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1. Relevance of Quantum Computing

Quantum processing of information has become a rapidly evolving field of research in physics,
mathematics, computer science, and engineering [1] and has led to substantial progress in quantum
computation, quantum communication and control of quantum systems. Quantum computers have
become of great interest primarily due to their potential of solving certain computationally hard
problems such as factoring integers [2] and searching databases faster than a conventional computer
[3]. Candidate technologies for realizing quantum computers include trapped ions, atoms in QED
cavities, Josephson junctions, nuclear or electronic spins, quantum dots, and molecular magnets.
Grover’s quantum search [3] and Shor’s quantum prime factorization algorithm [2] have been suc-
cessfully implemented on systems of up to 7 qubits using liquid NMR techniques [4], experimentally
demonstrating the viability of the concept of quantum computation.

In spite of this impressive development, a demonstration that quantum computation can solve
a non-trivial problem is still lacking. To be of practical use, quantum computers will need error
correction, which requires at least several tens of qubits and the ability to perform hundreds of
gate operations. This imposes a number of strict requirements [5], and narrows down the list of
candidate physical systems. Simulating numbers of qubits in this range is important to numerically
test the scalability of error correction codes and fault tolerant quantum computing schemes and their
robustness to errors typically encountered in realistic quantum computer architectures.

2. The Need for Simulation

A physically realizable quantum computer is a complex many-body quantum system. In order
to exercise control over many qubits and to suppress the rate at which errors are introduced during
a quantum computation, it is in principle necessary to understand the full time evolution of the
whole quantum system. Sources of errors are the loss of coherence (decoherence) due to unwanted
interaction with the environment [6] and systematic errors due to imperfections of the operational
pulse sequences.

In first principle simulations the time dependent behavior can be derived from the Hamiltonian of
the physical model chosen to describe a specific hardware realization. Pulses are modeled as time-
dependent external fields acting on the relevant degrees of freedom. The coupling of the environment
is taken into account by including interactions with other degrees of freedom, also represented by
pseudo-spins.

These kind of simulations are needed to analyze decoherence resulting from interactions with the
environment. Depending on the assumptions that where made in deriving the microscopic Hamilto-
nian and/or the manner in which the effect of the coupling to the environment is taken into account,
the calculation of the real-time quantum dynamics of the quantum computer readily requires the
simulation of systems of many (20-40) qubits over extended periods of time. To perform such very
demanding computations, highly optimized simulation code that runs on different high-end com-
puter systems has to be developed.
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3. Simulation of Ideal Quantum Computers

In a first step towards realistic quantum computer simulations we implement so called ideal simu-
lations, where each gate is modeled by a quantum operation that acts instantaneously on the internal
state of the quantum computer, neglecting both implementation imperfections and interactions with
the environment. The drawback is that the state of the quantum computer is known only after the
application of each gate, but this is sufficient for most algorithmic purposes.

In contrast to a classical bit the state of an elementary storage unit of a quantum computer, the
quantum bit or qubit, is described by a two-dimensional vector of Euclidean length one. Denoting
two orthogonal basis vectors of the two-dimensional vector space by |0〉 and |1〉, the state |ψ〉 of a
single qubit can be written as a linear superposition of the basis states |0〉 and |1〉:

|ψ〉1 = a0|0〉+ a1|1〉 =

(

a0

a1

)

, (1)

where a0 and a1 are complex numbers such that |a0|
2 + |a1|

2 = 1. Useful computations require
more than one qubit. The state of a quantum computer with N qubits can be represented in the 2N -
dimensional Hilbert space as

|ψ〉
N

= a0...00|0 . . . 00〉+ a0...01|0 . . . 01〉+ . . .+ a1...10|1 . . . 10〉+ a1...11|1 . . . 11〉,

= a0|0〉+ a1|1〉+ . . .+ a2N�1|2
N − 1〉

= (a0, a1, . . . , a2N�1)T . (2)

According to the rules of quantum mechanics any evolution in time means changing the system
state unitarily. Each operation on a quantum computer can be described by a 2Nx 2N dimensional
unitary transformation U = e�iHt acting on the state vector |ψ′〉 = U |ψ〉, with the hermitian ma-
trix H being the Hamiltonian of the quantum computer model. In this paper we will not describe
any details of quantum computer hardware modeled by appropriate Hamiltonians. It is sufficient to
know that an ideal quantum computer can be modeled by simple spin models such as the Ising model
associating the two single-spin states up= | ↑〉 and down=| ↓〉 with the single-qubit basis states |0〉
and |1〉 [7].

As the unitary transformation U may change all amplitudes simultaneously, a quantum computer
is a massively parallel machine. In order to simulate an arbitrary unitary operation on a conventional
computer the resulting matrix-vector multiplication requires in the worst case O(22N ) complex val-
ued arithmetic operations.

As in the case of programming a conventional computer, it is extremely difficult to write down
explicitly that single one-step operation that transforms the input state into a desired output state.
Usually a quantum algorithm consists of a sequence of many elementary gates. These elementary
gates are represented by very sparse unitary matrices. The resultant matrix-vector multiplication can
be implemented very efficiently and requires typically O(2N) arithmetic operations per elementary
gate. A small set of elementary one-qubit gates (such as the Hadamard gate and the Phase shift gate)
and a nontrivial two-qubit gate (such as the controlled NOT gate) are sufficient (but not unique) to
construct a universal quantum computer [8]. In the framework of ideal quantum operations any one-
(two-) qubit operation can be decomposed into a sequence of 2x2 (4x4) matrix operations each act-
ing on an orthogonal subspace of the 2N dimensional Hilbert space.
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In the following we describe an efficient parallel simulation of ideal quantum computers on a
high-end computer system that allows simulating up to 37 qubits requiring 3 TB of memory and a
considerable compute power.

4. One-Qubit Operations

We will discuss in detail the implementation of a typical one-qubit operation, the Hadamard gate.
This gate is often used to prepare the state of uniform superposition. The Hadamard operation on a
single-qubit state is defined by

|0〉 →
1
√

2
(|0〉+ |1〉)

|1〉 →
1
√

2
(|0〉 − |1〉).

H =
1
√

2

(

1 1
1 −1

)

.

Let us consider a quantum computer consisting of three qubits and its state vector
|ψ〉 = (a000, a001, a010, a011, a100, a101, a110, a111)T . Instead of computing the 8x8 matrix appropriate
to a Hadamard operation H

q
acting on qubit q we can compute H

q
|ψ〉 as given by the scheme in

Fig. 1.

Figure 1. Decomposing a Hadamard transformation acting on qubit q on a three qubit computer
H
q
|ψ〉 into four parallel applications of the single-qubit Hadamard gate H . H0 for example splits

into
(

aij0

aij1

)

7→ H
(

aij0

aij1

)

with i, j ∈ {0, 1}.

From this simple example we can learn some important (generalizable) characteristics for the
Hadamard transformation H

q
on a N -qubit quantum computer influencing qubit q = 0, . . . , N − 1

by acting on the 2N - dimensional state vector (a0...00, a0...01, . . . , a1...11)T :

i) H
q

can be decomposed into 2N�1 applications ofH involving a pair of state vector components
(k, l) with relative stride |l − k| = 2q each.

ii) all these matrices H operate on orthogonal subspaces of the 2N - dim Hilbert space. Hence
they commute and computations can be done in parallel.

From i) we can derive that with the exception of H0 all Hadamard gates operate purely on even
or odd state vector elements. This claim also holds for any other quantum operation that does not
involve qubit 0. Thus we will split the state vector |ψ〉 given by Eq.(2) into an even part |ψ

e
〉 and its

odd counterpart |ψ
o
〉. For 0 � k � 2N�1 − 1 we define:

|ψ
e
(k)〉 = |ψ(2k)〉 and |ψ

o
(k)〉 = |ψ(2k + 1)〉. (3)
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This state vector splitting saves half the effort to determine all pairs of indices (k, l) involved in
the corresponding one-qubit operation. For H

q
with q > 0 consecutive pairs (k, l) are mapped to

identical pairs (k′, l′)
e

= (k′, l′)
o

with stride |l′−k′| = 2q�1. OnlyH0 shows an even and odd mixing
but trivial pattern that is implemented differently.

5. Parallelization and Computational Resources

More important than gaining half of the integer arithmetics, needed for state vector referencing,
the splitting decreases communication overhead in the parallelized simulation code due to sending
and receiving non-stridden sections of the state vectors |ψ

e
〉 and |ψ

o
〉. This leads to a gain of up to

30% of the wall clock time for one-qubit operations (depending on the system size N and the qubit
number q the gate operates on). In this section we present some parallelization details.

The problem of simulating quantum computers is clearly memory bounded. Due to the exponen-
tially increasing amount of memory needed we developed and implemented a large scale simulation
on the Juelich SMP supercomputer IBM p690 providing enough memory to handle a 37 qubit sys-
tem. Simple storage of the state vector in case of a 37 qubit system requires a memory of 2 TB. An
efficient implementation of quantum operations on that state vector even requires 3 TB of memory.

The Juelich IBM p690 is a cluster of 32 compute nodes each containing 32 Power 4+ processors
(64bit) and 112 GB memory per node leading to 3.5 TB overall memory available to user access.
Two processors share a L2 cache of 1.5 MB and each node shares a 512 MB L3 cache. Users nor-
mally only have access to max. 16 nodes equivalent to 512 processors.

A quantum computer with up to N = 32 qubits reserving at max. 236 = 64 GB memory to
store the complex valued state vector in double precision can be simulated on one node using 32
processors. In the following table we describe the typical simulation requirements depending on
the system size N . The last row indicates the overall memory requirements to efficiently simulate
quantum operations including the amount of memory to store the state vector.

#qubits N 32 33 34 35 36 37
#procs 32 64 128 256 512 1024
#nodes 1 2 4 8 16 32
memory (state vector) 64 GB 128 GB 256 GB 512 GB 1 TB 2 TB
memory (operation) 96 GB 192 GB 384 GB 768 GB 1.5 TB 3 TB

Partitioning the 2N - dimensional state vector into P = 2p tasks allows to store the state vector
of a N -qubit quantum computer on 2N�32 compute nodes equivalent to 2N�27 processors with the
obvious limitation

N − 32 � p � N − 27. (4)

MPI-based exchange of the local |ψ
e
〉 and |ψ

o
〉 allows computation of one-qubit operations on

“nonlocal” qubit q � N − p. In that case the relevant state vector components (k, l), the single-
qubit gate operates on, are separated as wide as (or wider than) the number of states per task:
|l − k| = 2q � 2N�p. As shown in Fig.2 task K (containing all components k) sends its local
|ψ
e
〉
K

to task L and receives the local part |ψ
o
〉
L

from task L.
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Figure 2. Communication pattern for a one-qubit operation on qubit q > N − p. The N qubit
state vector is partitioned into 2p tasks. The computational effort is equally distributed to 2p�1

disjoint pairs of tasks (K,L). Task K (L) operates on all odd (even) state vector elements |ψ
o
〉
K+L

(|ψ
e
〉
K+L).

After taskK has computed locally the operationH|ψ
o
〉
K+L on all (k, l)

o
and task L has computed

the even part H|ψ
e
〉
K+L on all (k, l)

e
respectively, both send back their results: K sends H|ψ

o
〉
L

to
L and receives H|ψ

e
〉
K

from L. After that K contains the updated vectors |ψ ′
e/o
〉
K

= H|ψ
e/o
〉
K

. L
respectively stores |ψ′

e/o
〉
L

= H|ψ
e/o
〉
L

in place. Thus the operation requires an intermediate buffer
of 2N�p�1 elements (half the size of the local state vector). Remember that any one-qubit operation
on qubit 0 is local.

• Setting p to the maximum given by Eq.(4) (finest graining) means distributing the state vector
on all processors of the nodes involved. This is equivalent to a pure MPI parallelization ansatz.
For data exchange within a node the MPI-library is mapped to fast shared memory access.

• Choosing the minimal number of tasks given by Eq.(4) (coarsest graining) leads to one task
per node which means that 32 processors are available to that task in parallel. To do this the
core routine (a double loop) is done in parallel by T = 2t = 32 OpenMP threads using shared
memory access to the whole node memory of 64 GB reserved for the “local” state vector.

• Any other choice of p + t = N − 27 with t � 0 leads to an a priori reasonable hybrid
parallelization strategy in the sense that all processors of the involved nodes are used for
computation.

Our detailed investigation on systems of sizesN = 32, 33, 34, 35, 36 shows that different OpenMP
parallelization strategies using more than 4 threads per MPI-task fail to reach the efficiency of the
pure MPI-parallelization. Since we cannot provide a large enough additional buffer, task K for ex-
ample is forced to operate “in place” on the state vector parts H|ψ

o
〉
K+L having write access to a

global=shared vector. In that case synchronization of different OpenMP threads becomes necessary
(within a task) and slows down computation.

Finest graining in the pure MPI-ansatz benefits from simple coding of one qubit operations on
nonlocal qubits q � N − p with maximal p according to Eq.(4). Since the stride |l− k| is as large as
(or larger than) the size of the local state vector stored by each task these gates operate consecutively
on all components. The compiler can build two streams prefetching the entire local state vector.

Since the memory access dominates the time needed to perform a quantum operation, it is crucial
a) to minimize consecutive access to widely separated memory entries and b) to use a simple access
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pattern allowing for efficient (compiler driven) prefetching. We investigate different ways to code
the core routine, that determines the state vector components k, l and performs the computation on
local qubits q < N − p.

version 1
do i=imin,imax,i1

do k=i,i+i1n-1
l=k+i1n
...

enddo k
enddo i

version 2
do i=imin,imax,2

i2=iand(i,i1n)
k=i-i2+i2/i1n
l=k+i1n
...

enddo i

Recoding of the core routine shifting from version 1 (nested loop) to version 2 (single loop) makes
OpenMP loop parallelization simpler but destroys streaming because of additional “jumps” in the
sequence of index k. To comprehend this we respectively present a part of a typical sequence of
consecutive pairs of state vector elements (k, l) to be read from memory.

version 1 k 0 1 2 3 4 5 6 7 16 17 18 19 20 21 22 23 32
l 8 9 10 11 12 13 14 15 24 25 26 27 28 29 30 31 40

version 2 k 0 2 4 6 1 3 5 7 16 18 20 22 17 19 21 23 32
l 8 10 12 14 9 11 13 15 24 26 28 30 25 27 29 31 40

To halve the number of co-resident streams to be prefetched from memory we additionally split
the computation of |ψ

e
〉 and |ψ

o
〉 into two sequential loops of version 1. This speeds up computation

considerably. We measure that our fastest nested OpenMP parallelization of version 1 is about 25%
faster than the dense coded version 2. This gain applies to the usage of 1,2,4 and 8 OpenMP threads.

 0

 10

 20

 30

 40

 50

 0  5  10  15  20  25  30  35

1
2
4
8

time

q

Figure 3. Timings for a Hadamard operation on qubit q at system size N=36 depending on the
number of threads T = 1, 2, 4, 8 per MPI-task using T ∗ 2p = 512 processors.

Analyzing the time needed to compute H
q

depending on the qubit q the operation acts on (see
Fig.3), we can identify three regions according to different speeds of memory access. In case of
T = 1 (equivalent to pure MPI-parallelization) we obtain fast computation for q < N − p = 27,
because all state vector components involved are located within processor memory. Higher timings
forN−p � q < N−p+5 = 32 arise from intra-node communication. The communication between
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processors is mapped to shared memory access, which is slower than access to the memory associ-
ated to a single processor, but faster than MPI based inter-node communication for q � 32. Timings
for parallelizations using 16 (32) threads per MPI process are not given in Fig.3, since computation
gets slower by a factor of about 3 (6) compared to pure MPI. This is due to the machine architecture:
each node is built up by 4 multichip modules each containing 8 processors. The memory access
within a multichip module is faster than getting data from memory associated to another module.

 5

 10

 15

 20

 25

 1  2  4  8  16  32  64  128  256  512 1024

32
33
34
35
36
37

time

# of tasks P 

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 1.45

 1024 512 256 128 32

time

# of procs

Figure 4. Left: average timings t
av

(N) for a Hadamard operation on different system sizes N
depending on the number of MPI tasks P = 2p using T = 2t OpenMP threads with t+ p = N − 27.
Right: scaling of the minimal average timings for the system sizes N = 32, 33, 34, 35, 36, 37 using
32,64,128,256,512,1024 processors respectively.

Keeping the local size of the state vector fixed at 2 GB per processor we compare the time
needed to compute Hadamard operations on all qubits for different choices for the number of tasks
and threads. Fig.4 shows the average timings t

av
(N) for a complete Hadamard transformation

N�1
∏

N�1

q=0
H
q

on different system sizes N depending on the number of MPI tasks P = 2p and
different numbers of OpenMP threads T = 2t respecting t + p = N − 27. Multiple measurements
indicate a statistical timing error of max 5%. On this error level we identify the usage of one or two
OpenMP-threads per MPI-task as optimal. Using 4 threads gives a slightly worse timing.

Taking the best average timing results normalized to min(t
av

(32)) from the l.h.s of Fig.4 for each
system size N we observe the weak(=local size fixed) scaling behavior plotted on the r.h.s of Fig.4.
Compared to the optimal (weak) scaling of a constant min(t

av
(N))/min(t

av
(32)) = 1 we still have

an efficiency of 70% simulating a 37 qubit-system. Looking separately at the timings of H
q

with
q < 32 and q � 32 varying N = 33, 34, 35, 36 reveals that the timings follow the expectation of

t
av

(N)

t
av

(32)
≈ 1 +

(N − 32) t
≥32

32 t
<32

for N = 33, 34, 35, 36 within the 5% error level. Hence the efficiency loss simulating larger systems
is due to the linearly increasing fraction of operations on nonlocal qubits q � 32 using internode
MPI-communication. Observing approximately constant time t(q, N) for a Hadamard operation on
a fixed qubit q � 32 and varying N we can deduce, that our highly optimized parallelization of
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the demanding memory bounded problem does not saturate the accumulated bandwidth on the IBM
p690 up to the usage of 1024 processors an 3TB memory.

6. Two-Qubit Operations

A universal quantum computer also needs two-qubit operations such as the CNOT gate to incor-
porate qubit interaction. We illustrate the action of the CNOT

CT
gate on a two qubit state that flips

the target qubit T if the control qubit C is set to |1〉

CNOT10











a00

a01

a10

a11











=











1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0





















a00

a01

a10

a11











. (5)

The compute pattern of the CNOT-gate is very similar to the one given in Fig.1. The stride of the
state vector components involved in the operation is given by the target qubit |l − k| = 2T . Without
presenting further details our simulator includes load balanced implementations of the controlled
NOT and the controlled phase shift operations as fundamental two-qubit gates.

7. Results

An efficient parallelization technique was applied to the memory bounded problem of simulating
ideal quantum computers, based on hybrid usage of MPI and inner node OpenMP communication
using 1,2 and 4 threads. A compact state vector referencing reduces significantly cache misses
produced by irregular access to widely separated parts of the memory. An algorithm built up from
elementary one- and two-qubit gates scales very well on the IBM p690 up to the max. available
memory using 1024 processors and 3 TB of memory (keeping the local state vector size fixed at 2
GB memory per processor).
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