000056811 001__ 56811
000056811 005__ 20190625110926.0
000056811 0247_ $$2pmid$$apmid:17468218
000056811 0247_ $$2pmc$$apmc:PMC1914154
000056811 0247_ $$2DOI$$a10.1104/pp.107.098509
000056811 0247_ $$2WOS$$aWOS:000247075000047
000056811 0247_ $$2altmetric$$aaltmetric:21817032
000056811 037__ $$aPreJuSER-56811
000056811 041__ $$aeng
000056811 082__ $$a580
000056811 084__ $$2WoS$$aPlant Sciences
000056811 1001_ $$0P:(DE-HGF)0$$aLoivamäki, M.$$b0
000056811 245__ $$aArabidopsis, a model to study biological functions of isoprene emission?
000056811 260__ $$aRockville, Md.: Soc.$$bJSTOR$$c2007
000056811 300__ $$a1066 - 1078
000056811 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000056811 3367_ $$2DataCite$$aOutput Types/Journal article
000056811 3367_ $$00$$2EndNote$$aJournal Article
000056811 3367_ $$2BibTeX$$aARTICLE
000056811 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000056811 3367_ $$2DRIVER$$aarticle
000056811 440_0 $$04987$$aPlant Physiology$$v144$$x0032-0889
000056811 500__ $$aRecord converted from VDB: 12.11.2012
000056811 520__ $$aThe volatile hemiterpene isoprene is emitted from plants and can affect atmospheric chemistry. Although recent studies indicate that isoprene can enhance thermotolerance or quench oxidative stress, the underlying physiological mechanisms are largely unknown. In this work, Arabidopsis (Arabidopsis thaliana), a natural nonemitter of isoprene and the model plant for functional plant analyses, has been constitutively transformed with the isoprene synthase gene (PcISPS) from Grey poplar (Populus x canescens). Overexpression of poplar ISPS in Arabidopsis resulted in isoprene-emitting rosettes that showed transiently enhanced growth rates compared to the wild type under moderate thermal stress. The findings that highest growth rates, higher dimethylallyl diphosphate levels, and enzyme activity were detected in young plants during their vegetative growth phase indicate that enhanced growth of transgenic plants under moderate thermal stress is due to introduced PcISPS. Dynamic gas-exchange studies applying transient cycles of heat stress to the wild type demonstrate clearly that the prime physiological role of isoprene formation in Arabidopsis is not to protect net assimilation from damage against thermal stress, but may instead be to retain the growth potential or coordinated vegetative development of the plant. Hence, this study demonstrates the enormous potential but also the pitfalls of transgenic Arabidopsis (or other nonnatural isoprenoid emitters) in studying isoprene biosynthesis and its biological function(s).
000056811 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000056811 588__ $$aDataset connected to Web of Science, Pubmed
000056811 650_2 $$2MeSH$$aAdaptation, Physiological
000056811 650_2 $$2MeSH$$aArabidopsis: genetics
000056811 650_2 $$2MeSH$$aArabidopsis: growth & development
000056811 650_2 $$2MeSH$$aArabidopsis: metabolism
000056811 650_2 $$2MeSH$$aBiosynthetic Pathways: physiology
000056811 650_2 $$2MeSH$$aButadienes: metabolism
000056811 650_2 $$2MeSH$$aHemiterpenes: metabolism
000056811 650_2 $$2MeSH$$aHot Temperature
000056811 650_2 $$2MeSH$$aModels, Biological
000056811 650_2 $$2MeSH$$aMolecular Sequence Data
000056811 650_2 $$2MeSH$$aPentanes: metabolism
000056811 650_2 $$2MeSH$$aPhotosynthesis: physiology
000056811 650_2 $$2MeSH$$aPlants, Genetically Modified: growth & development
000056811 650_2 $$2MeSH$$aPlants, Genetically Modified: metabolism
000056811 650_2 $$2MeSH$$aPopulus: genetics
000056811 650_2 $$2MeSH$$aVolatilization
000056811 650_7 $$00$$2NLM Chemicals$$aButadienes
000056811 650_7 $$00$$2NLM Chemicals$$aHemiterpenes
000056811 650_7 $$00$$2NLM Chemicals$$aPentanes
000056811 650_7 $$078-79-5$$2NLM Chemicals$$aisoprene
000056811 650_7 $$2WoSType$$aJ
000056811 7001_ $$0P:(DE-Juel1)VDB461$$aGilmer, F.$$b1$$uFZJ
000056811 7001_ $$0P:(DE-HGF)0$$aFischbach, R. J.$$b2
000056811 7001_ $$0P:(DE-HGF)0$$aSörgel, Ch.$$b3
000056811 7001_ $$0P:(DE-HGF)0$$aBachl, A.$$b4
000056811 7001_ $$0P:(DE-Juel1)VDB2595$$aWalter, A.$$b5$$uFZJ
000056811 7001_ $$0P:(DE-HGF)0$$aSchnitzler, J.-P.$$b6
000056811 773__ $$0PERI:(DE-600)2004346-6$$a10.1104/pp.107.098509$$gVol. 144, p. 1066 - 1078$$p1066 - 1078$$q144<1066 - 1078$$tPlant physiology$$v144$$x0032-0889$$y2007
000056811 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC1914154
000056811 909CO $$ooai:juser.fz-juelich.de:56811$$pVDB
000056811 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000056811 9141_ $$y2007
000056811 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000056811 9201_ $$0I:(DE-Juel1)ICG-3-20090406$$d31.10.2010$$gICG$$kICG-3$$lPhytosphäre$$x1
000056811 970__ $$aVDB:(DE-Juel1)89304
000056811 980__ $$aVDB
000056811 980__ $$aConvertedRecord
000056811 980__ $$ajournal
000056811 980__ $$aI:(DE-Juel1)IBG-2-20101118
000056811 980__ $$aUNRESTRICTED
000056811 981__ $$aI:(DE-Juel1)IBG-2-20101118
000056811 981__ $$aI:(DE-Juel1)ICG-3-20090406