001     56498
005     20200402205905.0
024 7 _ |2 pmid
|a pmid:17078090
024 7 _ |2 DOI
|a 10.1002/prot.21231
024 7 _ |2 WOS
|a WOS:000243358000018
037 _ _ |a PreJuSER-56498
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
084 _ _ |2 WoS
|a Biophysics
100 1 _ |a Gensch, T.
|b 0
|u FZJ
|0 P:(DE-Juel1)131924
245 _ _ |a Ca2+-dependent conformational changes in the neuronal Ca2+-sensor recoverin probed by the fluorescent dye Alexa647
260 _ _ |a New York, NY
|b Wiley-Liss
|c 2007
300 _ _ |a 492 - 499
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Proteins - Structure Function and Bioinformatics
|x 0887-3585
|0 16361
|v 66
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Recoverin belongs to the superfamily of EF-hand Ca2+-binding proteins and operates as a Ca2+-sensor in vertebrate photoreceptor cells, where it regulates the activity of rhodopsin kinase GRK1 in a Ca2+-dependent manner. Ca2+-dependent conformational changes in recoverin are allosterically controlled by the covalently attached myristoyl group. The amino acid sequence of recoverin harbors a unique cysteine at position 38. The cysteine can be modified by the fluorescent dye Alexa647 using a maleimide-thiol coupling step. Introduction of Alexa647 into recoverin did not disturb the biological function of recoverin, as it can regulate rhodopsin kinase activity like unlabeled recoverin. Performance of the Ca2+-myristoyl switch of labeled recoverin was monitored by Ca2+-dependent association with immobilized lipids using surface plasmon resonance spectroscopy. When the Ca2+-concentration was varied, labeled myristoylated recoverin showed a 37%-change in fluorescence emission and a 34%-change in excitation intensity, emission and excitation maxima shifted by 6 and 18 nm, respectively. In contrast, labeled nonmyristoylated recoverin exhibited only minimal changes. Time-resolved fluorescence measurements showed biexponentiell fluorescence decay, in which the slower time constant of 2 ns was specifically influenced by Ca2+-induced conformational changes. A similar influence on the slower time constant was observed with the recoverin mutant RecE85Q that has a disabled EF-hand 2, but no such influence was detected with the mutant RecE121Q (EF-hand 3 is nonfunctional) that contains the myristoyl group in a clamped position. We conclude from our results that Alexa647 bound to cysteine 38 can monitor the conformational transition in recoverin that is under control of the myristoyl group.
536 _ _ |a Funktion und Dysfunktion des Nervensystems
|c P33
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK409
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Amino Acid Substitution
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Calcium: pharmacology
650 _ 2 |2 MeSH
|a Calcium: physiology
650 _ 2 |2 MeSH
|a Cattle
650 _ 2 |2 MeSH
|a Cyclic AMP: analogs & derivatives
650 _ 2 |2 MeSH
|a Cyclic AMP: chemistry
650 _ 2 |2 MeSH
|a Cysteine: chemistry
650 _ 2 |2 MeSH
|a Fluorescent Dyes: chemistry
650 _ 2 |2 MeSH
|a G-Protein-Coupled Receptor Kinase 1: metabolism
650 _ 2 |2 MeSH
|a Models, Molecular
650 _ 2 |2 MeSH
|a Mutagenesis, Site-Directed
650 _ 2 |2 MeSH
|a Mutation, Missense
650 _ 2 |2 MeSH
|a Myristic Acid: chemistry
650 _ 2 |2 MeSH
|a Point Mutation
650 _ 2 |2 MeSH
|a Protein Binding
650 _ 2 |2 MeSH
|a Protein Conformation
650 _ 2 |2 MeSH
|a Protein Processing, Post-Translational
650 _ 2 |2 MeSH
|a Protein Structure, Tertiary
650 _ 2 |2 MeSH
|a Recombinant Fusion Proteins: chemistry
650 _ 2 |2 MeSH
|a Recoverin: chemistry
650 _ 2 |2 MeSH
|a Recoverin: drug effects
650 _ 2 |2 MeSH
|a Recoverin: genetics
650 _ 2 |2 MeSH
|a Spectrometry, Fluorescence
650 _ 2 |2 MeSH
|a Structure-Activity Relationship
650 _ 2 |2 MeSH
|a Surface Plasmon Resonance
650 _ 7 |0 0
|2 NLM Chemicals
|a Fluorescent Dyes
650 _ 7 |0 0
|2 NLM Chemicals
|a RCV1 protein, Bos taurus
650 _ 7 |0 0
|2 NLM Chemicals
|a Recombinant Fusion Proteins
650 _ 7 |0 135844-11-0
|2 NLM Chemicals
|a Recoverin
650 _ 7 |0 39824-30-1
|2 NLM Chemicals
|a 8-aminohexylamino cAMP
650 _ 7 |0 52-90-4
|2 NLM Chemicals
|a Cysteine
650 _ 7 |0 544-63-8
|2 NLM Chemicals
|a Myristic Acid
650 _ 7 |0 60-92-4
|2 NLM Chemicals
|a Cyclic AMP
650 _ 7 |0 7440-70-2
|2 NLM Chemicals
|a Calcium
650 _ 7 |0 EC 2.7.11.14
|2 NLM Chemicals
|a G-Protein-Coupled Receptor Kinase 1
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a EF-hand
653 2 0 |2 Author
|a Ca2+-binding protein
653 2 0 |2 Author
|a myristoyl switch
653 2 0 |2 Author
|a fluorescence emission and excitation
700 1 _ |a Komolov, K. E.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Senin, I. I.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Philippov, P. P.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Koch, K.-W.
|b 4
|0 P:(DE-HGF)0
773 _ _ |a 10.1002/prot.21231
|g Vol. 66, p. 492 - 499
|p 492 - 499
|q 66<492 - 499
|0 PERI:(DE-600)1475032-6
|t Proteins
|v 66
|y 2007
|x 0887-3585
856 7 _ |u http://dx.doi.org/10.1002/prot.21231
909 C O |o oai:juser.fz-juelich.de:56498
|p VDB
913 1 _ |k P33
|v Funktion und Dysfunktion des Nervensystems
|l Funktion und Dysfunktion des Nervensystems
|b Gesundheit
|0 G:(DE-Juel1)FUEK409
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k INB-1
|l Zelluläre Biophysik
|d 31.12.2008
|g INB
|0 I:(DE-Juel1)VDB804
|x 0
970 _ _ |a VDB:(DE-Juel1)88673
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-4-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-1-20200312
981 _ _ |a I:(DE-Juel1)ICS-4-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21