TY  - JOUR
AU  - Jin, B. B.
AU  - Dahm, T.
AU  - Kadlec, F.
AU  - Kuzel, P.
AU  - Gubin, A. I.
AU  - Choi, E. M.
AU  - Kim, H. J.
AU  - Lee, S. I.
AU  - Kang, W. N.
AU  - Wang, S. F.
AU  - Zhou, Y. L.
AU  - Pogrebnyakov, A. V.
AU  - Redwing, J. M.
AU  - Xi, X. X.
AU  - Klein, N.
TI  - Microwave and Terahertz Surface Resistance of MgB2 Thin Films
JO  - Journal of superconductivity and novel magnetism
VL  - 19
SN  - 1557-1939
CY  - New York, NY
PB  - Springer
M1  - PreJuSER-56561
PY  - 2006
N1  - Record converted from VDB: 12.11.2012
AB  - The knowledge of the surface resistance R-s of superconducting thin film at microwave and terahertz (THz) regions is significant to design, make and assess superconducting microwave and THz electronic devices. In this paper we reported the R-s of MgB2 films at microwave and THz measured with sapphire resonator technique and the time-domain THz spectroscopy, respectively. Some interesting results are revealed in the following: ( 1) A clear correlation is found between R-s and normal-state resistivity right above T-c, p(0), i.e., R-s decreases almost linearly with the decrease of p(0). (2) A low residual R-s, less than 50 mu Omega at 18 GHz is achieved by different deposition techniques. In addition, between 10 and 14 K, MgB2 has the lowest Rs compared with two other superconductors Nb3Sn and the high-temperature superconductor YBa2Cu3O7-delta (YBCO). (3) From THz measurement it is found that the R-s of MgB2 up to around 1 THz is lower than that of copper and YBCO at the temperature below 25 K. (4) The frequency dependence of R-s follows omega(n), where omega is angular frequency, and n is power index. However, n changes from 1.9 at microwave to 1.5 at THz. The above results clearly give the evidences that MgB2 thin film, compared with other superconductors, is of advantage to make superconducting circuits working in the microwave and THz regions.
KW  - J (WoSType)
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000244455700012
DO  - DOI:10.1007/s10948-006-0124-4
UR  - https://juser.fz-juelich.de/record/56561
ER  -