with the Hohenberg-Kohn theorem in static density-functional theory: as the energy of the
electrons can always be lowered by a translation in the direction of the field vector, there is
no ground-state solution [39].

The Runge-Gross theorem is, in fact, a very strong statement: From the knowledge
of the density alone it is possible to deduce the external potential and hence the many-
body wave function, which in turn determines every observable of the system. Therefore,
all observables can ultimately be regarded as functionals of the density. We note that, in
contrast to more general cases [40, 41], there is no additional initial-state dependence in
this scenario, because the stationary wave function at t0 itself is determined by the static
ground-state density n0(r) = n(r, t0) of the unperturbed system.
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2.2. The time-dependent Kohn-Sham equations

The Runge-Gross theorem states that all observables are functionals of the density, but it
contains no prescription on how this central quantity can actually be calculated. To overcome
the analogous problem in static density-functional theory, Kohn and Sham [3] suggested to
use an auxiliary system of non-interacting electrons moving in an effective local potential,
which is designed in such a way that the densities of the non-interacting system and the
real interacting electrons coincide. This scheme has the big advantage to include the exact
non-interacting kinetic energy, which represents almost all the true kinetic energy of the
N -electron system. The main task is then to find a good approximation for this a priori
unknown effective potential. This idea was generalized to the time-dependent case, where
the Kohn-Sham electrons obey [16]

i
∂

∂t
ϕj(r, t) =

(

−
1

2
∇2 + vKS[n](r, t)

)

ϕj(r, t) (2.13)

and the density is given by

n(r, t) =
N
∑

j=1

|ϕj(r, t)|
2 . (2.14)

The Kohn-Sham scheme assumes that one can always find a local potential vKS[n](r, t)
with the property that the orbitals obtained from (2.13) reproduce the given density of an
interacting electron system, but the validity of this assumption, known as “non-interacting
v-representability”, is not obvious and requires a careful examination. If such a potential
exists, however, then by virtue of the Runge-Gross theorem it is unique up to a purely time-
dependent function. Giving a constructive proof, van Leeuwen [42] showed that an effective
local potential with the desired property exists if one can find a stationary wave function
that yields the initial density n(r, t0) and is the ground state of a non-interacting electron
system. The problem is thus reduced to the question of non-interacting v-representability
in static density-functional theory. Despite much progress, the latter is still unresolved.
Examples of well-behaved densities that do not correspond to the ground state of a non-
interacting system are known [43, 44]; the implications of this discovery remain however
unclear. In actual calculations, where the initial Kohn-Sham wave function is obtained from
the constrained minimization of a smooth approximate energy functional, a solution can
always be found [45].

If non-interacting v-representability is assumed, then vKS[n](r, t) is determined
completely by the requirement that (2.14) equals the density of the real interacting electron
system. As in the case of ground state DFT, one has then to find an explicit expression for
the effective potential that can be exploited to construct useful approximations. For this
purpose it is convenient to employ the same separation

vKS[n](r, t) = vext(r, t) + vH[n](r, t) + vxc[n](r, t) (2.15)

as in static density-functional theory. The first term is the external potential, the second is
the Hartree potential

vH[n](r, t) =

∫

d3r′
n(r′, t)

|r − r′|
(2.16)

and the third incorporates all remaining exchange and correlation effects. In the static
case one can exploit the variational principle and determine the orbitals of the Kohn-Sham
electrons in such a way that the total energy is minimized; all potential terms are then
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obtained as functional derivatives of the corresponding energy contributions with respect
to the density. The energy in turn is a well defined physical quantity and amenable to
approximations. In systems driven by time-dependent external fields the total energy is not
a conserved quantity and there cannot be minimization principle. There exists, however, a
quantity analogous to the energy, the quantum-mechanical action functional

A[Φ] =

∫ t1

t0

dt〈Φ(t)|

(

i
∂

∂t
− Ĥ(t)

)

|Φ(t)〉 , (2.17)

which has the property that its derivative with respect to a N -body function 〈Φ(t)| vanishes
at the true many-body wave function, i.e., the solution of the Schrödinger equation

δA[Φ]

δ〈Φ(t)|

∣

∣

∣

∣

|Φ(t)〉=|Ψ(t)〉

=

(

i
∂

∂t
− Ĥ(t)

)

|Ψ(t)〉 = 0 . (2.18)

Therefore, it is possible to solve the time-dependent problem by searching for the stationary
point of the action. In contrast to the energy in the static case, the stationary point is not
necessarily a minimum, however. Furthermore, the value of the action itself does not provide
any relevant additional information, since for the true many-body wavefunction A[Ψ] = 0.

By virtue of the Runge-Gross theorem we may consider the action as a functional of the
density. The obvious definition of A[n] is to evaluate (2.17) at the wave function Φ[n]({r}, t)
that evolves from the given initial state and yields the density n(r, t). In analogy to the total
energy in static density-functional theory, one would expect that the true density makes this
functional stationary and can thus be identified. A suitable decomposition of the action
would then define the exchange-correlation potential in terms of the functional derivative

vxc(r, t) =
δAxc[n]

δn(r, t)
. (2.19)

Unfortunately, this procedure is doomed to failure. A first problem arises because the density
determines the potential only up to a purely time-dependent function. Therefore, the wave
function Φ[n]({r}, t) and the value of the action derived from it are not unique. Even if
the phase of the wave function is fixed by imposing additional constraints, there is another
more fundamental problem, which becomes evident if one examines the second functional
derivative

δvxc(r, t)

δn(r′, t′)
=

δ2Axc[n]

δn(r, t) δn(r′, t′)
. (2.20)

Whereas the expression on the right-hand side is symmetric in (r, t) and (r′, t′), the exchange-
correlation potential can only be influenced by the density at earlier times. Therefore,
causality dictates that the left-hand side must vanish for t < t′ but not for t > t′.
The symmetry and causality requirements contradict each other and cannot be satisfied
simultaneously. One is hence forced to conclude that a differentiable functional Axc[n] with
the property (2.19) does not exist.

This causality dilemma [46, 47] was eventually resolved by van Leeuwen [45] using the
time-contour method due to Keldysh [48]. In this approach to non-equilibrium dynamics
the physical time t is parametrized by an underlying parameter τ called pseudotime in such
a way that t(τ) runs from t0 to t1 and back to t0 if τ runs along the contour C illustrated
in figure 1. As pseudotime values on the forward and backward branches are distinct, the
ordering along the contour differs from that on the physical time axis. The solution of the
dilemma hence consists in satisfying the causality and symmetry requirements in different
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-

t0 t1

s
t

C
�

�

s
τ

Figure 1. The Keldysh contour C, starting at t0 and turning back at t1. Pseudotime
values τ on the forward and backward branches are distinct.

variable spaces. To this effect the action is first defined as a functional of the external
potential in a form that does not explicitly contain ∂/dt

Ã[U ] = i ln〈Ψ(t0)|TC exp

(

−i

∫

C

dτt′(τ)Ĥ(τ)

)

|Ψ(t0)〉 . (2.21)

For the derivation of (2.21) the reader can see Ref. [45]. The potential U(r, τ) is contained
in the Hamiltonian, and TC sorts the subsequent operators in order of ascending pseudotime
arguments from right to left. For physical potentials of the form U(r, τ) = vext(r, t(τ)) the
value of the action is zero, because the contributions along the two time-contour directions
cancel each other, but its derivative can be non-zero. In fact, the action (2.21) is defined in
such a way that its functional derivative yields the density

δÃ[U ]

δU(r, τ)
= n(r, τ) . (2.22)

An unambiguous functional of the density can then be constructed by means of a Legendre
transform

A[n] = −Ã[U ] +

∫

C

dτt′(τ)

∫

d3rU(r, τ)n(r, τ) . (2.23)

Finally, for practical purposes the action is decomposed according to

A[n] = AKS[n] −
1

2

∫

C

dτt′(τ)

∫

d3r

∫

d3r′
n(r, τ)n(r′, τ)

|r − r′|
−Axc[n] . (2.24)

The first term is the action of the non-interacting Kohn-Sham system, whose Legendre
transform ÃKS[UKS] is defined in analogy to (2.21) in terms of the initial Kohn-Sham wave
function and the effective local potential. The second term is related to the Hartree potential,
and the third gives rise to the exchange-correlation potential

vxc(r, t) =
δAxc[n]

δn(r, τ)

∣

∣

∣

∣

n=n(r,t)

. (2.25)

Defining the action in the pseudotime domain instead of the real time axis guarantees the
proper symmetry of the second functional derivative in (r, τ) and (r′, τ ′). On the other
hand, the exchange-correlation potential (2.25), which is obtained by inserting the physical
time argument after performing the functional derivative with respect to n(r, τ), respects
causality on the time axis. From a theoretical point of view, all quantities that enter the
Kohn-Sham scheme are thus well defined, and working approximations can be derived by
finding a suitable expression for the action functional, for example through an expansion
in powers of the Coulomb interaction. This approach is known as the time-dependent
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optimized effective-potential method [49]. Unfortunately, the leading term, which is linear
in the Coulomb interaction and retains only exchange and no correlation [50], has already
a high computational cost. In fact, at present the design of specific approximations for the
exchange-correlation potential in TDDFT is still at a very early stage; we will discuss some
promising approaches later in this review. Today, most calculations take however a pragmatic
point of view and simply use one of the established functionals of static density-functional
theory. The most popular choice is the adiabatic local-density approximation (ALDA) [15],
which is obtained by evaluating the standard LDA potential with the time-dependent density
n(r, t):

vALDA
xc [n](r, t) = vHEG

xc [n](r, t)
∣

∣

n=n(r,t)
. (2.26)

The adiabatic approach is a drastic simplification, however, and a priori only justified
for systems with a weak time-dependence that are always locally close to equilibrium. This
adds to the problems that are due to the spatial locality of the LDA.

2.3. Linear-response theory

If the time-dependent external perturbation in vext(r, t) = v
(0)
ext(r) + v

(1)
ext(r, t) is weak, then

linear-response theory can be exploited to describe the dynamics of a system more efficiently
than a full solution of the Kohn-Sham equations (2.13). In this case the density is expanded

in orders of v
(1)
ext(r, t) according to n(r, t) = n(0)(r) + n(1)(r, t) + . . ., where the first-order

correction is given by

n(1)(r, t) =

∫ ∞

−∞

dt′
∫

d3r′ χ(r, r′, t− t′)v
(1)
ext(r

′, t′) , (2.27)

in terms of the linear density-response function

χ(r, r′, t− t′) =
δn(r, t)

δvext(r′, t′)

∣

∣

∣

∣

vext(r′,t′)=v
(0)
ext(r

′)

. (2.28)

Causality requires χ(r, r′, t − t′) = 0 for t < t′, of course, because the density cannot be
influenced by later variations of the potential. To calculate the linear density-response
function in practice one exploits the fact that the density of the real system is identical
to that of the non-interacting Kohn-Sham electrons. As the latter move in the effective
potential vKS(r′′, t′′), one starts by applying the chain rule for functional derivatives

χ(r, r′, t− t′) =

∫ ∞

−∞

dt′′
∫

d3r′′
δn(r, t)

δvKS(r′′, t′′)

δvKS(r′′, t′′)

δvext(r′, t′)
. (2.29)

The first term on the right-hand side corresponds to the linear density-response function
χKS(r, r′′, t − t′′) of the non-interacting Kohn-Sham system, since the effective potential
plays the role of the “external potential”of the Kohn-Sham system. It can be calculated
explicitly from time-dependent perturbation theory and is given by

χKS(r, r
′′, ω) = lim

η→+0

∞
∑

j=1

∞
∑

k=1

(fj − fk)
ϕj

∗(r)ϕk(r)ϕj (r
′′)ϕk

∗(r′′)

ω − εk + εj + iη
(2.30)

in frequency space. The energies εj appearing in the denominator are the eigenvalues of the
unperturbed stationary Kohn-Sham wave functions ϕj(r). In order to evaluate the second
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term in (2.29) one uses the separation (2.15), which yields

δvKS(r
′′, t′′)

δvext(r′, t′)
= δ(r′′ − r′)δ(t′′ − t′) +

δvH(r′′, t′′)

δvext(r′, t′)
+
δvxc(r

′′, t′′)

δvext(r′, t′)
. (2.31)

As both the Hartree potential and the exchange-correlation potential are functionals of the
density, one can apply the chain rule once more and rewrite these two contributions as

δvH(r′′, t′′)

δvext(r′, t′)
=

∫ ∞

−∞

dt′′′
∫

d3r′′′
δvH(r′′, t′′)

δn(r′′′, t′′′)

δn(r′′′, t′′′)

δvext(r′, t′)
(2.32)

and analogously for δvxc(r
′′, t′′)/δvext(r

′, t′). The last term on the right-hand side of (2.32)
is easily recognized as the linear density-response function χ(r′′′, r′, t′′′ − t′). The functional
derivative of the Hartree potential with respect to the density follows from the definition
(2.16) and simply equals the Coulomb potential

δvH(r′′, t′′)

δn(r′′′, t′′′)
=

1

|r′′ − r′′′|
δ(t′′ − t′′′) . (2.33)

The last term of (2.31) contains the so-called exchange-correlation kernel

fxc(r
′′, r′′′, t′′ − t′′′) =

δvxc(r
′′, t′′)

δn(r′′′, t′′′)

∣

∣

∣

∣

n(r′′′,t′′′)=n(0)(r′′′)

. (2.34)

After collecting all terms and performing a Fourier transform to frequency space, whereby
convolutions on the time axis turn into simple multiplications, one obtains the final integral
equation [20]

χ(r, r′, ω) = χKS(r, r
′, ω)

+

∫

d3r′′
∫

d3r′′′ χKS(r, r′′, ω)

(

1

|r′′ − r′′′|
+ fxc(r

′′, r′′′, ω)

)

χ(r′′′, r′, ω) . (2.35)

The TDDFT equations in the linear-response regime can be cast in numerous different
forms. For solids, in most implementations the integral equation (2.35) is solved routinely by
projecting all quantities onto a suitable set of basis functions. Very often, one uses a plane
wave representation within the pseudotential approximation (see e.g. [51, 52]), but localized
basis sets can equally be used to allow for all-electron calculations (see e.g. [53]). Equation
(2.35) thus turns into a matrix equation χ(ω) = χKS(ω)+χKS(ω)[v+fxc(ω)]χ(ω) for example
in reciprocal lattice vectors in case of periodic systems where χ = χG,G′(q). If one wishes
only obtain an absorption spectrum or the loss function at a given momentum transfer (see
definitions in section 3) only one component of the matrix χGG′(q, ω) is required. This can
be obtained by solving a linear system, thus avoiding a numerically involved matrix inversion
[51].

Alternatively, absorption spectra can be calculated by propagating the full TD Kohn-
Sham equations in real-time [54]. This description decreases storage requirements, it allows
the entire frequency-dependent dielectric function to be calculated at once, and the scaling
with the number of atoms is quite favorable. However, the prefactor is fairly large as such
calculations typically require ≈ 10000 time-steps with a time-step of ≈ 10−3 fs [55].

Another efficient approach, based on linear-response within Ghosh and Dhara’s time-
dependent density functional formalism [56], was proposed [57]. It uses an iterative scheme
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in real-space, in which the density and the potential are updated in each cycle, thereby
avoiding the explicit evaluation of the Kohn-Sham response kernels.

Finally, a method to calculate the dynamical polarizability using only occupied states
has been proposed recently [58]. The dynamical polarizability is represented by a matrix
continued fraction whose coefficients can be obtained from a Lanczos method. This methods
scales favorably with system size, and it may become useful for large scale systems. At
present there is however only a single application to the benzene molecule [58].

2.4. Excitation energies

In static DFT the interpretation of the one-particle Kohn-Sham eigenvalues εj as
quasiparticle energies is not formally justified and it leads to the well known problem of the
underestimation of transition energies. In the framework of TDDFT the relevant information
about the excited states is contained in the linear density-response function: in fact it can
be shown that the true excitation energies are the poles of χ(r, r′, ω) . In contrast to other
attempts to calculate electronic excitations within a density-functional framework [59, 60, 61],
TDDFT has the great advantage that it is not restricted to a subset of excited states but,
in principle, yields the complete excitation spectrum.

In order to see this, one can calculate the density charge due to the external potential at
first order. The stationary eigenstates of the original unperturbed Hamiltonian are labeled
by Ψj({r}, t) = Ψj({r}) exp(−iEj t), where Ej denotes the corresponding energy eigenvalues.
After the onset of the time-dependent perturbation it is possible to expand the wave function
Ψ({r}, t) that evolves from the ground state Ψ(0)({r}, t) = Ψ0({r}) exp (−iE0t) in orders of

v
(1)
ext(r, t). The first-order correction is

Ψ(1)({r}, t) = −i
∞
∑

j=0

Ψj({r}, t)

∫ t

−∞

dt′
∫

d3r′1 . . .

∫

d3r′NΨ∗
j ({r

′}, t′)

(

N
∑

i=1

v
(1)
ext(r

′
i, t

′)

)

Ψ0({r
′}, t′) . (2.36)

The corresponding change in the density is

n(1)(r, t) = N

∫

d3r2 . . .

∫

d3rN

{[

Ψ(1)(r, r2, . . . , rN , t)
]∗

Ψ(0)(r, r2, . . . , rN , t)+

[

Ψ(0)(r, r2, . . . , rN , t)
]∗

Ψ(1)(r, r2, . . . , rN , t)
}

. (2.37)

In order to simplify the notation we introduce the overlap functions

nj(r) = N

∫

d3r2 . . .

∫

d3rNΨ∗
0(r, r2, . . . , rN )Ψj(r, r2, . . . , rN ) , (2.38)

and after inserting (2.36) and (2.38) into (2.37) we obtain

n(1)(r, t) =

∫ ∞

−∞

dt′
∫

d3r′



−i

∞
∑

j=0

(

nj(r)n
∗
j (r

′)e−i(Ej−E0)(t−t′)

− n∗
j (r)nj(r

′)ei(Ej−E0)(t−t′)
)

Θ(t− t′)
]

v
(1)
ext(r

′, t′) . (2.39)
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Comparing this expression with (2.27), one finds that the term in square brackets equals
the linear density-response function χ(r, r′, t − t′). The Heaveside step function Θ(t − t′)

has been introduced to replace the integral over time
∫ t

−∞
dt′ with

∫∞

−∞
dt′. After a Fourier

transform to frequency space, and using Θ(t) = i/2π limη→0+

∫∞

−∞
dω 1

ω+iη e
−itω one arrives

at the Lehmann representation of the density response function:

χ(r, r′, ω) = lim
η→0+

∞
∑

j=1

(

nj(r)n
∗
j (r

′)

ω −Ej +E0 + iη
−

n∗
j (r)nj(r

′)

ω +Ej −E0 + iη

)

, (2.40)

where η is a positive infinitesimal. From (2.40) it is evident that the poles of χ(r, r′, ω)
correspond to the exact excitation energies Ej −E0. Furthermore, all quantities on the right-
hand side depend only on the Hamiltonian of the unperturbed stationary system. By virtue
of the Hohenberg-Kohn theorem the linear density-response function is hence a functional
of the static ground-state density n0(r).

The form of (2.40) is valid for finite systems with discrete eigenvalues. As the energies
Ej of the eigenstates of the many-electron system are real, it appears that the poles of
χ(r, r′, ω) are at real energies. For extended systems, on the other hand, the spectrum is
continuous, and the sum in (2.40) turns into an integral that gives rise to a branch cut along
the real energy axis. The infinitely close-lying resonances thus merge into broad structures
that can be identified with elementary quasiparticles, such as plasmons or excitons. As these
structures have a certain width, they are described by poles in the complex plane with a real
part, which corresponds to the energy of the excitation, and a finite imaginary part, whose
inverse is proportional to the excitation lifetime.

3. TDDFT in practise: approximations and problems

Linear response theory can be applied now to study the response of an extended system to a
small time-dependent perturbation vext(r, t). The linear variation of the density induced by
the perturbation is given by (2.27). As a consequence of the polarisation of the system due
to the applied perturbation, the total potential becomes a sum of the external potential and
the induced potential: vtot = vext + vind. The basic quantity that gives information about
the screening of the system in linear response is the microscopic dielectric function ε, that
relates the total potential vtot to the applied potential vext:

vtot(r, t) =

∫ ∞

−∞

dt′
∫

d3r′ ε−1(r, r′, t− t′)vext(r
′, t′) . (3.1)

The microscopic dielectric function ε and the reducible polarizability χ are hence related by

ε−1(r, r′, t− t′) = δ(r − r′)δ(t− t′) +

∫

d3r′′v(r − r′′)χ(r′′, r′, t− t′). (3.2)

For periodic systems, the most natural way to deal with spatial periodicity is to apply a
Fourier transform and rewrite (3.2) in reciprocal space

ε−1
GG′(q, ω) = δGG′ + vG(q)χGG′(q, ω) , (3.3)

where G is a vector of the reciprocal lattice, while q is a vector in the first Brillouin zone.
In (3.3) a Fourier transform has also been applied to move from time to frequency space.
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From the microscopic dielectric function one has to obtain measurable quantities. In
the case of absorption spectra, this means to calculate the imaginary part of the macroscopic
dielectric function [62, 63, 64]

εM(ω) = lim
q→0

1
[

ε−1
GG′(q, ω)

]

G,G′=0

. (3.4)

We have dealt so far with the response to a potential whose electric field is longitudinal with
respect to the wavevector. Light, instead, is a transverse perturbation, i.e. its electric field
is perpendicular to the wavevector. Hence, it would seem inappropriate to use the present
treatment. However, since the light wavevector is very small, one can think to rotate it such
as to have it parallel to the electric field and apply the present formalism [65]. The validity of
this approach has been rigorously demonstrated for cubic crystals in Ref. [13]. Furthermore,
we observe that, in general, for anisotropic systems (3.3) and (3.4) depend on the direction of
the vector q (i.e. on the polarisation of the incoming radiation), thus both microscopic and
macroscopic responses are described by a dielectric tensor, instead of simple scalar functions.

The same quantity εM is also related to electron energy loss spectra (EELS) for vanishing
momentum transfer, through the loss function −Im{1/εM}. For non-vanishing momentum
transfer Q = q + G, the loss function is −Im

{

ε−1
GG(q, ω)

}

. In this case the longitudinal
formulation of the dielectric response is obviously appropriate. From (3.3) it follows that the
loss function can be related to the linear density response function χ:

EEL(q + G, ω) = −vG(q) Im {χGG(q, ω)} , (3.5)

where the GG′-matrix χ can be obtained by solving the Dyson-like screening equation
(2.35). In (2.35) the full response function is expressed in terms of the independent-particle
χKS via a kernel composed by two terms, the bare Coulomb potential and the exchange-
correlation contribution fxc. A similar expression can be written also in the case of the
optical absorption, provided one builds a modified response function χ̄:

Im {εM} = − lim
q→0

vG(q)Im {χ̄GG′} , (3.6)

which satisfies the Dyson-like screening equation

χ̄ = χKS + χKS(v̄ + fxc)χ̄ , (3.7)

where the modified Coulomb interaction is defined as

v̄G =

{

vG for G 6= 0
0 for G = 0

. (3.8)

Following [14], the description of both absorption and EELS for q → 0 can be unified by
introducing the generalised spectrum A(ω) and a generalised function XGG′(q, ω). The
function X stands for the modified response function χ̄ in the case of absorption and for the
reducible response function χ in the case of EEL:

Abs
EEL

}

= A(ω) = −Im

{

lim
q→0

vG=0(q)XG=G′=0(q, ω)

}

. (3.9)

In any formulation, the basic ingredients to obtain either the absorption or the EELS are the
Kohn-Sham eigenfunctions and eigenenergies that enter the expression for the independent-
particle Kohn-Sham response function χKS (2.30). These are usually obtained through a
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ground-state DFT calculation using an approximate exchange-correlation potential. In the
total kernel of (2.35) and (3.7) v̄ accounts for classical depolarisation effects (also known as
crystal local field effects (LFE) in a solid). It reflects the microscopic induced Hartree
potential created by polarizable inhomogeneities in the system. The apparently subtle
difference between absorption and EEL, i.e. the inclusion or the exclusion of the long-range
term v0, is crucial for extended systems - for example, v0 is responsible for the plasmons - ,
whereas its contribution in finite systems becomes vanishingly small [66]. The term fxc is a
complex quantity that contains all non-trivial many-body effects. Its analytical expression
is unknown.

We have therefore two key approximations: (i) the ground-state exchange-correlation
potential, and (ii) the exchange-correlation kernel. Of course, these two quantities are
in principle linked, due to the fact that the exchange-correlation kernel is the functional
derivative of the time dependent exchange-correlation potential. The relative importance
of the two approximations depends, as we will see in the following, on the physical system
under study. For example, when dealing with finite systems it is often essential to have good
Kohn-Sham eigenstates – and therefore a good ground-state exchange-correlation potential
– while the role of the exchange-correlation kernel is less relevant [67, 22]. The opposite is
usually true for extended systems, where a good approximation to the exchange-correlation
kernel turns out to be essential, especially when it comes to describe optical absorption
spectra [14].

Searching for approximations several approaches are possible. For the ground-state
exchange-correlation potential, 40 years of development have led to a swarm of functionals
(for more information, see one of the numerous review articles on the subject, e.g. [68]).
For the exchange-correlation kernel, one can either look for a good approximation for the
time-dependent exchange-correlation potential and then use the definition of fxc (2.34) or find
directly an expression for the exchange-correlation kernel. Either choice has clear advantages
and disadvantages. On the one hand, the exchange-correlation kernel is a simpler object,
in the sense that it is a functional of the ground-state density, and is therefore amenable
to more controllable approximations. On the other hand, if we are in possession of a good
time-dependent exchange-correlation functional, we can tackle both linear and non-linear
response properties. Instead, only linear response is accessible through the knowledge of the
exchange-correlation kernel. Most often, the standard approximations used for vxc(r, t) are
adiabatic, and lead to very simple fxc’s.

3.1. Basic approximations: RPA and TDLDA

The lowest level approximation to perform real calculations consists in setting to zero the
terms in (2.35) and (3.7) coming from the microscopic components of the induced Hartree
potential (v̄ = 0) and the variations of the exchange-correlation potential (fxc = 0). By
comparing (3.4) with (3.6), with vanishing v̄ and fxc, it is possible to see that this is equivalent
to neglect all the off-diagonal components of the matrix ε−1

GG′ . We will refer to this as the
independent particle approximation (IPA). The excitation energies in the IPA are simply
given by the differences between the eigenenergies of the unoccupied and occupied Kohn-
Sham states, which are used to build χKS. Independently of the quality of the states entering
in χKS, this usually leads to absorption peaks that are systematically red-shifted in relation
to the experimental spectra [14]. This is a consequence of the well known gap problem of
DFT: the gap between filled and empty states is substantially underestimated [69].

By neglecting only the exchange-correlation kernel we obtain the so-called random-phase
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approximation (RPA) [63, 64]
fRPA
xc = 0 . (3.10)

In this case, the only part of the total kernel in (2.35) and (3.7) which is taken into account is
the classical Coulomb term. This term describes the well known Lindhard theory of screening
with the addition of LFE [70]. Although very simple, the RPA yields results of reasonable
accuracy for a wide-range of systems, and it is still widely employed in actual calculations.
We will see some examples in the following of this section.

In the next step in the ladder of complexity come the already mentioned adiabatic
approximations. At the level of the time-dependent exchange-correlation potential the
adiabatic approximation implies

vadiabatic
xc [n](r, t) = ṽxc [n(t)] (r, t) , (3.11)

where ṽxc[n] is some given ground-state exchange-correlation functional. Note that,
regardless of the choice of ṽxc[n], the resulting kernel is instantaneous: fxc(r, r

′, t, t′) =
δ(t − t′)fxc(r, r

′), i.e., its Fourier transform is frequency independent (it can be of course
non-local in space). If the LDA static potential is inserted in (3.11), one obtains the most
common functional of TDDFT: the ALDA potential. Using definition (2.34), one can then
derive the local and static ALDA (also called TDLDA) exchange-correlation kernel [17, 18]

fTDLDA
xc (r, r′, t, t′) = δ (r − r′) δ (t− t′)

d2eHEG
xc (n)

dn2

∣

∣

∣

∣

n=nGS(r)

, (3.12)

where eHEG is the energy per unit volume of the homogeneous electron gas, and nGS is the
ground-state electron density.

It is clear that the TDLDA retains all the problems already present in the LDA. The
most important of these are perhaps, for neutral finite systems, the incorrect asymptotic
behaviour of the LDA potential (instead of decaying as −1/r, the LDA exchange-correlation
potential goes to zero exponentially) and, for infinite systems, its local dependence on the
density. These drawbacks can not be corrected by using in (3.11) most of the GGAs [71],
nor the more modern meta-GGAs functionals [72, 73].

Nevertheless, for the calculation of optical response spectra in large variety of finite
systems, the TDLDA has proved to be able to reproduce low energy peaks with an accuracy
of around 0.1–0.4 eV [74]. For solids, the situation is a bit more complicated. EEL or
X-ray scattering (IXS) spectra are often of good quality, especially when the transferred
momentum q is finite [75, 26, 25]. Instead, the description of Im {εM(ω)} for vanishing
momentum transfer, which is the case in optical response, is perhaps the best known failure
of TDLDA. Note that in an extended system the TDLDA kernel for a vanishing q yields
always a relatively small correction to the RPA results, because it is constant for q → 0 and
multiplied with χKS that goes to 0 as q2. It can hence only have an effect via the LFE [27].
We will discuss this issue more in detail in the following of this section.

It is clear from the above that the behaviour of the different approximations depends
strongly on the spectroscopy and on the dimensionality of the physical system. Therefore,
it is interesting to present an overview of results for finite systems (molecules, clusters) to
be compared to analogous results for infinite systems. In view of that, the following two
subsections handle separately optical absorption in finite (section 3.2) and periodic systems
(section 3.3). We then turn to EEL and IXS in section 3.4. Finally, we try to understand
the failures of the TDLDA (section 3.5), and discuss possible routes to overcome them.
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Figure 2. Photoabsorption spectrum for a Na8 cluster [14]. Dots: experimental data;
dashed line:IPA Kohn-Sham transitions; solid line: RPA; dashed-dotted line: TDLDA.

3.2. Finite systems

The first calculations of excitation energies within TDDFT were performed before the
formal demonstration of the Runge-Gross theorem. In 1977 Ando determined intersubband
transitions in semiconductor heterostructures [76]. Shortly after, Zangwill and Soven [15]
applied TDLDA to the calculation of the photo absorption cross section of rare gas atoms,
obtaining a very good agreement with experimental data.

However, it was only in recent years that TDDFT became one of the most popular tools
for the calculation of excitation properties. By now, the TDLDA kernel (3.12) has been
successfully applied to atoms, organic and biological molecules, metallic and semiconducting
clusters, fullerenes, etc [77, 78, 79, 74, 80]. Besides some more problematic cases (see
section 3.5) the calculated excitation energies and absorption spectra are, in general, in
excellent agreement with available experimental data. From the plethora of available
applications of TDDFT to finite systems [81], we show here only two illustrative examples:
(i) Na8, a prototype metallic cluster, and (ii) the polycyclic aromatic hydrocarbons (PAHs).

The absorption spectra of a Na8 cluster [14] are shown in figure 2. The IPA calculation
(dashed line) is compared to a RPA (solid line) and a TDLDA result (dashed-dotted line).
The experimental spectrum [82] is also plotted (dots). As a general feature, present in
both metallic and semiconducting clusters, we find that the RPA peaks are blue-shifted with
respect to the IPA peaks. Adding the TDLDA kernel brings a further correction, this time as
a shift towards lower energies. The resulting transition energies then accurately reproduce
the experiment. It is important to observe that, already in the RPA, absorption at low
energies is correctly suppressed with respect to IP calculations. In fact this suppression of
the oscillator strength is essentially due to the induced classical depolarisation potential.
From (3.4) it can be observed that the LFE come from the off-diagonal terms of the matrix
εGG′ . In other words, they express the fact that the electronic response of an inhomogeneous
structure is position-dependent (and not only distance-dependent). It is intuitive that such
an effect has to be the stronger the larger the inhomogeneity of the system. Since a finite
object represents a strong inhomogeneity in the otherwise empty space, it is not surprising
that the LFE are particularly important for this kind of systems.
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Figure 3. Comparison between the calculated weighted sum of the spectra[83] (dotted-
dashed line) for neutral PAHs and the experimental results of Joblin et al [84](crosses)
for a natural mixture of neutral PAHs with average NC = 24.

To illustrate the wide range of applicability of TDDFT, we now turn to the modelling
of interstellar photophysics [83]. Due to their spectral properties, their high photo-
stability and the fact that they are carbon-based, free gas-phase PAHs (in different charge
and hydrogenation states) are commonly thought to be an important component of the
interstellar medium. However, to compare with the measured spectrum of the interstellar
medium, laboratory data of the individual PAHs are necessary. These are, however, often
scarce and difficult to obtain. An alternative are numerical experiments based on TDDFT.

In figure 3 the dotted-dashed line represents the calculation by Malloci et al [83] of the
photo-absorption cross-section up to the vacuum ultraviolet for a mixture of 20 different
neutral PAHs, ranging in size from naphthalene (C10H8) to dicoronylene (C48H20). The
overall spectrum for the PAH mixture is obtained as a weighted sum of the spectra for the
single CnHm molecules. (The statistical weights are assumed to be inversely proportional to
the total number of carbon atoms NC of each molecule. The average NC of the theoretical
sample is NC = 23.55). The experimental spectrum measured by Joblin et al [84] for a
natural mixture of neutral PAHs with average NC = 24 is also plotted in figure 3 (crosses).
Two distinct features can be observed in the spectrum: (i) a collective broad absorption peak,
resulting from the sum of the π → π∗ transitions at ' 6 eV, and characterised by distinct
structures due to the coincidence of relatively strong transitions in different molecules; and
(ii) a smooth far-UV rise. The agreement between theory and experiment is very good and
validates the use of TDLDA calculations as a substitute for laboratory data when the latter
are lacking.

We have just witnessed snapshots of the quality of TDLDA calculations for finite
systems. However, it should not be forgotten that in some cases TDLDA is not adequate to
describe excitations of finite systems: a typical example is the failure in reproducing Rydberg
series [22]. Moreover, when the molecules becomes more extended, this quality in general
degrades. An example is the calculation of optical properties of long conjugated polymers
[24, 85]. The problem is related to a non-local dependence of the exchange-correlation
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Figure 4. Imaginary part of the macroscopic dielectric function for LiF [87]. Dots:
experiment [88]; dotted-line: BSE calculation; dashed line: IPA calculation; solid line:
RPA calculation; dot-dashed line: TDLDA calculation.

potential: In a system with an applied electric field, the exact exchange-correlation potential
develops a linear part that counteracts the applied field [24, 86]. This term is completely
absent in both the LDA and the GGA. It is present in more non-local functionals like the
EXX (see section 7).

In the following we will investigate more closely this problem.

3.3. Optical absorption in extended systems

The simplest approach to the optical properties of semiconductors or wide-gap insulators
within TDDFT is the TDLDA. In view of the excellent quality of the results obtained
for the photoabsorption of clusters, one could perhaps expect that the same would occur
for extended systems. This is unfortunately not the case. As we can see in figure 4 for
the optical absorption of a LiF crystal, the TDLDA (dash-dotted line) induces only some
minor modifications with respect to the RPA (solid line), and both are very far from the
experimental curve (dots). The largest disagreement concerns the absence of the strong
excitonic peak at about 12.5 eV. Good agreement can be found using the many-body Bethe-
Salpeter approach (dotted line) at the price of a significantly larger computational effort
[89, 90, 91, 92]: in that framework, electron addition and removal energies as well as the
electron-hole interaction are explicitly calculated within many-body Green’s function theory
(see section 7).

This situation is quite general and is found in a wide range of semiconductors (Si – see
also the inset of figure 5 – Ge, GaAs, etc.) and wide-band gap semiconductors or insulators
(diamond, MgO, SiO2, etc.). It is typical for absorption, as opposed to loss spectroscopies,
even when both techniques are employed to study the same system. A detailed analysis of
the problem will be the subject of section 6.2.
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Figure 5. Continuous connection between EELS and absorption spectrum of bulk silicon,
via v0 [66]. Experiments from references [93] (absorption) and [94] (EELS).

3.4. EELS and IXSS in extended systems

In figure 5 we can observe both the absorption and EELS at vanishing q (within RPA) for
bulk silicon [66]. To interpret this picture it is useful to use the generalised spectrum A(ω)
of (3.9). The modified RPA polarisation function X (3.9) can be further generalised as

X(ω) = (1 − χKSγv0 − χKSv̄)
−1 χKS . (3.13)

If γ = 1, A(ω) = EELS, and if γ = 0, A(ω) = Abs. Moreover, it is possible to follow the
evolution of the spectrum when γ varies continuously from 1 to 0. Figure 5 shows how the
EELS turns continuously into the absorption when v0 is switched off. This exemplifies the
action of the long-range component v0, that is responsible for the huge difference between
an EELS and an absorption spectrum.

Let us go back to the EEL spectrum of bulk silicon: a comparison between the
experimental and the RPA spectrum is shown in the second inset of figure 5. Olevano
and Reining [95, 14] showed that the TDLDA gives better agreement with experiment than
RPA, even though the difference is small (see figure 16 of [14]). Some improvement can be
found when the BSE approach is used (see again figure 16 of [14]). But since the full BSE
calculation of a valence plasmon is still a computationally involved task, the use of TDLDA
(or even RPA) is often well justified.

When the electron density does not present particular inhomogeneities, it can be enough
to include only v0 in the kernel (2.35) to obtain an accurate calculation of the loss spectra
of extended systems. In the case of layered or low dimensional structures [96], or in presence
of localised states [97, 98], also the contribution of v̄ becomes essential and only a RPA, or
often better TDLDA, calculation can yield a good agreement with the experimental data.



Time-dependent density-functional theory for extended systems 21

Figure 6. Integrated loss function of TiO2 for q ' 0.4 Å−1)[97]. Solid line: Experiment.
Dashed line: RPA calculation. The inset compares the IPA calculations (dashed line)
with experiment (solid line).

The similarity between RPA and TDLDA is a quite general feature for the loss function at
small transferred momentum q. It holds, e.g., for the loss function of graphite [96], and
for the integrated loss function of TiO2 [97]. A good agreement with experimental spectra
was obtained within RPA also for the EELS of diamond [27] and ZrO2 [98], always at low
momentum transfer. As a general rule, when q gets larger, the contributions of LFE and
of the exchange-correlation kernel within TDLDA become more important. Also in this
case RPA and TDLDA allow a good agreement with experiment, as it is shown by recent
calculations of IXSS at the RPA and TDLDA level for Al [25], rutile TiO2 [75] and various 3d
transition metals [26]. In some cases, TDLDA can give a sizable improvement with respect
to RPA [28].

The case of TiO2, illustrated in figure 6, is particularly interesting: at small momentum
transfer the IPA spectrum yields results up to about 25 eV very similar to those obtained
within the RPA or the TDLDA. At higher energies the IPA picture breaks down as it cannot
describe correctly the structure originated by transitions from the localised semi-core states.
The agreement with the experimental data is obtained only within RPA and TDLDA (the
TDLDA spectrum is very similar to the RPA one and therefore it is not shown in figure 6).

These statements often hold when the momentum transfer is small. For large momentum
transfer, the LFE become more important and, with the increasing contribution of G 6= 0
terms also the influence of the TDLDA kernel increases. In fact, by comparing IPA, RPA and
TDLDA calculations of IXSS for TiO2, Gurtubay et al [75] proved that at large momentum
transfer the calculations agree with the experiment only when LFE are included, even at low
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spectrum with LFE. Circles: IXS measurements [75].

energies (see figure 7).
In conclusion, we can state that the TDLDA is often very reliable for EELS and IXSS

(both for small and large momentum transfer), and for photoabsorption in finite systems.
LFE often give a sizable contribution to this success. One of the main remaining problems
is the optical absorption in extended systems.

3.5. What is missing in RPA and TDLDA?

We can summarise now the situation as it was explored so far:

• For excitation properties of finite systems, in general, RPA and TDLDA work quite well.
There are of course many exceptions, most of which are related to the incorrect tail of
the LDA (or GGA) exchange-correlation potential at large r. Some problems related
to this deficiency are the already mentioned impossibility to reproduce Rydberg series,
the overestimation of polarizabilities in long chain molecules, the large underestimation
of ionisation energies or the wrong description of any situation where the electrons are
pushed to regions far away from the nuclei (e.g. by a strong laser). These issues can be
solved by the use of functionals with the correct asymptotic behaviour, like the EXX or
the adiabatic LB94. [99].

• For extended systems, EELS and IXSS at small and large momentum transfer are
often well reproduced within TDLDA. Instead, TDLDA fails in the calculation of
optical (q = 0) spectra of non-metallic solids [23]. To explain this failure, the wrong
asymptotic behaviour of the exchange-correlation potential is less relevant, while the
wrong asymptotic limit of the exchange-correlation kernel is crucial. For infinite systems,
the q = 0 component of χKS vanishes as q2. It is then clear from the response equation
(3.7) that if fxc has to correct the non-interacting response for q → 0 it will have
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to contain a term that behaves asymptotically as 1/q2 when q → 0. This term will
be particularly important in absorption calculations, where the Coulomb part of the
kernel does not contain v0 ∼ 1/q2. This crucial term cannot be found in the local or
gradient-corrected approximations.

Finally, we recall that the TDLDA exchange-correlation potential is local in time. Few
attempts to derive functionals which are nonlocal in time, i.e. that include memory effects,
have been done so far. By analogy with hydrodynamics, Dobson et al assumed that in the
electron liquid memory resides not with each fixed point r, but rather within each separate
“fluid element” [100]. Thus the element which arrives at location r at time t “remembers”
what happened to it at earlier times when it was at locations different from its present
location r. Using this concept, Dobson et al proposed a functional that satisfies Galilean
invariance and Ehrenfest’s theorem. Unfortunately, no applications of this functional exist
to date. This approach was further extended by Tokatly within time-dependent current DFT
[101]. Furthermore, the frequency dependence of the exchange-correlation kernel has been
proved to be essential to describe charge transfer between open-shell species [102] and double
excitations[103, 104, 105, 106, 107]. An example of frequency dependent model exchange-
correlation kernel will be presented in section 8.1.

Several attempts have been done to correct shortcomings of RPA and TDLDA. In the
next section we will start by considering the case of metallic systems and discuss explicit
density functional beyond the ALDA.

4. Explicit density functionals

Explicit density functionals are expressions for the exchange-correlation kernel that are
defined directly in terms of the electron density. Most of the commonly used approximations,
such as the ALDA, belong to this class of functionals. The majority is derived from numerical
results for the homogeneous electron gas that are cast into a parametrised form, thus allowing
a transfer to other systems. The prevalence of explicit density functionals is largely due to
the fact that their evaluation is typically cheap and adds little computational overhead to
practical calculations. However, the physical content of a given parametrisation, especially
when transferred to a very different material, and its accuracy for the study of excited states
are not always clear. Some problems of the RPA and the ALDA were already discussed
in the previous section. In the following we consider a wider range of explicit density
functionals that go beyond these basic approximations and analyse their performance for
extended systems.

4.1. Dynamic exchange-correlation effects in the electron gas

In the following we examine the influence of the exchange-correlation kernel on the excitation
spectrum of the homogeneous electron gas, based on [108]. As the effective ground-state
potential is a trivial constant for this model system, the choice of the kernel is the only source
of errors, whose impact can thus be clearly identified. In addition, the relative simplicity of
the homogeneous electron gas makes it possible to explore accurate numerical constructions
that go significantly beyond basic approximations like the RPA and ALDA. Note however
that their applicability to inhomogeneous semiconductors with a finite band gap, which
most of this review is concerned with, is an entirely different question, because the electronic
properties of metallic and non-metallic materials deviate fundamentally. Specifically, we here
consider the following schemes.
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(a) In the RPA (3.10) all dynamic exchange and correlation effects are ignored by setting
the kernel to zero.

(b) The ALDA replaces the wavevector- and frequency-dependent kernel of the electron
gas by its long-wave-length and static limit (for inhomogeneous systems, this value is then
used at each point in space according to the local density, see (3.12)):

fALDA
xc = lim

q→0
fHEG
xc (q, ω = 0). (4.1)

Note that for the homogeneous gas the exact kernel in reciprocal space is of course not a
matrix but has only a scalar dependence on the absolute value of q. Also note that, contrary
to the case of semiconductors and insulators mentioned in earlier sections, no 1/q2 divergence
appears.

(c) In their original application of TDDFT to excited states Petersilka, Gossmann and
Gross (PGG) [20] derived an exchange-only kernel within the approximation of Krieger, Li
and Iafrate [109]. Designed for small atoms, the PGG formula is, in fact, exact for two-
electron exchange, but deviations are expected for extended systems. In particular, it does
not contain the frequency dependence of the exact exchange kernel [110]. The formula for
the non-local PGG kernel fPGG

xc (q) in reciprocal space for the homogeneous electron gas is
given in [111].

(d) Burke, Petersilka and Gross (BPG) [112] proposed a hybrid formula that improves
further the excitation spectra of atoms by incorporating correlation as well as a self-
interaction correction. It combines expressions for symmetric and antisymmetric spin
orientations from different approximations in a spin density-functional formalism. For the
unpolarised homogeneous electron gas this kernel reduces to

fBPG
xc (q) =

1

2

[

fPGG
xc,↑↑(q) + fALDA

xc,↑↓

]

. (4.2)

(e) A good parametrisation of the static exchange-correlation kernel for the homogeneous
electron gas was given by Corradini, Del Sole, Onida and Palummo [113] (CDOP), who used
the Monte Carlo results of Moroni, Ceperley and Senatore [114] for the static local-field
factor G(q) = −fxc(q)/v(q). Unlike the original data, this parametrisation is not restricted
to metallic densities, because it incorporates the known asymptotic limits for high and low
densities. By construction, the CDOP kernel becomes identical to the ALDA in the long
wave-length limit.

(f) Finally, we consider a parametrisation of the dynamic local-field factor of the
homogeneous electron gas proposed by Richardson and Ashcroft [115] (RA), including
the corrections given in [111], which stems from the summation of self-energy, exchange
and fluctuation terms in the diagrammatic expansion of the polarisation function. It
satisfies many important sum rules and reproduces the exact asymptotic expressions for
small and large wave vectors. At intermediate wave vectors and frequencies it provides a
realistic description of the position and magnitude of extrema, which are related to the pair
distribution function evaluated at zero separation. Because of this careful derivation one can
expect the RA expression to be very close to the exact dynamic exchange-correlation kernel
of the homogeneous electron gas and to give an accurate account of the plasmon dispersion.
In the absence of experimental data we therefore use the RA results as a reference in order to
assess the performance of simpler approximations. The parametrisation was originally given
on the imaginary frequency axis; here we use its continuation to the full complex plane.

Among the many other expressions with practical relevance we mention the early
parameterisations of the static local-field factor by Hubbard [116], Vashishta and Singwi
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[117, 118] and Utsumi and Ichimaru [119], which are now superseded by more accurate Monte
Carlo results, and an attempt by Gross and Kohn [17] to retain the frequency dependence
within the local-density approximation at long wave lengths. Unfortunately, the latter
violates a number of exact conditions, especially the harmonic-potential theorem [120]. The
dynamic and non-local exact exchange kernel, an implicit density functional constructed from
the Kohn-Sham wave functions, as well as other orbital dependent functionals, are discussed
later in section 5.

The poles of the linear density-response function of the homogeneous electron gas

χ(q, ω) =
χKS(q, ω)

1 − χKS(q, ω)[v(q) + fxc(q, ω)]
(4.3)

stem from two different sources. The singularities of the Kohn-Sham density-response
function in the numerator correspond to independent electron-hole pair excitations; they
form a continuum that is bounded by the lines 1

2q
2 − qkF ≤ ω ≤ 1

2q
2 + qkF. In addition,

the zeroes of the denominator give rise to a distinct plasmon branch ωq , which describes
resonant collective charge oscillations of the electron system. We focus on the latter, since
the plasmon dispersion gives a direct measure for the quality of the kernel. Before scrutinising
the numerical results we first discuss what can be deduced from an analytic expansion of the
plasmon dispersion up to second order in q [121]:

ωq = ωpl

[

1 +

(

9

10k2
TF

+
fxc(0, ωpl)

8π

)

q2 + O(q4)

]

, (4.4)

where kTF = 2(3n/π)1/6 is the Thomas-Fermi wave vector. As none of the above fxc diverges,
all curves approach the classical plasma frequency ωpl = (4πn)1/2 in the long wave-length
limit. The kernel only introduces corrections in second order, where the element fxc(0, ωpl)
appears. The ALDA contains by construction (4.1) the correct long wave-length limit, but
its neglect of the frequency dependence introduces an error in the parabolic term. The
CDOP formula produces the same second-order term as the ALDA since the two kernels,
that are both static, coincide for limq→0. Also the PGG and BPG functionals are static
approximations; moreover they do not approach the correct long wave-length limit of the
homogeneous electron gas and therefore generate a different parabolic coefficient. The RA
kernel, which incorporates the full frequency dependence, is the only parametrisation that is
formally exact beyond the trivial zeroth order.

The calculated plasmon dispersions for rs = 4, obtained from a numerical search for the
zeroes of the denominator of (4.3) in the complex frequency plane, are shown in figure 8.
The results are representative for the whole range of metallic densities [108]. As predicted,
all curves start at the classical plasma frequency. For small wave vectors only a minor spread
of the results is observed, because the factor 9/(10k2

TF) in (4.4) outweighs the contribution
of the kernel. However, a slight downward shift compared to the RPA is clearly visible for
all non-trivial approximations, because dynamic exchange and correlation effects combine
to lower the energy of the electron system. The ALDA and the CDOP formula produce
curves that are initially very close to the reference RA result, indicating that the neglected
frequency dependence is of little consequence as long as the correct long wave-length limit is
reproduced. This point is emphasised further by the relatively large deviation for the static
PGG kernel, which stems precisely from its incorrect behaviour at q → 0. The BPG curve,
as expected, lies between the ALDA and PGG results.

At larger wave vectors, where the parabolic expansion (4.4) is no longer valid, the
differences between the considered approximations become more pronounced. The dispersion
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Figure 8. Plasmon dispersion for the homogeneous electron gas at rs = 4 calculated with
different approximations for the exchange-correlation kernel (see text). The grey-shaded
area marks the electron-hole pair continuum. The finite imaginary part of the plasmon
energy in this region is also shown (see also [108]).

resulting from the static ALDA kernel remains close to the RPA and yields too high energies,
while the CDOP result begins to deviate slightly from the RA curve after the onset of
damping in the electron-hole pair continuum. This discrepancy must be attributed to the
static nature of the CDOP kernel. Furthermore, it can be seen that the strong downward
shift of the exchange-only PGG formula leads to an even larger error in absolute terms than
the underestimation of dynamic exchange and correlation effects in both the ALDA and the
RPA. The hybrid BPG formula, which combines the PGG and ALDA parameterisations,
profits from a partial cancellation of errors but improves only marginally upon PGG.

Due to the possible decay into electron-hole pairs, the plasmon energy contains a
non-zero imaginary part, also displayed in figure 8, whose inverse is proportional to the
excitation lifetime. As a general rule, all kernels yield the same quality of approximation
for the imaginary part as for the real part of the plasmon energy. At small wave vectors all
static kernels predict a vanishing imaginary part, which corresponds to an unphysical infinite
lifetime. This artifact results from modelling fxc(q, ω) as a purely real quantity by evaluating
it at ω = 0. In contrast, the exact kernel has a finite imaginary part at non-zero frequencies,
which for small wave vectors is related to the multi-pair component of the linear density-
response function [122]. Such multi-pair decay channels are ignored in the RPA and related
schemes, which is ultimately the reason for their qualitatively wrong behaviour. Mermin’s
modification of the Lindhard dielectric function avoids the problem of infinite lifetimes [123],
but the correction based on relaxation times is introduced in a phenomenological manner
that makes it unsuitable for ab initio calculations. Among the expressions considered here,
only the dynamic RA parametrisation correctly predicts a finite plasmon lifetime over the
entire frequency range, although outside the electron-hole pair continuum the imaginary
part of the plasmon energy is several orders of magnitude smaller than the real part and not
discernible in the figure.

The good agreement between the static CDOP parametrisation on the one hand
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and the dynamic RA result on the other over a large wave-vector and density interval
indicates that the frequency dependence of the kernel plays a weak role for the plasmon
dispersion in the homogeneous electron gas. In contrast, the significant discrepancy between
static approximations like the ALDA that contain the correct long wave-length limit and
others, such as PGG, which do not, suggests that a correct parametrisation of the wave-
vector dependence is crucial. Similar conclusions concerning the relative importance of the
frequency and wave-vector dependence were also reported for the correlation energy of the
homogeneous electron gas [111].

4.2. Extension to inhomogeneous systems

As the homogeneous electron gas allows a highly accurate treatment of the kernel that
includes the full wave-vector and frequency dependence, it is tempting to transfer these
results to real inhomogeneous systems. Such an approach is mathematically justified if the
variation of the density nGS(r) = n̄ + ∆n(r) with

∫

∆n(r) d3r = 0 from a homogeneous
charge distribution n̄ is small, i.e., |∆n(r)/n̄| � 1. In this case the kernel can safely be
approximated as [3]

fxc(r, r
′, ω) ≈ fHEG

xc (n̄, |r − r′|, ω) . (4.5)

It should be noted that rapid density oscillations leading to large gradients are not explicitly
excluded, as long as the magnitude of the oscillations themselves remains sufficiently small.

Unfortunately, the approximation (4.5) is of rather little practical use, because the
condition of an almost constant electron density is almost never fulfilled for real materials.
However, for ω = 0 a very similar expression with a much wider range of validity can also
be obtained under less restrictive assumptions. The derivation is based on the observation
that the static exchange-correlation kernel, although non-local, is actually short-ranged and
decays rapidly if the separation |r − r′| significantly exceeds the inverse Fermi wave vector.
Furthermore, it depends only on the electronic structure in the vicinity of the points r and r′.
This is a manifestation of the “nearsightedness” principle [124] and caused by the destructive
interference of wave functions in quantum-mechanical many-particle systems over a typical
de Broglie wave length. The nearsightedness principle is strictly valid only in equilibrium
and hence does not apply to the dynamic exchange-correlation kernel at non-zero frequencies.
Therefore, it fails to cover spectroscopies like EELS or optical absorption that include a finite
energy transfer, but the static kernel may be useful in other situations, such as total-energy
calculations [3, 125].

In combination with the short range of the static exchange-correlation kernel, the
nearsightedness principle implies that the approximation [3, 125]

fxc(r, r
′, 0) ≈ fHEG

xc (n̄(r, r′), |r − r′|, 0) (4.6)

is valid if the density variation is small on a length scale given by a few inverse Fermi wave
vectors. The definition of the average density n̄(r, r′) is arbitrary from a mathematical point
of view; as long as it reduces to n̄ = nGS(r) = nGS(r′) in the limit of a homogeneous
density distribution, the expression (4.6) is exact to zeroth order. It is reasonable to
expect, however, that a suitable choice might improve the performance of the functional
for realistic inhomogeneities. Indeed, it has been demonstrated that some possible and,
at first sight, plausible definitions like the mid-point density n̄(r, r′) = nGS( 1

2 (r + r′)) can
even lead to divergences in total-energy calculations for strongly inhomogeneous systems,
such as atoms and surfaces [126]. The reason for the observed unphysical behaviour is that
n̄(r, r′) approaches zero in this case if one spatial argument moves far into the vacuum
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region while the other remains inside the system. As a consequence, the corresponding
Fermi wave vector also approaches zero, and the kernel becomes long-ranged, so that spatial
integrations pick up many incorrect contributions. The problem is avoided by the choice
n̄(r, r′) = 1

2 [nGS(r) + nGS(r′)], which guarantees a finite density and Fermi wave vector in
the same situation and is thus recommended. It can indeed be argued to constitute the most
logical choice, because it represents a smooth function by its value at some average point of
its arguments (Weierstraß), not of the parametrisation of its arguments [125].

Finally, it should be borne in mind that the approximation (4.6) is still derived by an
expansion starting from the homogeneous electron gas. Therefore, its validity is restricted to
systems where perturbation theory is applicable, i.e., where the inhomogeneity of the density
does not alter the physical properties of the system qualitatively. This includes, for example,
many bulk metals. On the other hand, it fails to improve the optical absorption spectra of
semiconductors, like silicon [127], because the Fourier transform of (4.6) tends to the finite
value of the ALDA kernel in the long wave-length limit. Strictly speaking, of course, the
restriction of the nearsightedness principle to static phenomena already precludes the use of
(4.6) from the outset in this case.

5. Orbital-dependent functionals

In contrast to explicit density functionals, orbital-dependent functionals are constructed from
the Kohn-Sham wave functions (of course they still depend implicitly on the electron density
through the self-consistency condition). Although the computational cost is typically much
higher than the straightforward evaluation of a parametrisation in terms of the density, this
approach has the advantage that it offers a systematic route to successively more accurate
approximations. Orbital-dependent functionals can be obtained in various ways. One can
get a potential and kernel from a functional derivative of a suitable approximation of the
action, for example by expanding the latter in powers of the Coulomb interaction; this is
outlined in subsection 5.2 below. Alternatively, one can exploit links between many-body
perturbation theory (MBPT) and the density-functional formulation. In the next subsection
we briefly show how known results can be obtained from a linearised version of this link;
section 6 is dedicated to a more detailed discussion of this connection, including results that
do not involve a linearisation.

5.1. Potentials and kernels from a linearised Sham-Schlüter equation

The density-functional and the MBPT framework are linked by the requirement that the
former has to yield the correct density given by the one-particle Green’s function G of the
latter, via n(r, t) = −iG(r, r′, t, t+), for the static as well as for the time-dependent case.
(Note that in the latter case it is recommended to use Keldysh Green’s functions in order to
obtain the physical densities via the simple relation above [128]). From the Dyson equation
one obtains hence

0 =

∫

d2 d3GKS(1, 2) (Σ(2, 3) − vxc(2)δ(2, 3))G(3, 1+) , (5.1)

where a number “1” represent position, spin and time (r1, σ1, t1) and Σ is the self-energy
[129, 130]. This is the so-called Sham-Schlüter equation [131, 128]. If G is replaced by GKS

everywhere (including in the construction of Σ, as symbolised by ΣKS ) the solution of this
linearised equation yields for the potential
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vxc(1) = −i

∫

d2d3

∫

d4 χ−1
KS(1, 2)GKS(2, 3)ΣKS(3, 4)GKS(4, 2+) . (5.2)

The kernel fxc, the functional derivative with respect to the density of vxc, has a contribution
f (2) that stems from the derivative of ΣKS and other terms f (1) coming from the derivative
of the Green’s functions and the inverse response function [132]. Both are explicitly orbital-
dependent.

As an example, one can use the simplest case where ΣKS is approximated by the (Kohn-
Sham) Fock operator ΣKS

x (1, 2) = iGKS(1, 2)v(2, 1). In that case, (5.2) yields the so-called
exact-exchange (EXX) OEP potential [110, 133]

vEXX(1) = −i

∫

d2d3

∫

d4 χ−1
KS(1, 2)GKS(2, 3)ΣKS

x (3, 4)GKS(4, 2+) , (5.3)

where all KS quantities are calculated self-consistently using the EXX potential. The
contributions to the kernel become

f (2),EXX(1, 2) =

∫

d3d4d5d6 χ−1
KS(1, 3)GKS(3, 4)GKS(5, 3)

× v(4, 5)GKS(4, 6)GKS(6, 5)χ−1
KS(6, 2) , (5.4)

(which is nothing else but the electron-hole attraction term of time-dependent-EXX, TD-
EXX [50, 133, 132]). The rest of the terms - which has the difficult task to open the bandgap
with respect to the KS one in TD-EXX - reads

f (1),EXX(1, 2) =

∫

d3d4d5d6 χ−1
KS(1, 3)GKS(3, 6)GKS(6, 4)

×
[

ΣKS
x (4, 5) − δ(4, 5)vKS(4)

]

GKS(5, 3)χ−1
KS(6, 2)

+

∫

d3d4d5d6 χ−1
KS(1, 3)GKS(6, 3)GKS(3, 4)

×
[

ΣKS
x (4, 5) − δ(4, 5)vKS(4)

]

GKS(5, 6)χ−1
KS(6, 2) . (5.5)

TD-EXX will be discussed more in detail in the next subsection.

5.2. The time-dependent optimised-potential method from an action formalism

The TD-OEP potential can also be obtained from the action formalism. In this case,
the time-dependent optimised-potential method [49] treats the Coulomb interaction as a
perturbation that is switched on adiabatically in the interval (−∞, t0), while a compensating
local potential ensures that the density remains constant and equal to the static ground-
state density nGS(r) throughout the entire switching-on process. In this way it provides an
adiabatic connection between the stationary ground state of the non-interacting Kohn-Sham
system at t → −∞ and the wave function Ψ0 of the true interacting electrons at t = t0
that enters in the definition of the action (2.21). In order to incorporate the switching-on
process in the theoretical description of the evolution of the system, the beginning and
end of the pseudotime contour C must be extended to −∞. The combination of the
adiabatic connection with the time-contour method makes it possible to apply standard
perturbation techniques and expand Axc[n] in terms of the Kohn-Sham orbitals and the
Coulomb interaction [128].
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For an orbital-dependent action, two equivalent expressions for δAxc[n]/δvKS(r, τ) can
be derived by applying the chain rule with different intermediate quantities:

∫

C

dτ ′
∫

d3r′
δAxc[n]

δn(r′, τ ′)

δn(r′, τ ′)

δvKS(r, τ)

=

∫

C

dτ ′
∫

d3r′
∞
∑

j=1

(

δAxc[n]

δϕj(r′, τ ′)

δϕj(r
′, τ ′)

δvKS(r, τ)
+

δAxc[ϕj ]

δϕ∗
j (r

′, τ ′)

δϕ∗
j (r

′, τ ′)

δvKS(r, τ)

)

. (5.6)

The first functional derivative on the left-hand side gives rise to the exchange-correlation
potential (2.25), which can be determined from this identity because all other terms are
known: The linear Kohn-Sham density-response function δn(r′, τ ′)/δvKS(r, τ) is obtained
with the help of time-dependent perturbation theory by applying the same techniques as in
section 2 in the pseudotime domain, while the derivatives of Axc[n] on the right-hand side of
(5.6) can be calculated analytically for a given orbital-dependent functional. The variations
of the orbitals

δϕj(r
′, τ ′)

δvKS(r, τ)
= −iϕj(r, τ)

∞
∑

k=1

ϕ∗
k(r, τ)ϕk(r′, τ ′)Θ(τ ′ − τ) (5.7)

and the corresponding formulas for the conjugate orbitals δϕ∗
j (r

′, τ ′)/δvKS(r, τ) again follow
from time-dependent perturbation theory. Finally, an expression for the exchange-correlation
kernel is obtained by manipulating in an analogous way the second functional derivative

δ2Axc[n]

δvKS(r, τ) δvKS(r2, τ2)
=

∫

Cdτ
′dτ1

∫

d3r′ d3r1
δ2Axc[n]

δn(r′, τ ′)δn(r1, τ1)

δn(r′, τ ′)

δvKS(r, τ)

δn(r1, τ1)

δvKS(r2, τ2)

+

∫

Cdτ ′
∫

d3r′
δAxc[n]

δn(r′, τ ′)

δ2n(r′, τ ′)

δvKS(r, τ)δvKS(r2, τ2)
; (5.8)

here the term on the right side containing the double derivative of Axc[n] is nothing else but
χKSfxcχKS, which allows one to solve for fxc after evaluation of all other terms.

5.3. Exact exchange

The leading term in the expansion of Axc[n] in powers of the Coulomb interaction is the
exchange part, which is of first order and given by

Ax[n] = −
1

2

∫

Cdτ

∞
∑

j=1

fj

∞
∑

k=1

fk

∫

d3r

∫

d3r′
ϕ∗

j (r, τ)ϕk(r, τ)ϕj (r
′, τ)ϕ∗

k(r′, τ)

|r − r′|
, (5.9)

while the correlation part Ac[n] includes all higher-order contributions. Inserting this
expression into (5.6) and evaluating all quantities with the static density nGS(r) on the
physical time axis yields the “exact exchange potential” [134, 135], (5.3). For the static
ground state potential this yields a relatively simple expression

∫

d3r′ vEXX(r′)χKS(r′, r;ω = 0)

=

∫

d3r′
∫

d3r′′ Σx(r
′, r′′)

∞
∑

j=1

∞
∑

k=1

(fj − fk)
ϕ∗

j (r
′)ϕk(r′′)ϕj(r)ϕ

∗
k(r)

εj − εk
, (5.10)
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with the non-local exchange self-energy

Σx(r
′, r′′) = −

∞
∑

j=1

fj

ϕj(r)ϕ
∗
j (r

′)

|r − r′|
. (5.11)

As pointed out above the latter takes the same form as the Hartree-Fock exchange operator
but is here constructed from the Kohn-Sham orbitals. Solving (5.10) for the exact exchange
potential requires an inversion of the static linear density-response function χKS(r′, r; 0),
which is in practise achieved by a matrix inversion after projection on a suitable basis set,
such as plane waves for extended systems [136, 137]. The matrix elements with reciprocal
lattice vectors G = 0 or G′ = 0 and q = 0 must be omitted in this case [138]. The restriction
to this submatrix is necessary to guarantee a one-to-one correspondence between variations of
the density and the effective potential and hence to obtain an invertible operator; it excludes
constant potential shifts that leave the density unchanged as well as density variations that
violate particle-number conservation.

Compared to the evaluation of explicit density functionals, the construction of vEXX(r)
is considerably more expensive, because it requires not only the occupied conduction
states but also a summation over the unoccupied part of the spectrum. In addition, the
linear density-response function must be inverted in each cycle of the self-consistency loop.
Practical calculations were therefore initially restricted to atoms and small molecules, but
the method is now also routinely applied to bulk semiconductors, insulators and metals
[138, 139, 140, 141, 142, 143, 144].

From a theoretical point of view, the exact exchange potential has definite advantages.
In particular, it is free of self-interaction and exhibits the correct asymptotic behaviour
outside finite systems [135], where it decays like −1/r, while the LDA and GGA fall off
exponentially. The exact exchange potential further features a discontinuity with respect
to a change in the number of electrons [143]. Such a discontinuity is also contained in the
exact functional; it is the difference between the Kohn-Sham eigenvalue gap and the true
quasiparticle band gap in semiconductors [145, 131].

The “exact exchange” kernel is similarly obtained, following the outline of (5.8), from
the relation

∫

d3r′′
∫

d3r′′′ χKS(r, r
′′;ω)fx(r

′′, r′′′;ω)χKS(r
′′′, r′;ω) = P1(r, r

′;ω) . (5.12)

The right-hand side equals the first-order contribution to the irreducible polarizability in an
expansion in powers of the Coulomb interaction. It consists of five distinct terms, which can
be derived in matrix notation [110] but are more easily summarised in terms of Feynman
diagrams [146]. The diagrammatic form of P1(r, r

′;ω) is shown in figure 9 together with the
representation of (5.10). The first two terms are the self-energy insertions with the non-local
exchange operator for independent electrons and (contributions due to Σx in (5.5)), while the
third arises from the attractive electron-hole interaction (5.4). The last two terms contain
the exact local exchange potential (contributions due to vxc in (5.5)) and must be subtracted
in order to avoid double counting.

In contrast to the ALDA, the exact exchange kernel is both non-local and frequency-
dependent. Furthermore, in the case of semiconductors its Fourier transform diverges in the
limit of small wave vectors, as required for the exact functional [110].

As a first practical test of its performance for electronic excitations in extended systems
we display the plasmon dispersion for the homogeneous electron gas at rs = 4 calculated
with the exact exchange kernel in figure 10. The ALDA and the results obtained with the
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(a) =

−−++=(b) P1

Figure 9. Diagrammatic form of (a) the equation for the exact exchange potential and (b)
the first-order irreducible polarizability. A solid line represents the Green function of the
non-interacting Kohn-Sham electrons, a broken line represents the Coulomb interaction,
and the local exchange potential is indicated by a cross.
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Figure 10. Plasmon dispersion for the homogeneous electron gas at rs = 4 with the
exact exchange kernel (EXX) compared to the ALDA and the reference values obtained
with the parametrisation by Richardson and Ashcroft (RA) [115].

parametrisation by Richardson and Ashcroft [115] are shown for comparison and are the
same as in figure 8 above. The exact exchange kernel is evidently in very good agreement
with the RA reference values in the entire region outside the electron-hole pair continuum
and constitutes a definite improvement over the ALDA. Based on our earlier analysis, we
attribute this to a close match with the wave-vector-dependence of the complete functional
and conclude that the exact exchange kernel is a suitable starting point for the quantitative
investigation of collective excitations in free-electron metals [147].

Early results from the time-dependent exact exchange method for semiconductors
indicated a good performance: Kim and Görling [133] calculated the optical absorption
spectrum of silicon and found good agreement with experimental data. However, it was
later observed that those calculations contained a cutoff of the divergent Coulomb potential
at small wave vectors, which actually had a large effect on the results and was in fact
responsible for the good quantitative performance [132]. As the singularity reflects the
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long range of the Coulomb interaction in real space, this cutoff means that the kernel was
effectively evaluated with a short-range, screened interaction. If the singularity is properly
taken into account, TD-EXX should indeed be similar to time-dependent Hartree-Fock. The
results change then drastically, which can be understood by considering the effect on the
polarizability P1(r, r

′;ω): The Kohn-Sham eigenvalues obtained from the exact exchange
potential are closer to the experimental band structures than LDA ones [138], but the self-
energy insertion in the first two terms in figure 9 increases the eigenvalue gap close to
the Hartree-Fock result, leading to a far too high absorption threshold. In addition, the
unscreened electron-hole interaction in the third term gives rise to a strongly overbound
exciton with an incorrect line shape [132]. If the bare Coulomb potential is replaced by a
screened interaction, then the self-energy insertion is comparable to the GW approximation,
which yields generally good quasiparticle band gaps (see e.g. [148]), and the exciton line
shape is reproduced correctly by the screened electron-hole interaction W . (Such a screened
kernel will be discussed insection 6). It has also been shown recently [149] that consistent
inclusion of screening beyond EXX in the OEP potential reduces the Kohn-Sham eigenvalue
gap and brings its value close to the LDA one; the discontinuity yields then the correct
quasiparticle gap. A proper treatment of correlation (i.e. here: screening) is hence crucial for
semiconductors, and computational schemes based only on exact exchange are not sufficient
in this case. In addition, the linearisation of the equations as explained in section 5.1 is
problematic for the gap-opening contribution f(1), because the latter has to simulate a
discontinuity [32]. This problem can be overcome by using the full, non-linearised term as
explained in section 6.

6. Kernels from many-body perturbation theory

In the previous section the Sham-Schlüter equation has been introduced. This equation
makes a link between many-body perturbation theory (MBPT) and the density-functional
framework. Since recent results indicate that exploiting this link can be very fruitful, the
present section is dedicated to comparison and combination of the two approaches. In fact
for the calculation of electronic excitations in solids there is a choice to be made. One can
use Many-Body Perturbation Theory and solve the Bethe-Salpeter Equation, a precise but
computationally demanding method, or use TDDFT, an in principle computationally more
efficient approach, but with the limitations of the standard approximations for the exchange-
correlation potential and kernel (i.e. the TDLDA) outlined above. For an extended review
comparing the two approaches, see e.g. [14].

The big advantage of TDDFT is that the polarizability is expressed as a variation of
the density (where the latter is local in space and time); it can be directly obtained from
the two-point equation (2.35). The BSE uses the more intuitive quasi-particle picture, which
makes the task to identify efficient approximations easier. However, within MBPT one deals
with four-point equations. In fact, a key quantity is the four-point reducible polarizability
4L, that can be expressed in terms of the two-particle Green’s function G2 describing the
propagation of two particles (for absorption, the relevant part describes the propagation of
an electron and a hole):

4L(1, 2, 3, 4) = 4L0(1, 2, 3, 4)−G2(1, 2, 3, 4) . (6.1)

As in the previous section, in (6.1) the number “1” represents the set of position, time and
spin variables (r1, t1, σ1). L0 is the disconnected part consisting of two one-particle Green’s
functions G:

4L0(1, 2, 3, 4) = iG(1, 3)G(4, 2) . (6.2)
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The function L and its counterpart L̄, defined in analogy to χ̄, satisfy a Dyson-like screening
equation, known as the Bethe-Salpeter equation. When its kernel is approximated to first
order in the screened Coulomb interaction W it reads:

4L̄ = 4L0 + 4L0

(

4v̄ −4 W
)

4L̄ , (6.3a)
4L = 4L0 + 4L0

(

4v −4 W
)

4L . (6.3b)

In (6.3) we have defined the four-point extension of the Coulomb potential 4v(1, 2, 3, 4) =
δ(1, 2)δ(3, 4)v(1, 3), whereas 4W = δ(1, 3)δ(2, 4)W (1, 2) is the four-point extension of the
screened Coulomb potential. Note that the δ-functions connect different indices in the two
cases; this is due to the fact that the former stems from variations of the Hartree potential,
whereas the latter is due to variations of an exchange-like self-energy contribution. Because
of the way the indices are connected in this second case, the BSE can not be written in a
two-point form. Instead, the measurable χ is obtained via a two-point contraction of 4L,
namely

P red(1, 2) = −L(1, 1, 2, 2) . (6.4)

From the reduced polarizability P red that is understood to be time (or contour) -ordered,
the causal response function χ can be inferred; the relation between the time-ordered and
causal response is in fact χ(ω > 0) = P red(ω > 0). Another useful quantity is the
independent quasi-particle polarizability, P0(1, 2) = −L0(1, 1, 2, 2). Note that this is not
equal to χKS = −iGKSGKS. The expression looks similar, but the Kohn-Sham states and
eigenvalues in χKS are now replaced by their MBPT counterparts, which are, on this level
of approximation, usually determined in the quasi-particle GW approximation [129] (to be
precise, most realistic calculations use GW eigenvalues and Kohn-Sham wavefunctions to
build G).

As the two sets of equations (2.35), (3.7) and (6.3) have a similar mathematical
structure, it is natural to try to extract information about the TDDFT exchange-correlation
kernel through their comparison. Different authors reached very similar expressions for
the exchange-correlation kernel starting from the BSE but using different approaches
[29, 30, 31, 32, 150, 146, 33, 35]. Tested for real materials, these kernels proved to be
successful in reproducing the quality of the BSE spectra via a TDDFT formalism. In
present implementations their computational cost still remains comparable to the cost of
solving the BSE but memory requirements are significantly reduced, and the expressions can
be rewritten leading to algorithms with better scaling. Moreover (see section 8), they are
a very convenient starting point for further approximations. In the following we summarise
some of these derivations (section 6.2). We will also briefly outline how the combination BSE-
TDDFT can be used to improve upon current approximations of MBPT, by introducing the
TDDFT concept into MBPT (section 6.3). Some applications are shown in section 6.4.

6.1. The exchange-correlation kernel from the Sham-Schlüter equation

Let us first come back to the non-linearised Sham-Schlüter equation (5.1). As pointed out
in section 5, it is equivalent to the condition n(r, t) = −iG(r, r′, t, t+). In order to obtain
an exact expression for fxc, Bruneval et al. [150] started from this equality and took its
functional derivative with respect to the density. δG/δn = −G(δG−1/δn)G leads to

iG(13)G(41+)
δG−1(34)

δn(2)
= δ(12) . (6.5)
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Since the same exact density, and hence the same Hartree potential, should also be
obtained from the Kohn-Sham potential vKS = V + vxc one can write

G−1(12)=G−1
0 (12)−δ(12)(vKS(1)−vxc(1))−Σ(12) . (6.6)

As δG−1
0 /δn = 0, (6.5) becomes

P0(13)χ−1
KS(32) − iG(13)G(41+)

δΣ(34)

δn(2)
− P0(13)fxc(32) = δ(12) . (6.7)

As in the linearised case section 5, the exact fxc turns out to consist of two terms

fxc = f
(1)
xc + f

(2)
xc [33, 150]. Those read now

f (1)
xc (12) = χ−1

KS(12) − P−1
0 (12) (6.8)

and

f (2)
xc (12) = −iP−1

0 (1, 1′)G(1′3)G(41′+)
δΣ(34)

δn(2)
. (6.9)

f
(1)
xc exactly changes the Kohn-Sham response function into the independent QP one,

in particular, it solves hence the band gap problem. f
(2)
xc accounts for the electron-hole

interaction.
Altogether, TDDFT yields then for the irreducible polarizability

χ = χKS + χKS(v + χ−1
KS − P−1

0 + f (2)
xc )χ = P0 + P0(v + f (2)

xc )χ . (6.10)

To get an explicit approximation for fxc, one has to choose a starting approximation for
the self-energy and the Green’s functions. A simple choice could be to take Σ, G and P0 as
derived from a local and adiabatic exchange-correlation potential, e.g. the LDA one. This
leads of course to the TDLDA and the GWΓ approach of Ref. [151]. A better choice is to
start from the GW approximation for Σ, taking W as a screened (e.g. static RPA) Coulomb
interaction. For the functional derivative, it is then reasonable (i) to neglect the derivative
of W as usually done in the BSE: (ii) to approximate δG/δn = −G(δG−1/δn)G by GP−1

0 G.
The latter approximation truncates the chain of derivatives δΣ/δn that would appear if one
continued to calculate all terms of δG−1/δn (Note that this is equivalent to supposing G be
created by a local potential). Equation (6.9) yields then

f (2)
xc (34) =

∫

d5d6d7P−1
0 (36)G(65)G(5′6)W (55′)G(57)G(75′)P−1

0 (74) . (6.11)

Equation (6.11) is the successful electron-hole exchange-correlation kernel of Refs. [29, 30,
31, 32, 150, 146, 33, 150, 35]. Comparison with (5.4) shows that the two expressions are very
similar; however, now the formerly bare interaction is screened, which removes the main
problems of the bare exchange approach. Moreover, QP instead of Kohn-Sham Green’s
functions appear throughout. This reflects the fact that (6.8) has replaced (5.5), which
is important since, as pointed out above, the linearisation of this contribution is in fact
problematic.

6.2. Comparison of TDDFT and MBPT

It is instructive to have a look also at the alternative derivations of this kernel. In fact, instead
of starting from the density it may be more straightforward to start from the observation
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that MBPT and TDDFT should yield the same two-point response function. Since χ can
in principle be obtained via P red from (6.4), one could invert the screening equation and
determine fxc from fxc = χ−1

KS − χ−1 − v [152, 153]. The latter relation is of course not of
practical interest, but can give insight about general features of the kernel, like its overall
frequency behaviour, an idea that has been exploited in [154].

Reining et al [29, 30] instead used the equality of the response functions in order to
obtain an approximate expression for the exchange-correlation kernel of TDDFT by mapping
directly the matrix elements of the BSE (6.3) onto the matrix elements of the TDDFT linear
response equation (2.35). The derivation starts by rewriting the TDDFT Dyson equation
(2.35) in a four-point formalism

4χ̄ = 4χKS + 4χKS(4v̄ + 4fxc)
4χ̄ , (6.12)

where the four-point Coulomb interaction 4v̄(1, 2, 3, 4) = δ(1, 2)δ(3, 4)v̄(1, 3) and the four-
point kernel 4fxc(1, 2, 3, 4) = δ(1, 2)δ(3, 4)fxc(1, 3) are defined [30].

On the other hand, the BSE has the same structure as (6.12) (cf. (6.3a)), but with 4χKS

replaced by its four-point MBPT counterpart 4L0, and the TDDFT kernel replaced by

4K = δ(1, 2)δ(3, 4)v̄(1, 3) − δ(1, 3)δ(2, 4)W (1, 2) . (6.13)

In [29, 30], an approximation for both f
(1)
xc and f

(2)
xc were derived; since in practise it is

convenient to use the exact expression (6.8) for the former contribution, only the derivation

of f
(2)
xc will be discussed in the following.
We thus replace χKS by P0 and focus on the second part of the exchange-correlation

kernel. The first term of the total kernel in both TDDFT and BSE, i.e., the bare Coulomb
interaction v̄, is identical. One might hence try to identify the remaining part of the kernel

f
(2)
xc with the screened Coulomb interaction of the BSE kernel (6.13):

δ(1, 2)δ(3, 4)f (2)
xc (1, 3) ↔ −δ(1, 3)δ(2, 4)W (1, 2) . (6.14)

However, as the δ - functions do not contract the same indices expression (6.14) cannot
be an equality. Different approaches have been proposed to overcome this difficulty and
nevertheless use the similarity of the equations:

i) the assumption that kernels could be similar for a limited number of transitions:
For this approach, it is useful to write (6.14) on a basis of pairs of Kohn-Sham LDA

states (transition space) [155]

FTDDFT
(vck)(v′c′k′) ↔ FBSE

(vck)(v′c′k′), (6.15)

with the matrix elements

FTDDFT
(vck)(v′c′k′) = 2

∫

d3r d3r′Φ(vkck, r)f (2)
xc (r, r′, ω)Φ∗(v′k′c′k′, r′) (6.16a)

FBSE
(vck)(v′c′k′) = −

∫

d3r d3r′Φ(vkv′k′, r)W (r, r′, 0)Φ∗(ckc′k′, r′) , (6.16b)

where Φ(ikjk′, r) is the product of a pair of Kohn-Sham wavefunctions; The indices {i,k}
stand for the band-index and momentum of the Kohn-Sham state. Only the resonant
contribution is shown (transitions from occupied to empty states) and the momentum
transfer is supposed to be vanishing since the approach has been derived for optical spectra;
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both conditions can however easily be generalised. As usual in calculations based on the
Bethe-Salpeter equation, W is moreover supposed to be static.

Note that (i) In practise, the equality in (6.15) is then imposed for transitions belonging
to a a certain frequency range. The TDDFT spectra will match the BSE spectra only in this
region. (ii) FTDDFT

(vck)(v′c′k′) is now a static quantity over that energy range, as a consequence

of the static approximation for W . (However, since because of (i) a different kernel will
be obtained for a different group of transitions, there is an overall effective frequency
dependence).

Reining et al. [29] have formally inverted (6.15). A Fourier transform to reciprocal
space leads then to

f (2)
xc (q → 0,G,G′) =

∑

vck v′c′k′

Φ−1
G (vkck;q → 0)FBSE

(vck)(v′c′k′) (Φ∗)
−1
G′ (v′k′c′k′;q → 0).

(6.17)
The TDDFT exchange-correlation kernel derived in this way has correct asymptotic

behaviour (see the discussion in section 8); it stems from the asymptotic behaviour of the
Φ, not from the Coulomb interaction W as one might have suspected. The inversion of the
matrices Φ is purely formal; the kernel (6.17) itself was in fact not evaluated in Ref. [29],
but used to derive a TDDFT-like screening equation. A more direct way to arrive at the
same screening equation along similar lines has been proposed by Sottile et al. [30]. One
starts by writing the TDDFT-like response equation (3.7) in a symmetrised form (the same
can be done with (2.35)):

χ̄ = P0

(

P0 − P0v̄P0 − P0f
(2)
xc P0

)−1

P0 . (6.18)

It appears that in order to calculate χ̄ one only needs P0f
(2)
xc P0, and not f

(2)
xc explicitly. This

integral contains sums over transitions involving FTDDFT
(vck)(v′c′k′). Enforcing hence the equality

in (6.15) yields
P0f

(2)
xc P0 = T2 , (6.19)

where T2 is calculated as :

T2(G,G
′, ω) =

2

N2
k

∑

vckv′c′k′

Φ∗(vkck;G)

εQP
ck − εQP

vk − ω
FBSE

(vck)(v′c′k′)

Φ(v′k′c′k′;G′)

εQP
c′k′ − εQP

v′k′ − ω
; (6.20)

(here we give again only the expression for the resonant contribution, which is the dominant
term in absorption spectra).

This is a result that can be used in practise. The first calculation has been done for
bulk silicon; the result shown in figure 11 obtained by Sottile et al. shows almost perfect
agreement with a result obtained by solving the BSE.

From a computational point of view, one still has to calculate W ; in today’s
implementation moreover the two-particle matrix elements W(vck)(v′c′k′) are calculated,
which is often the most expensive part of a BSE calculation. In principle the sum over
transitions could however be performed in a different order and the latter calculation avoided.
Moreover by studying (6.20), one can derive model kernels, which can decrease drastically
the computational cost. The performance of the kernel as well as efficient approximations
will be illustrated in section 8.

ii) A perturbative approach leading to the same exchange-correlation kernel was proposed
by Adragna et al . [31]:
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Figure 11. Imaginary part of the macroscopic dielectric function for Si [30]. Dots:
experiment [93]; dash-dot-dot line: RPA calculation; dash-dash-dot line: TDLDA
calculation; dash-dot line: GW-RPA calculation; dash line: BSE calculation; solid line:
T2 kernel.

Their starting point is again the requirement that the TDDFT and the BSE two-point
response function should be equal. The polarizabilities are then developed perturbatively to
the same order. Truncation to first order leads again to (6.19) with (6.20). Marini et al.
used then this kernel for the calculation of optical absorption of insulators, including a bound
exciton, and loss spectra at non-vanishing momentum transfer[32]. Both cases were in good
agreement with experiments. It was also shown that the inclusion of the second-order term
in the perturbative expansion did not affect significantly the calculated spectra. For more
details see chapters 10 and 20 of Ref.[38]

iii) The perturbative approach was also explored in terms of Feynman diagrams
[146, 156, 33, 101]:

Stubner, Tokatly and Pankratov [33] derived an integral equation which leads to (6.20)

when non-locality beyond the first order is neglected. Also the separation of f
(1)
xc and f

(2)
xc

naturally comes out from that derivation.
Finally we mention the work of von Barth et al. [35]: here the kernel is derived from

a functional approach. Again, this yields f
(1)
xc in its linearised version as well as the above

approximation for f
(2)
xc , when GW diagrams are chosen. The advantage of deriving a kernel

as double derivative of a functional is that the symmetry of the expression guarantees that
important conservation laws are fulfilled. This kernel is hence the result of the work of several
groups, the great majority (although not all) of them being members of a network called
”nanoquanta”. For convenience we therefore suggest to call it the ”nanoquanta kernel”.
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6.3. Combining TDDFT and MBPT

In order to complete the section about links between MBPT and TDDFT, it is useful to
remind that improved TDDFT response functions and kernels can in turn be inserted into
many-body calculations in order to go beyond existing approximations, in particular the
RPA-based GW approximation.

The kernel of linear-response TDDFT stems from the variations of the Hartree and
exchange-correlation potentials with respect to the density. Within MBPT, the variations
are taken with respect to the one-particle Green’s function. However, when one is only
interested in the self-energy and the Green’s function (and not in the full four-point response
function) also in the case of MBPT these variations can be created by a local external
potential, for which the Runge-Gross theorem holds [16]. As a consequence, also in the
MBPT scheme it is possible to rely on the fact that the density variations determine the
physics of excitations.

Starting from this observation, Bruneval et al suggested an alternative way to find
approximations for the self-energy Σ [150]. This operator, that accounts for all the many-
body effects on the one-particle Green’s function beyond the Hartree term and is a key
quantity of MBPT, is defined as [129, 130]

Σ(1, 2) = i

∫

d3 d4 d5 G(1, 4)Γ(4, 2; 5)
δV (5)

δU(3)
v(3, 1+) , (6.21)

where G is the one-particle Green’s function, U is a local external potential, V (1) =
U(1) + vH(1) is the total classical potential – including also the Hartree contribution vH,
and δV (5)/δU(3) = ε−1(5, 3). The irreducible vertex function Γ is defined as

Γ(1, 2, 3) = −
δG−1(1, 2)

δV (3)
= δ(1, 3)δ(2, 3) +

δΣ(1, 2)

δV (3)
. (6.22)

Bruneval et al proposed to replace the chain rule usually employed to obtain δΣ/δV , namely
(δΣ/δG)(δG/δV ) [157, 130], with the alternative chain rule (δΣ/δρ)(δρ/δV ). This step
is justified by the one-to-one relation between the time-dependent density and external
potential, or consequently between the density and the classical potential V . Equation
(6.22) then becomes

Γ(1, 2; 3) = δ(1, 3)δ(2, 3) +

∫

d4
δΣ(1, 2)

δρ(4)
P (4, 3), (6.23)

where P = δρ/δV is the irreducible polarizability

P (1, 2) = −i

∫

d3 d4 G(1, 3)G(4, 1)Γ(3, 4, 2) . (6.24)

On the other hand, if one multiplies (6.23) with two Green’s functions G and integrates, the
result is

P (1, 2) = P0(1, 2) +

∫

d3 d4 P0(1, 3)f (2)
xc (3, 4)P (4, 2) (6.25)

with (6.9).
This constitutes hence an alternative derivation of the exact kernel. Moreover, once P

is known (6.23) allows one to calculate the three-point vertex, and hence an improved self-
energy, without solving a four-point integral equation. It has been shown [150] that, besides
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Figure 12. Optical absorption spectra calculated within the BSE (dots), and TDDFT
(solid line) compared with experiments (circles) [88]. The results obtained using a scalar
fxc (dashed line) are shown to stress the importance of the G,G′ 6= 0 terms in fxc.

the better description of the test-charge–test-charge screened W , a major contribution to
the correction beyond GW stems from the induced exchange-correlation potential that acts
on an additional particle or hole on top of the induced Hartree potential; only the latter is
contained in GW (moreover, it is approximated in RPA).

6.4. Applications

When coming to practical calculations it should be noted that in general (i) as mentioned

above, only f
(2)
xc is explicitly used, whereas the GW correction is included by using P0; (ii)

most calculations are restricted to the resonant contribution; (iii) the diagonal contribution

FBSE
(vck)(vck) is extracted from f

(2)
xc and included in P0. Strictly speaking, this contribution

should be zero in a solid, but for a finite k-point sampling it is non-vanishing. These three
points are important for the quality of the final results.

An example of the application of the BSE-derived kernel (6.20) to real systems can be
found in figure 12 [32], where the optical absorption spectrum of LiF is shown. One can
observe that, as anticipated, the agreement between the BSE calculation and the TDDFT
calculation using the BSE-derived kernel is excellent. The importance of the matrix character
of fxc (i.e. the importance of G,G′ 6= 0 terms) in wide-gap insulators is demonstrated by
looking at the curve obtained with a scalar (G = G′ = 0) fxc. Although the kernel is strongly
frequency dependent, only the main peak is reproduced correctly, while some unphysical
regions of negative absorption appear at higher energies. In contrast, when dealing with
systems with continuum exciton effects (Si, diamond, etc.) the use of the head of fxc is
often sufficient to recover the BSE spectrum. This is related to the different degree of
inhomogeneity of the induced density in simple semiconductors and wide-gap insulators.

The BSE-derived kernel (6.20) has also been successfully applied to the study of low-
dimensional systems. An example are conjugated polymers. We have already pointed out in
section 3.2 that simple adiabatic local and gradient corrected functionals fail in describing
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Figure 13. Optical absorption spectra of polyacethylene compared with experiment
(vertical dashed-line) [160, 161]. The BSE calculation (dots) and the TDDFT calculation
using the many-body fxc (solid line) are in excellent agreement with the experiment.
GW-RPA (dashed-line) and TDLDA calculations (dot-dashed line) are also shown.

the dielectric response of long molecular chains [24]. Current density functional approaches
can partially solve this problem [158, 159]. The non-local frequency dependent BSE-derived
kernel restores the good agreement between the calculated and the measured polarizabilities.
This can be observed in figure 13, where the calculated optical absorption spectrum of
polyacethylene is compared with experimental data [160, 161].

In brief, the BSE derived fxc kernel is able to reproduce the optical and energy-loss
spectra of a large class of materials including semiconductors and large band-gap insulators
[30, 32], as well as systems of low dimensionality [160]. Although calculations are today still
relatively cumbersome, improved algorithms and/or efficient approximations are expected
to make this approach clearly competitive with respect to a BSE calculation, when one is
interested in an efficient determination of spectra.

7. Current-density functionals

Finally, we would like to briefly outline an alternative way to approach the question of going
beyond the ALDA. In fact, many problems of the latter, including its dramatic failure for
optical absorption spectra of insulators, are related to the fact that it is derived only from
the local density. As a consequence, the effective potential inside a bulk solid is insensitive
to the accumulation of surface charges, which may have a large influence on the measured
material properties in actual experiments. In particular, they give rise to a long range
exchange-correlation potential that counteracts an applied external field, thus reducing the
observable polarizability. As the density inside the bulk does not change in this case, such
a counteracting term cannot be reproduced by a purely local approximation. Instead, the
exchange-correlation potential must depend in a non-local manner on the global density
distribution. This is difficult to achieve with explicit density functionals, which are, like the
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ALDA, typically derived from the homogeneous electron gas. Implicit density functionals
constructed from the Kohn-Sham wave functions do not suffer from the same limitation, but
the large computational cost makes it difficult to incorporate high-order correlation terms in
practise. An alternative approach to include non-locality is given by time-dependent current-
density-functional theory, because, in contrast to the density n(r, t), the current density j(r, t)
can be used as a local indicator of global changes in the system. For example, its behaviour
correctly reflects the charge transport through the bulk between two solid surfaces upon
polarisation [162].

Current-density-functional theory was originally developed as a generalisation of
TDDFT for time-dependent magnetic fields [163, 56]. In this case, in addition to the scalar
potential vext(r, t), the Hamiltonian

Ĥ(t) =
∑

σ

∫

ψ̂†
σ(r)

(

1

2
[−i∇ + Aext(r, t)]

2
+ vext(r, t)

)

ψ̂σ(r) d3r

+
1

2

∑

σ,σ′

∫

ψ̂†
σ(r)ψ̂†

σ′ (r
′)v(r − r′)ψ̂σ′(r′)ψ̂σ(r) d3r d3r′ (7.1)

contains an external vector potential Aext(r, t). The conjugate variable that couples to
the latter is the current density, defined in analogy to (2.5) but with −i∇ + Aext(r, t)
instead of the canonical momentum operator −i∇. Within this framework the auxiliary
Kohn-Sham system is chosen in such a way that it yields not only the same density but
also the same current density as the original interacting electron system. As a necessary
prerequisite to achieve non-interacting v-representability of both quantities, the effective
vector potential Aeff(r, t) = Aext(r, t) + Axc(r, t) in the Kohn-Sham equations must then
feature a non-vanishing exchange-correlation contribution, because changes in the scalar
potential alone have no effect on the transverse component of the current [164]. The
scalar potential can actually be eliminated at all times through the gauge transformation
Aext(r, t) → Aext(r, t) + ∇Λ(r, t) and Vext(r, t) → vext(r, t) − ∂Λ(r, t)/∂t, if the gauge
function satisfies ∂Λ(r, t)/∂t = vext(r, t) with the initial condition Λ(r, t0) = 0. Besides,
the evolution of the density is completely determined through the static equilibrium value
n(r, t0) = nGS(r) and the continuity equation (2.8). Therefore, current-density-functional
theory can be formulated solely in terms of vector potentials and with the current density as
the only independent variable. An elegant proof of their one-to-one correspondence, which
includes the Runge-Gross theorem as a special case, was given by Vignale [165]; the vector
potential is determined uniquely up to a gauge transformation that does not alter the initial
state.

For practical purposes the exchange-correlation vector potential must be specified as
a functional of the current density. Fortunately, it turned out that a consistent gradient
expansion around the limit of the homogeneous electron gas is possible in this approach.
By investigating weakly inhomogeneous systems, Vignale and Kohn [166] thus derived an
approximation for the induced field that includes dynamic exchange and correlation effects
and depends only on the local current density. The resulting expression can be interpreted
in terms of viscoelastic stresses in the electron fluid [167, 168]. So far the approximation of
Vignale and Kohn has mainly been applied to plasmon line widths in semiconductor quantum
wells within the one-band effective-mass model [169, 170, 171] as well as to one-dimensional
polymers and other extended macromolecules, where it leads to significant improvements in
the polarizabilities over a treatment within the ALDA [172, 159]. A simplified version has also
been used in the context of solid-state physics to calculate optical absorption spectra [158].
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The results reproduce the essential spectral features for several common semiconductors
and insulators, including the excitonic E1 resonance in silicon, and are in much better
agreement with experimental data than the ALDA. However, the absorption threshold is
too low, and it remains unclear whether the residual discrepancies are due to the Vignale-
Kohn approximation itself or to the additional simplifications of the implementation. It
should be noted that the simplified formula applied in Ref. [158] is very similar to the long
range approximation [29, 34] that will be discussed in the next section. This explains both
its success in describing the line shape and its insuccess in opening the band gap without
the help of an explicit energy shift (a task that is carried out by the GW corrections in the
case of the long range kernel of section 8).

8. Simple models

In section 6 we introduced a class of parameter-free kernels that are particularly successful
for the description of optical absorption in solids – the kernels derived from the BSE.
Even though they have a potentially reduced computational effort with respect to the BSE,
calculations using these kernels are however still significantly more involved than those within
the RPA or the TDLDA. Therefore, the question of finding simple and efficient, but also
reliable, models for fxc is still open. In this quest, there are several important lessons to
be learnt from the BSE-derived kernels. In the following we discuss some model kernels,
inspired by the BSE, that combine simplicity with a reasonably good description of response
properties.

8.1. Long-range exchange-correlation kernels

One of the most striking characteristic of the TDLDA kernel is that it is static and local in
space. Therefore, one can expect that the inclusion of either dynamical (memory) effects,
long-range nonlocal terms [21, 146] or both improves, in principle, the results yielded by the
simple TDLDA. In this section, we introduce some model kernels, obtained by approximating
the BSE-derived kernel of (6.9) and (6.19), that accounts for such further terms.

The exchange-correlation kernel (6.9),(6.19) contains a long-range contribution (LRC)
of the form 1/q2. This LRC is instead completely absent within the TDLDA, as the TDLDA
kernel goes to a constant in the limit q → 0. The simplest model that exhibits the correct
LRC has the form

f static
xc (q) = −

αstatic

q2
, (8.1)

where αstatic is a material dependent parameter. The use of this particular form can be
motivated starting from the BSE, following the lines of section 6 [29]. In fact, the function
ΦG=0 (v k ck;q) in (6.17) goes to zero as Φ ∼q for q → 0. Since in this limit F BSE

(vck)(v′c′k′)

behaves like a constant, this implies that fxc(q,G = 0,G′ = 0) goes as 1/q2 in the optical
limit. Moreover, as it can be seen in figure 14 the LRC to the exchange-correlation kernel is
inversely proportional to the macroscopic dielectric constant ε∞ [34].

Note that there is also a positive long-range contribution to the exchange-correlation
kernel stemming from the QP shift of eigenvalues (as predicted in Ref. [173]), that competes
with the negative one resulting from the BSE, i.e. the electron-hole interaction. This
contribution is contained in (6.8). In references [29, 34] it was shown that the LRC alone

is sufficient to reproduce the contribution of the electron-hole interaction f
(2)
xc to the optical

spectra of simple semiconductors. The same is not true concerning the the self-energy
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Figure 15. Imaginary part of the macroscopic dielectric function of GaAs [34]. Dots:
experiment [174]; dot-dashed curve: TDLDA; dashed curve: GW-RPA; solid line:
TDDFT-LRC.

contribution f
(1)
xc , where a LRC approximation does not work. For this reason in the following

discussion we will focus on models for the term f
(2)
xc .

Figure 15 shows the optical absorption spectra of GaAs [34]. As previously discussed
in section 3.3, the TDLDA result is close to the RPA curve, and both show the well known
discrepancies with experiment: the peak positions are redshifted, and the intensity of the
first main structure is strongly underestimated. The dashed curve (GW-RPA) is obtained by
replacing the Kohn-Sham eigenvalues with GW quasiparticle energies in the RPA calculation
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using the static LRC model kernel; solid line: TDDFT using the dynamical LRC model
kernel. In the inset: GW-RPA.

of ε. This corresponds to applying the Dyson equation (2.35) for the first part of the

exchange-correlation kernel f
(1)
xc . The resulting spectrum is blueshifted and, moreover, the

lineshape has not been corrected. Finally, the curve representing a TDDFT calculation
starting from GW quasiparticle energies to calculate the independent-particle response and
using the LRC kernel (8.1) gives an excellent fit to the experiment. This curve was obtained
using αstatic = 0.2.

The simple static LRC model, together with the linear dependence of α on 1/ε∞, allows
one to predict the absorption spectrum from the knowledge of the experimental dielectric
constant of the material in question. However, the model f static

xc of (8.1) has clear limits that
become more and more evident as the band gap increases.

For example, already in diamond [34, 154] the first shoulder and the main peak in the
spectrum cannot be both described with good precision using a single parameter αstatic.
The problem gets even more serious when bound exciton peaks appear in the spectrum, as
e.g. for LiF [87] (see figure 16) or solid argon [175]. In fact, the only possible action of
the LRC exchange-correlation kernel is to redistribute oscillator strength. In contrast to the
full BSE kernel, this remains true also in cases where poles should appear in the bandgap,
like, e.g., in LiF where bound excitons occur in the experimental spectrum (see figure 16).
Furthermore, approximations as outlined above are based on a limited range of transitions.
When the spectral range gets larger, e.g. when response beyond the absorption region is
considered, as a consequence of the change of the limited range of transitions also fxc has
to change. In the case of the model kernel (8.1) this introduces an effective ω-dependence of
the parameter αstatic. In order to describe the plasmon of silicon one could for example still
use (8.1), but with an αstatic that is an order of magnitude larger than the one that yields a
good optical spectrum [34]. This will be further discussed below, after a brief summary of
other approaches leading to a LRC.

The simple static LRC model (8.1) does not in fact represent the first attempt to account
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for long-range effects in semiconductors. Already in 1994 Godby and Sham [176] pointed out
that long-range density variations give rise to an effective exchange-correlation field. It was
then proved [23] that the origin of this exchange-correlation field lies in the macroscopic
polarisation. Alternatively, one could avoid the use of the macroscopic polarisation by
introducing a scissor-operator quasiparticle correction to the Kohn-Sham gap. The LRC

stemming from this discussion has hence the task of increasing the gap (like f
(1)
xc ), and has,

consequently, a positive sign.
Aulbur, Jönsson and Wilkins [177] studied the problem of determining static dielectric

constants. They related an effective exchange-correlation field to the difference between the
true and the Kohn-Sham static susceptibilities, and, by using calculated Kohn-Sham and
measured (i.e., “true”) values, fixed the prefactor of a LRC to the kernel for a series of
materials. It resulted a contribution ∆fxc = γ/q2, where γ is of the order of 0.25 for several
small-, and medium-gap semiconductors. According to this work, the LRC correction should

account for both f
(1)
xc and f

(2)
xc , which is the reason why γ turns out to be small and positive.

However, this model can not be extended to the description of spectra, as the quasiparticle

corrections simulated by f
(1)
xc are too complex to be written as a simple LRC model.

Another approach to the description of the dynamical susceptibility was proposed by
Boeij et al [158] who obtained a polarisation-dependent functional derived from current
density functional theory [178] (see section 7). This functional involves two parameters:
one (material-dependent) accounting for a positive shift of transition energies (in fact, a
scissor operator), and a second (constant) one, chosen to be 0.4, that multiplies a tensor Y

containing the polarisation effects. The tensor Y is in principle frequency-dependent, but its
static value is used. This approach yields identical results to the static LRC model described
here, if one identifies 0.4Y = −αstatic, and if the scissors are replaced by the quasiparticle
corrections.

In consideration of the limits of the static LRC model, it is natural trying to guess
how to further improve the kernel. One can either work along the lines of [29] and add a
more complicated spatial behaviour, or one can keep the simple 1/q2 form of the LRC, but
introduce a frequency dependent α [154]. Clearly, this latter choice allows for each structure
of the spectrum to have its own effective correction. Botti et al [87] proposed a frequency
dependent LRC kernel of the form

fdyn
xc (q, ω) = −

1

q2
(

α+ β ω2
)

. (8.2)

This choice was guided by recent calculations [154] for bulk silicon and diamond, that yielded
the frequency dependence of the LRC term of the exchange-correlation kernel from the
inversion of the BSE. Figure 17 shows, for fxc of silicon, that the dynamical model fdyn

xc is
indeed a good approximation in a large energy range, even including the plasmon region (see
inset figure 17).

Starting from (6.20) it is possible to prove that the two parameters α and β of (8.2) can
be related to physical quantities, namely the dielectric constant and the plasma frequency.
For simple semiconductors, this model yields the same result as the static LRC model [87]. In
the case of wide-gap insulators, like diamond or cadmium selenide, or for the EELS of silicon,
the dynamical model heals the shortcomings of the static LRC kernel [87]. The improvement
is significant even in the presence of bound excitons. We consider again as an example
LiF (see figure 16). Setting αstatic to the value 2.0 gives a reasonable compromise (dashed
line), enhancing slightly the low energy structures without provoking the collapse of the
spectrum. The worst disagreement concerns the absence of the large excitonic peak at about
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Figure 17. Real part of the LRC component of the exchange-correlation kernel needed
to reproduce the BSE optical spectrum of silicon. The inset shows the same function
in an energy region close to the plasma frequency. Dashed lines: calculation from [154];
solid line: dynamical LRC model.

12.5 eV. On the other hand, the dynamical model (solid line) is able to describe the strong
bound exciton peak. A better agreement can only be found using the BSE approach (dotted
line) or the full kernel derived by the BSE (see figure 12), both of which involve a much
larger computational effort [89, 179, 91, 92] than the application of the simple dynamical
LRC model. Note that the objective of these model kernels is not to provide an ab initio
approximation to the exact TDDFT kernel, but to offer a numerically efficient framework for
the calculation of response properties of complex solids and nanostructures. A key feature
is that the model kernels depend on a reduced number of parameters, and that these can be
related in a straightforward manner to known physical quantities. The drawback of these
models is, of course, the reduced range of validity of the underlying approximation, which
implies that one should carefully check the applicability of a model to a specific system.

8.2. Contact exciton

The contact exciton model was successfully used in the 70s for the description of continuum
exciton effects in a wide range of systems [180, 181, 182, 183]. Model calculations could also
show that the contact exciton is able to produce one bound state [184, 183]. This simple
model gives rise to the equation

εM(ω) − 1 =
εRPA
M (ω) − 1

1 + g(εRPA
M (ω) − 1)

. (8.3)

Inspection reveals that this is the LRC kernel approximation derived in the previous section
[154, 175], provided that fxc = −g4π/q2. Moreover, in [180] the parameter g is dependent
on ω2, similarly to the parameter β of the dynamical LRC model of section 8.1.

A different exchange-correlation kernel can be derived in the same spirit by replacing
the screened electron-hole interaction in the BSE by a local contact potential [175]. When
W in (6.14) is approximated by δ(12)A, the equality is possible in (6.15) and one obtains

f contact
xc (r1, r3) = −

1

2
δ(r1 − r3)A . (8.4)
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This is obviously a ultra-short range kernel.
In figure 18 we compare optical absorption calculations performend within the different

approximations with the experimental optical spectrum of silicon. The curve obtained for
the ultra-short ranged f contact

xc using A/2 = 15 (continuous curve) turns out to be in very
good agreement with the result of a full BSE calculation (dotted curve) and the long-range
kernel f static

xc = −α/q2 with α = 0.2 (dot-dashed curve). All calculations are also in good
agreement with experiment (circles).

In order to understand how a short-range and a long-range fxc can yield similar spectra
for simple semiconductors, one has to realise that we are talking about effective exchange-
correlation kernels, and not the real one. These kernels are chosen to reproduce a certain
number of properties. It is clear that more than one kernel (even with very different analytical
forms and physical interpretation) can lead to the same optical spectrum. The contact
exciton is a very good illustration of this.

To a certain extent, a short-ranged but strong electron-hole Coulomb interaction can
simulate the effect of the true, screened long-ranged one: continuum exciton effects can be
well reproduced, and even one bound exciton can be created. However, in the latter case the
continuum is not well described, and no higher-order peaks of the series are obtained.

The choice of which model to use should finally depend both on computational
convenience and on the possibility to determine the parameters of the model without fitting
to experiment. The stronger are the requirements on the precision of the results, the closer
the chosen model should resemble to the exact fxc and, for example, have a long range
component when the system is a semiconductor or insulator. We remark that all these
methods discussed above are the result of quite recent investigations, so it is very reasonable
to expect further developments in the near future.
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9. Conclusions

After the pioneering work of Zangwill and Soven [15], time dependent density functional
theory (TDDFT) found a rigorous foundation in the work by Runge and Gross [16]. The
time-dependent Kohn Sham equations are obtained as a generalisation of the static case and,
from these, the response functions describing the neutral excitations of the system. The main
ingredient is the time dependent exchange-correlation potential vxc[n](r, t), that depends on
the density at all points in space, and at all past times.

Staying within linear response theory, one needs to know, in addition to the static
exchange-correlation (xc) potential vxc[nGS](r), the so called xc kernel fxc[n](r, r′, t, t′) =
δvxc[n](r, t)/δn(r′, t′). If these two quantities are known, TDDFT is an exact theory, yielding
the exact linear response. The problem is, therefore, how to generate suitable approximations
for the potential and the kernel. For finite systems, it is sometimes crucial to have a good vxc,
whereras in extended systems in general the main problem is to find a good approximation
for the kernel fxc.

Neutral excitations can also be calculated in the framework of Many-Body Perturbation
Theory, via the solution of the Bethe-Salpeter equation (BSE). However, in that case one
has to deal with two-particle Green’s functions, that are four-point quantities, whereas
TDDFT is based on two-point linear response functions. Therefore TDDFT promises to be
computationally much more efficient, which motivates the search for good approximations.

The simplest approximation is the adiabatic LDA (TDLDA), which often yields good
results for finite systems. Its main shortcoming is to miss the long range part, proportional to
1/|r−r′|, which may be important in extended systems. Nevertheless, the TDLDA describes
well also some properties of extended systems, in particular the plasmon structures in the
loss function or the dynamical structure factor. In these cases, indeed, the long range part
of the kernel is not important, either because of cancellations or because of non-vanishing
momentum transfer. However, TDLDA does not describe well the optical properties of
extended systems, where the long range part is essential.

Therefore, one of the main challenges of recent years has been to find suitable
approximations to the long range part of fxc. Promising solutions came from a comparison
of TDDFT and the many-body perturbation theory (MBPT) equations for the polarisation.
Different groups have suggested different approaches; all approaches have led to one and the
same kernel, the “nanoquanta” kernel, that is linear in the screened Coulomb interaction and
based on quasi-particle ingredients. This kernel allows one to obtain a good description of
the optical properties of extended systems, including bound excitons. It also describes well
spectra for non-vanishing momentum transfer, and it has been demonstrated that it yields
very good results for low-dimensional systens, including clusters, wires and surfaces.

At present, although the TDDFT linear response equation is relatively quick to solve
because of its two-point nature, calculations involving the “nanoquanta” kernel are still
computer-time intensive. In particular, for the calculation of the kernel itself current
implementations use ingredients of the BSE approach, so that the performance of the two
methods is comparable. However, the current optimization of algorithms and computer codes
should lead to considerable speedup. Moreover it has been shown that the new kernel is a
convenient starting point for additional approximations, such as the α/q2 method described
in section 8.1 . Hence, we believe that TDDFT using the many-body kernel will be one of
the main methods of the future for calculating the optical properties of extended systems.
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