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Conical inclusions in a lipid bilayer generate an overall spontaneous curvature of the membrane that depends

on concentration and geometry of the inclusions. Examples are integral and attached membrane proteins,

viruses, and lipid domains. We propose an analytical model to study budding and vesiculation of the lipid

bilayer membrane, which is based on the membrane bending energy and the translational entropy of the

inclusions. If the inclusions are placed on a membrane with similar curvature radius, their repulsive membrane-

mediated interaction is screened. Therefore, for high inclusion density the inclusions aggregate, induce bud

formation, and finally vesiculation. Already with the bending energy alone our model allows the prediction of

bud radii. However, in case the inclusions induce a single large vesicle to split into two smaller vesicles,

bending energy alone predicts that the smaller vesicles have different sizes whereas the translational entropy

favors the formation of equal-sized vesicles. Our results agree well with those of recent computer simulations.
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I. INTRODUCTION

Cell membranes contain large amounts of proteins within

or attached to the lipid bilayer �1�. The distribution of the

proteins is not necessarily homogeneous, which can have

important functional consequences. For example, proteins

with an intrinsic curvature couple to the bilayer conforma-

tion �2–8�; on the one hand, such proteins are preferably

found on similarly curved parts of the membrane �9�, on the

other hand, the proteins deform the membrane locally

�10,11�. Asymmetric, curved proteins can regulate the poly-

merization of the three-dimensional cytoskeleton of the cell

�12� and control intracellular transport via endocytosis

�13,14�. Virus endocytosis can occur via the same mecha-

nism �15,16�. The conical inclusions in our model mimic

asymmetric proteins within the bilayer �7�, proteins or poly-

mers attached to the bilayer �4,17,18�, curved lipid domains

�19–22�, and viruses that bind to the membrane �15�.
The interaction between the inclusions in a lipid bilayer is

mediated by membrane deformations and thermal undula-

tions �23,24�, in addition to surface tension �2� and possible

direct interactions that we do not consider in this paper. The

deformation-induced, pairwise interaction of curved inclu-

sions occurs in the absence of thermal membrane undula-

tions and is usually repulsive �25,26�; in a planar membrane

it is long range �25–27�. However, the interactions can be

strongly screened if the average curvature of the membrane

and the protein curvature are similar �28–30�. One obvious

example for strongly screened interactions are inclusions that

are placed on a vesicle with similar curvature radius �30�.
Screening can also be achieved by many-body interaction in

clusters of inclusions �29,31�. At finite temperature, Casimir-

type interactions due to membrane undulations generate at-

traction �25,26,32–35�.
Curvature generation by inclusions and induced budding

in lipid bilayer membranes has been reported in many ex-

perimental studies of biological and biomimetic systems

�7,11,13,14,18�. Computer simulations allow to study the

membrane-mediated interaction between the inclusions in

detail without the presence of direct interactions. Recently,

bud formation by curved inclusions has been investigated

with computer simulations �36,37�. It was found that the in-

clusions on the buds have a higher density than they had in

the initially nearly flat membrane �36�. This might appear to

be a result of undulation-induced attraction that in conse-

quence leads to clustering of the inclusions and to budding.

Such systems and processes can be studied theoretically

on the basis of an elastic membrane that is characterized by

its bending rigidity, �, and Gaussian saddle-splay modulus,

�̄, with curved inclusions that consist of sections of a sphere

with a given opening angle. We demonstrate that bud forma-

tion can already be well understood on the basis of the mem-

brane deformation alone. We show that the higher inclusion

density on the bud is a result of a screened repulsive inter-

action. We further argue that the budding pathway plays an

important role for the bud size. This allows us to predict a

range of possible bud radii for a given system, which nicely

agrees with recent simulation results �36�.
At finite temperature, the inclusions can exist in a fluid

and in a crystalline phase, which depends on the strength of

their repulsive interaction. We construct an approximate free-

energy functional that takes into account for the bending en-

ergy as well as the translational entropy of the inclusions. We

calculate a phase diagram for the fission of a single vesicle of

given size and for given number and geometry of the inclu-

sions. The inclusion entropy plays a decisive role for the

sizes of the smaller vesicles into which a larger vesicle may

split.

II. MEMBRANE BENDING ENERGY

A. Membrane shape near inclusions in a lipid bilayer

The bending energy E of a lipid bilayer is given by the

integral over the entire membrane area,

E =� dS�2�H2 + �̄K� , �1�

where � is the bending rigidity, �̄ is the saddle-splay modu-

lus, H= �c1+c2� /2 is the mean curvature, K=c1c2 is the
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Gaussian curvature, and c1 and c2 are the principal curva-

tures at each point of the membrane. The integral over the

Gaussian curvature is determined by the topology of the

membrane and by the geodesic curvature at the boundary. In

our case, the geodesic curvature is given by the geometry of

the inclusions, so that in general this term of the integral over

the membrane shape does not need to be calculated explic-

itly. For bud formation, we neglect the constant contribution

of the Gaussian saddle-splay modulus.

In order to minimize the bending energy, the inclusions

preferably order on a hexagonal lattice �Fig. 1�a��; therefore

it is a natural assumption that the symmetry axis is oriented

normal to the local tangent plane of the vesicle on which the

inclusions are placed. To calculate the deformation energy,

we approximate the hexagons with overlapping circles that

have the same projected area �Fig. 1�b��.
If there are no overhangs, the membrane conformation

can be described in Monge parametrization by a height field,

h�x ,y�, over a planar reference surface. For an almost planar

membrane, the bending energy of the membrane is

E =
1

2
�� dA��h����2, �� = �x,y�� , �2�

with �dA the integral over the reference plane. Minimization

of the bending energy gives the biharmonic Euler-Lagrange

equation

�2h��� = 0. �3�

In cylindrical coordinates, the general solution of Eq. �3� is

h��� =
1

4
�2�2C2 − C3� + C4 + �C1 +

1

2
�2C3�ln��� �4�

with the four integration constants C1 to C4 �38�.
The boundary conditions that are imposed on the mem-

brane are sketched in Fig. 2. The radius of the inner bound-

ary, �i=ri sin���, and the slope of the membrane at the inner

boundary, h���i�	a=−tan���, are determined by the

inclusion geometry. For n
4�R2� inclusions on a vesicle

with radius R and surface number density � of the

inclusions, the radius of the outer boundary is �o
R sin���
with �=arccos��n−2� /n�; the slope of the membrane at

the outer boundary is h���o�	b=−tan���. For inclusions

on a planar membrane, the latter expressions simplify to

�o
1 / �����1/2� and b=0. The remaining two boundary con-

ditions are given by fixing the membrane height at the inner

�or equivalently at the outer� boundary and minimizing the

energy with respect to the height of the inclusion above the

vesicle �i.e., the height difference between both boundaries�,
which implies h��i�=0 at the inclusion and ���h��� ��o

=0 at

the outer boundary.

Equation �4� together with the boundary conditions gives

the shape of the deformation,

h��� =
��2 − �i

2��b�o − a�i� + 2�o�i�a�o − b�i�ln��/�i�

2��o
2 − �i

2�
,

�5�

and the corresponding bending-energy cost,

E��o,b� =
�

2
�

�i

�o

d���rh����2 =
2���b�o − a�i�

2

��o
2 − �i

2�
. �6�

The energy is a function of �o and b, which depend on the

inclusion density, while all other quantities are intrinsic prop-

erties of membrane and inclusions. For a single inclusion in

an infinite planar membrane, b=0 and �o→	, the bending

energy vanishes and the membrane deformation is catenoid-

like, h���=a�i ln�� /�i�. Note that in a pairwise approxima-

tion, the interaction energy for two inclusions in a planar

membrane �b=0� decays like d−2 for large distances between

the inclusions �large �o=d /2�.

B. Optimal, low, and high inclusion density

For inclusions on a vesicle, the membrane shape and the

minimal bending energy �assuming that the inclusions have

maximal mutual distances� can be calculated using Eqs. �5�
and �6�. For b�o=a�i, the membrane around the inclusion

has almost catenoid shape �39�; the catenoid is a minimal

surface without bending-energy cost. If the entire vesicle is

covered with inclusions and catenoids such that the bending

energy is zero �Fig. 3�b��, the inclusions have optimal den-

sity.

For lower inclusion densities, in a first approximation the

catenoid shape borders on a spherical shape with the curva-

ture radius of the vesicle. The bending energy of a vesicle

that is decorated with curved inclusions is reduced by the

(b)(a)

FIG. 1. �a� Membrane deformations induced by curved inclu-

sions in a planar membrane. The inclusions have a repulsive inter-

action potential that decreases with the distance between the inclu-

sions, d, like V�d−2. To minimize the bending energy, the

inclusions order in a hexagonal structure. �b� The hexagons are

approximated by overlapping circles that have the same projected

area.

b

α
r
i a

ρ
i

ρ
o

FIG. 2. �Color online� Curved inclusion and resulting membrane

deformation. The inclusion geometry is characterized by the curva-

ture radius, ri, the opening angle, �, and the projected inclusion

radius, �i=ri sin���. The size of the corresponding membrane patch

is �o, the slope of the membrane at the inclusion is a=−tan���, and

the slope of the membrane at the outer boundary is b �b=0 for

inclusions on a planar membrane�.
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fraction of the sphere’s surface area that is covered by the

inclusions and the catenoid-shaped membrane segments; see

Fig. 3. Therefore, for low inclusion density, the bending

energy of the decorated spherical vesicle is in the range

0
E
8��. In the full solution, which is given by Eq. �5�
and will be used in the remainder of the paper, there is no

jump in the mean curvature from H=0 to H=1 /R between

the catenoid and a sphere as sketched in Fig. 3 but rather a

smooth transition from zero to finite mean curvature.

For inclusion densities that are higher than the optimal

density, due to the boundary conditions no solution can be

constructed by matching of catenoids. In this case, the bend-

ing energy always has a finite value that can exceed the

bending energy of a bare vesicle.

The minimal bending energy of a vesicle with inclusions

is shown in Fig. 4 as function of the number of inclusions, n,

and the vesicle radius, R. We find degenerate zero-energy

ground states that have optimal inclusion density with an

approximately linear dependence R�n�, where �40�

R 
 �a��in/4 
 1/����a��i� = �cos ��/��� sin2 ���1/ri�

and n 
 4/���a2�i
2� = �4 cos2 ��/��� sin4 ���1/ri

2� . �7�

The natural spontaneous curvature of the bilayer for given

inclusion density and geometry is c0=1 /R0
���a��i.

The same value for the inclusion density can be high,

optimal, or low, depending on the radius of the vesicle on

which the inclusions are placed. The smaller the radius of the

vesicle, the larger the value of the optimal density. In a pla-

nar membrane, the slopes of two adjacent catenoidlike defor-

mations cannot be matched for any finite distance between

the inclusions. Therefore, the inclusions are always in the

high-density regime in this case.

C. Budding and vesiculation

Bud formation does not occur for a vesicle with low in-

clusion density and bending energy, 0
E
8��, because

this would lead to an increase in the total bending energy

�41�. However, for high inclusion density �n�4R / ��a��i�; see

Eq. �7��, the system can always reach a state of lower bend-

ing energy if small vesicles bud from the main vesicle. The

set of smaller vesicles into which a large vesicle with high

inclusion density splits up is not uniquely determined from

bending energy alone, because the states of vanishing bend-

ing energy are degenerate. A natural assumption is that the

vesicle will split into one large “mother” vesicle and one or

more small “daughter” vesicle�s� of equal size, such that the

total bending energy vanishes and the membrane area is kept

constant. In Fig. 5, we show the radii of the mother and

daughter vesicles as function of the number of inclusions.

For a given number of n
v
−1 daughter vesicles, there is a

maximal number of inclusions nmax=n
v

1/2wR �w=4 / ��a��i��
that still allows to obtain a zero-energy state, for which

mother and daughter vesicles have equal sizes.

If the system can split up into n
v

smaller vesicles, it can

also split up into a larger number of small vesicles �42�. For

a vesicle with total number of inclusions n=n++ �n
v
−1�n−

and radius R= �R+
2 + �n

v
−1�R−

2�1/2, bending energy minimiza-

tion predicts for the radii and inclusion number on mother

�R+ ,n+� and daughter �R− ,n−� vesicles:

n+ =
n + �n

v
− 1�1/2�n

v
w2R2 − n2�1/2

n
v

,

n− =
n − �n

v
− 1�−1/2�n

v
w2R2 − n2�1/2

n
v

,

R+ =
n + �n

v
− 1�1/2�n

v
w2R2 − n2�1/2

n
v
w

,

R− =
n − �n

v
− 1�−1/2�n

v
w2R2 − n2�1/2

n
v
w

. �8�

Because of the degeneracy of the states with vanishing bend-

ing energy, thermal fluctuations and the budding pathway

(b)(a)

FIG. 3. �Color online� �a� Vesicle decorated with curved inclu-

sions. Around each inclusion, the membrane can be modeled by

segments of the catenoid minimal surface �white�. The total bending

energy is E=8���1−Scat /Ssph�, where Scat /Ssph is the area fraction

of the vesicle that is covered with inclusions and catenoidal patches.

�b� Vesicle decorated with inclusions at optimal density; the bend-

ing energy of the lipid bilayer membrane vanishes.

FIG. 4. Normalized bending energy, E /�, of a vesicle with ra-

dius R with n inclusions �ri
5.5 nm, �=0.64�. There is a region

of low inclusion density at large R with 0
E
8��, which is de-

lineated by a line of zero-energy ground states from a region of high

inclusion density at small R, where also bending energies E�8��

can be found. �The high energies that are cut off at small n and large

R mark the breakdown of the small-curvature expansion of the

bending energy.�
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play a decisive role to determine how a large vesicle with

high inclusion density splits up into smaller vesicles. Note

that the results of our analytical model so far do not depend

on the value of the bending rigidity of the bilayer.

D. Inclusion clusters

A direct attractive interaction between inclusions can in-

duce cluster formation �43�. In this case, the preferred cur-

vature radius, R0, not only depends on the number and ge-

ometry of the inclusions, but also on the cluster size. For

given inclusion curvature radius ri, opening angle �0, and

fixed density �0, inclusion clusters with a larger opening

angle � and reduced density, �= �1−cos �0� / �1−cos ���0,

have a stronger effect on the curvature of the membrane than

homogeneously distributed inclusions. The preferred curva-

ture radius for clusters with opening angle � is

R��� = ��1 − cos ��cos ��/��1 − cos �0�sin2 ��/��ri�0�

	 f���/��ri�0� .

We call the normalized curvature radius f��� the coagulation

factor, because it multiplies the curvature radius for the ref-

erence inclusion density and opening angle �0 �44,45�; see

Fig. 6.

For a fixed number n0 of inclusions, the preferred curva-

ture radius decreases when aggregates are formed; i.e., the

efficiency with which the inclusions influence the membrane

curvature increases. Cluster formation, therefore, also shifts

the high-density regime to smaller numbers of inclusions for

the same vesicle radius, n0� f���4R /ri, and may cause a

large vesicle to break up into smaller vesicles.

III. THERMAL FLUCTUATIONS

For finite temperature, the translational entropy of the in-

clusions contributes to the free energy. We distinguish a crys-

talline hexagonal phase and a disordered fluid phase for

which we construct free-energy functionals. Phase diagrams

have been calculated more rigorously in Ref. �46� in the

limiting case of an almost planar membrane and for inclu-

sions that are slightly stiffer than the membrane and weakly

curved—but not in the context of budding.

We neglect the interaction between inclusions by thermal

membrane undulations. For a pair of inclusions and an arbi-

trary orientation of the inclusion axis, to lowest order of

�i
2
/d2 the deformation energy is �25–27,47�

Edef = 8���2
�i

4

d4
�9�

and the undulation-induced interaction energy �25,34,35,48�

Fund = − 6kBT
�i

4

d4
. �10�

The ratio of the membrane deformation-induced repulsion to

the undulation-induced attraction in a planar membrane is

4���2
/ �3kBT�. The undulation-induced attraction can be

neglected if it is one order of magnitude smaller than the

deformation interaction; for �=10kBT this is the case for

��0.5, for �=20kBT already for ��0.35. For low inclusion

densities, the undulation-induced interaction energy decays

with the square of the density while the free energy due to

the inclusion entropy is of the order of kBT; in case of the

phase diagrams in Fig. 11, the undulation free energy is

about 10−4kBT.

A. Inclusion effective pair potential and effective

hard-disk radius

For inclusions on a hexagonal lattice, each inclusion cor-

responds to three pair interactions and a radius of the defor-

mation patch, �o, that is half the distance between the inclu-

0

2

4

6

8

10

100 120 140 160 180 200 220

R
/r

n

i

1

2

4
3

FIG. 5. �Color online� A single vesicle of radius R=10ri with n

inclusions splits into one large “mother” vesicle and several small

“daughter” vesicles; in the figure the cases of one, two, three, and

four daughter vesicles are shown. The same parameters as in Fig. 4

are used. For 100 inclusions, the initial vesicle has vanishing bend-

ing energy. For more than 100 inclusions, the sizes of mother and

daughter vesicles are plotted. The upper branch always gives the

radius of the mother vesicle; the lower branch is the size of the

daughter vesicles. For a fixed number n
v
−1 of daughter vesicles �as

indicated�, there is a maximum number of inclusions that allows the

formation of a state with vanishing bending energy �for which

mother and daughter vesicles have equal sizes; filled circles�.

0
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0.4

0.5
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(α
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α

σ/σ ~ 0.05
0

σ/σ ~ 0.2
0
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0

FIG. 6. The coagulation factor, f���=R����ri�0, describes the

dependence of the optimal vesicle radius, R0, on the degree of ag-

gregation of the inclusions in the membrane. The total inclusion

area is kept constant and the reference density �0 corresponds to

�0=0.1�.
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sions. The effective pair potential, obtained from Eq. �6�, is

thus

u�d� =
2���bd − 2a�i�

2

3�d2 − 4�i
2�

if bd 
 2a�i

u�d� 
 0 if bd � 2a�i.

�11�

For inclusions on a planar membrane �b=0� and for large d,

i.e., for d��i, the repulsive interaction potential decays with

a power law, u�d−2.

To determine the free energy of this system, we employ

the method developed for suspensions of repulsive colloids

�49�; i.e., we mimic the interaction potential by hard disks

with an effective radius, rhd. The radius is calculated from a

comparison of the membrane deformation energy with the

thermal energy, kBT. We use a modified Barker-Henderson

method that is appropriate for soft potentials �45,49�,

rhd =
1

2
�

0

�u


1 − exp�− �E�����d� , �12�

where the upper integral boundary is determined by u�2�u�
=kBT �50,51�. The effective hard-disk radii therefore depend

on the geometry of the inclusion, the bending rigidity of the

membrane, and on the radius of the vesicle on which the

inclusions are placed.

In Fig. 7, the effective hard-disk radii, rhd, are plotted for

inclusions with various opening angles as function of the

vesicle radius, R �an extremely large radius R=100 �m of

the vesicle is used to describe inclusions in planar mem-

branes�. The hard-disk radii increase with increasing vesicle

radius; the increase in rhd with R is the stronger, the larger

the opening angle � of the inclusion is. For example, the

inclusions with ri=5.5 nm and �=0.4� can approach each

other by diffusion about an order of magnitude closer on a

vesicle with radius R=10 nm than this is possible on a pla-

nar membrane. Consequently, the translational entropy of the

inclusions lowers the free energy on the vesicle compared

with the planar membrane.

As discussed in Sec. II D, cluster formation of inclusions

increases their effect on the membrane curvature. The effect

of cluster formation on the area fraction of effective hard

disks is plotted in Fig. 8. For �=12kBT, which is a typical

value for a lipid bilayer, clustering on vesicles with large

radii, R, strongly increases the area fraction of the effective

hard disks. To illustrate the strong effect of the bending ri-

gidity on the effective hard-disk radius, which enters the cal-

culation of the radius via the exponential function in Eq.

�12�, we plot the effective hard-disk radii for �=1kBT; the

increase in the area fraction of the hard disks with � is much

smaller than for �=12kBT. Thus, the translational entropy of

the inclusions plays a much more important role for smaller

� �52�.

B. Inclusion entropy and free energy of hard disks

The free energy of a fluid of hard disks can be very well

described by the Carnahan-Starling free energy �53,54�. It is

the sum of the ideal-gas free energy, Fid /n
kBT log���2�,
where � is the thermal wavelength �see, e.g., Ref. �55�� and

the excess free energy FCS �56�. The latter is calculated from

the Carnahan-Starling equation of state �54�,

p

�kBT
=

1

�1 − y�2
, �13�

with the hard-disk area fraction, y=��rhd
2 . Integration of the

thermodynamic relation p=−��F /�V�T,N finally gives the ex-

cess free energy,

0
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FIG. 7. �Color online� Effective hard-disk radii for inclusions on

a vesicle as function of the vesicle’s radius, R �see Eq. �12��. All

inclusions have the curvature radius, ri=5.5 nm, and the opening

angles �=0.4�, �=0.35� , . . ., �=0.05� �from top to bottom�. The

projected inclusion radii are in the range 0.86 nm
�i
5.2 nm;

the membrane bending rigidity is �=12kBT.
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FIG. 8. Area fraction of effective hard disks for inclusions with

ri=5.5 nm and opening angles 0.1
�
1.3. For a fixed number of

inclusions, cluster formation leads to a larger area fraction of the

effective hard disks and finally to crystallization. The area fraction

of the effective hard disks with opening angle � is normalized by

the area fraction of effective hard disks with �=0.05�: an increase

in � corresponds to a decrease in � �compare Fig. 6�. The

inclusions are placed on vesicles with �=12kBT and various radii

R=0.1 �m �dotted�, R=1 �m �short-dashed�, R=10 �m �long-

dashed�, and R=100 �m �solid�. For comparison, the area fraction

of effective hard disks is also shown for �=1kBT and R=100 �m

�dashed-dotted�.
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1

n

FCS

kBT
= �

0

y � p

kBT�
− 1�dỹ

ỹ
=

y

1 − y
− ln�1 − y� . �14�

The Carnahan-Starling excess free energy diverges at the

crystallization transition of the effective hard disks.

Because in the fluid as well as in the crystalline phase

of the inclusions the squared thermal wavelength enters

through the same constant and additive term, we consistently

replace it in both cases—without loss of information—by

the projected area of the inclusion, ��i
2, such that F̃id /n


kBT log����i
2�.

Usually the translational entropy favors a homogeneous

distribution of particles. However, because the effective

hard-disk radius depends on the membrane curvature, on a

deformable membrane, a homogeneous distribution of inclu-

sion does not need to be the most favorable state. Instead, the

inclusion density on the bud can be higher than on the

mother vesicle because of the screened repulsive interac-

tions. Figure 9 shows the free energies of a fluid of effective

hard disks with curvature radius ri=5.5 nm for various

opening angles in a lipid bilayer with �=12kBT. For nearly

identical curvature radii of vesicle and inclusions, the effec-

tive hard-disk radius almost coincides with the geometric

hard-disk radius of the inclusion.

C. Free energy per inclusion in fluid and crystalline phases

We construct the free energy per inclusion in the crystal-

line phase from the membrane bending energy and the fluc-

tuation free energy of a harmonic crystal, and in the fluid

phase from the sum of the membrane bending energy and the

translational entropy of the inclusions �57�.

For the harmonic crystal, the spring constant ksp is ob-

tained for a hexagonal lattice with the interaction potential in

Eq. �11�,

ksp =
16���i

�d2 − 4�i
2�3

�3d2 + 4�i
2��i�a

2 + b2� − �d2 + 12�i
2�abd .

�15�

The free-energy contribution of the positional fluctuations of

the inclusions is therefore

FHC = kBT ln� ksp�
2

2�
� �16�

or, after replacement of the thermal wavelength by the inclu-

sion size,

F̃HC = kBT ln� ksp�i
2

2
� . �17�

Whenever we use the free energy for the crystalline phase in

this paper, the Lindemann parameter remains below the criti-

cal value for melting of the inclusion crystal �58�.
The transition between the fluid and the crystalline phase

already occurs below the crystallization transition of the ef-

fective hard disks, ��rhd
2 
0.7. In Fig. 10, the free energy

per inclusion is plotted for several vesicle radii. Entropy re-

duces the optimal bud radius for a given inclusion density

compared with Eq. �7�. However, the bending energy alone

still provides a good estimate for the optimal bud radius

because of the strong increase in the free energy per inclu-

sion for low inclusion densities �see Fig. 10�.
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FIG. 9. Carnahan-Starling free energy of hard disks as function

of the inclusion area fraction. The system is depicted in the inset

with periodic boundary conditions. We plot the free energy for disks

with the geometrical projected radii of the inclusions, rhd=�i

=ri sin � �solid line�, as well as the free energies for effective hard

disks for inclusions with curvature radius ri=5.5 nm and various

opening angles on vesicles with �=12kBT: �=0.16 and R=20 nm

�long dashed�, �=0.16 and R=100 �m �short dashed�, �=0.64 and

R=20 nm �long-dashed dotted�, �=0.64 and R=100 �m �short-

dashed dotted�, �=0.82 and R=20 nm �dotted�, and �=0.82 and

R=100 �m �double dashed�.

-10

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5

σ π ρ
2
i

F
/(
n
k
T
)

B

FIG. 10. Free energies as function of the inclusion area fraction,

���i
2, for inclusions with ri=5.5 nm, �=0.82 in a membrane with

�=12kBT for several vesicle radii: R=1 �m �solid�, R=100 nm

�long-dashed�, R=50 nm �short-dashed�, R=30 nm �dotted�, R

=20 nm �long dashed-dotted�, R=15 nm �short dashed-dotted�.
For low densities, the inclusions are in a fluid phase and the free

energy is given by the membrane bending energy plus the

Carnahan-Starling excess free energy for the effective hard disks.

For high densities, the inclusions are in a crystalline phase and the

free energy is given by the membrane bending energy and the free

energy of a harmonic crystal.
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D. Vesiculation diagrams

From the total free energy in Sec. III C, we calculate ve-

siculation diagrams starting with a single vesicle of radius R

and a given number of inclusions for several values of �.

Because the topology changes when buds detach, the value

of �̄ plays an important role for vesiculation. Figure 11

shows vesiculation diagrams for �̄=0 and for �̄=−� /2 �the

ratio �̄ /� is still under debate; see Ref. �59��. We calculate

whether the single vesicle is the most stable state or if fission

in two or more smaller vesicles is favorable. With increasing

initial vesicle radius and inclusion density, fission becomes

more likely to occur—first into two, at even larger R or �
into three or more vesicles.

For �̄=0, fission in the bending-energy dominated regime

produces two smaller vesicles that in general have different

sizes; see Eq. �8�. If entropy is important, the two vesicles

may have equal size. In Fig. 11�a�, it is shown that a regime

of equally-sized vesicles develops bordering the three-vesicle

regime and increasing in size with decreasing �. Within the

error bars of our calculation, we find that the boundaries

between one, two, and three vesicles are independent of the

value of the bending rigidity for 10kBT
�
200kBT.

For �̄=−� /2, vesiculation takes place for smaller initial

vesicle radii and inclusion densities than for �̄=0 because

each additional vesicle lowers the free energy by 4��̄. In the

entire two-vesicle regime, both vesicles have different sizes

for �=200kBT, �=100kBT, �=50kBT, and �=30kBT, while

for �=10kBT a small region of equally sized vesicles is

found; see Fig. 11�b�.
Note that for bud formation, which has to occur before

vesiculation, the value of �̄ is irrelevant and the phase dia-

grams for �̄=0 apply �assuming that the buds are connected

by catenoidal necks with vanishing bending energy and that

the membrane area needed to form the neck is negligible�.
While the bud is being formed and has not yet detached, the

integral over the Gaussian curvature and therefore the con-

tribution of the saddle-splay modulus to the deformation en-

ergy stays constant. However, a negative saddle-splay modu-

lus facilitates the neck between two vesicles to break. In this

case, the budded state can act as energy barrier for vesicula-

tion that prevents fission, separating a high-energy single-

vesicle state and a low-energy state of several smaller

vesicles.

IV. BUDDING PATHWAY

To shed more light on the role of the budding pathway, we

compare the typical diffusion time of the inclusions with the

relaxation time of the membrane conformation on the same

length scale. If the diffusion of inclusions is fast compared

with the relaxation time of the membrane, the initial mem-

brane shape is decisive; for a fast membrane relaxation, the

initial distribution of inclusions mainly determines the bud-

ding process.

The diffusion time is td=�2
/ �4D�, where � is a character-

istic length scale that the inclusion has diffused and D is the

diffusion coefficient of the inclusion. A typical value is D

=1 �m2 s−1 for the diffusion of lipids and the diffusion co-

efficient for proteins in cell membranes can be up to two

orders of magnitude smaller �60�. The relaxation time of the

membrane is tr=��3
/ �2�3�� �61�, where �=1 mPa
2.4

�10−10kBT s nm−3 is the viscosity of the surrounding water

and � is the wavelength of the membrane undulations. From

the cubic versus the quadratic dependence on �, we find that

for small �, tr
 td, while for large �, tr� td.

For �=10kBT and D=1 �m2 s−1 �which is an upper

bound for the diffusion coefficient of proteins�, we find that

tr= td for �
0.6 mm. This length is much larger than

10 �m, which is the size of cells �62� or giant unilamellar

vesicles �63�, thus the initial aggregation of inclusions is dif-
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FIG. 11. �Color online� Vesiculation phase diagram for an inclu-

sion density � of inclusions with ri=5.5 nm and �=0.64 on �ini-

tially� a single vesicle of radius R. For small � or R, the energeti-

cally favorable state is the single vesicle; fission, first into two, and

finally into three or more vesicles is expected to occur when �

and/or R is increased �more than three vesicles are not resolved by

the calculation�. �a� �̄=0: in the two-vesicle regime, a region where

the two vesicles have equal sizes grows with decreasing � and

bounds the three-vesicle regime. The lines depict the border

between equally and differently sized vesicles for �=200kBT,

�=100kBT, �=50kBT, �=30kBT, and �=10kBT �the vesicle sizes

are not resolved in the 3+ region�. �b� �̄=−� /2: fission occurs

already for smaller values of � and R. In the two-vesicle region

the two vesicles have different sizes for �=200kBT, �=100kBT,

�=50kBT, and �=30kBT. For �=10kBT, in a small region both

vesicles have equal sizes.
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fusion limited. We therefore assume that inhomogeneities in

the protein distribution on the membrane will immediately

lead to a membrane deformation that minimizes the bending

energy. The larger the initial inclusion density, the larger the

spontaneous curvature of the membrane �compare Eq. �7��
and the smaller the size of the buds that are formed.

Bud formation is initialized in some regions of the mem-

brane that have a noticeably higher inclusion density than

others. The relative protein density fluctuations decrease with

the size of a membrane patch which is considered. If we

assume a random distribution of inclusions, for a patch with

N inclusions the relative fluctuations of the inclusion number

are of the order of N−1/2. Thus, for small patches, the inho-

mogeneities are strongest and budding will preferably occur

on the smallest possible length scale. A small average mem-

brane curvature with appropriate sign further attracts proteins

to those regions where the bending energy per inclusion is

already reduced. However, this clustering of inclusions dur-

ing the budding process is hindered by a ring with opposite

membrane curvature that forms the neck of a growing bud.

This ring acts as energetic barrier that prevents further inclu-

sions to enter a patch of the membrane where budding has

already started �64�. Because of the neck formation and the

diffusion-limited budding process, the bud size is roughly

determined by the initial inclusion density on the membrane.

V. COMPARISON WITH SIMULATION RESULTS

Budding due to membrane inclusions has been studied

recently with computer simulations �36,37�. In Ref. �37�, en-

tire vesicles with inclusions are simulated where the mem-

brane is modeled as a dynamically triangulated surface. In

Ref. �36�, coarse-grained model lipids are used to study bud-

ding for planar bilayer patches.

In Fig. 12, the different contributions to the free energy

per inclusion needed to graft ten inclusions with given

projected radius �i=2.5 nm on a vesicle with radius R

=15 nm are plotted as function of the opening angle �. The

inclusions are in the fluid phase. For comparison, we also

plot the simulation data of Ref. �37�, shifted by �F

=−10.5kBT because our model does not account for thermal

undulations of the membrane conformation. This energy dif-

ference is extracted from the simulation data for T=300 K

and for T=3 K; see Fig. 6A in Ref. �37�. However, the very

good match is somewhat fortuitous because we replace the

thermal wavelength in the ideal gas free energy by the inclu-

sion size, such that it is similar to the free energy obtained on

a triangulated vesicle with a bond length that approximately

equals to the inclusion diameter; compare �65�.
We consider curvature radii of the inclusions that are both

smaller and larger than the curvature radius of the vesicle.

For �→0 and ri→	, such that �i=2.5 nm, bending energy

is needed to insert the flat inclusion into the curved vesicle.

This bending energy cost decreases with increased opening

angle � and is zero for �
0.17 where the curvature radius

of the inclusion equals the curvature radius of the vesicle.

If � is further increased, the bending energy per inclusion

continues to decrease as more and more of the vesicle area

consists of catenoidal patches around the inclusions. For

�
1.18, i.e., for even larger opening angles than plotted in

the figure, the inclusions have optimal density and the bend-

ing energy gained by grafting all ten inclusions to the vesicle

is 8��.

In addition to the bending energy, there is an energy cost

E�̄ for grafting that arises due to the saddle-splay modulus,

which has been chosen to be �̄=−�=−20kBT for consistency

with Ref. �37�. The energy cost per inclusion only depends

on the geodesic curvature of the membrane at the inclusion,

i.e., on the opening angle �, which implies E�̄=−2��̄�1
−cos ��. Therefore, it is independent of vesicle radius and

inclusion density and is only important to calculate the

chemical potential for the inclusions on the surface; the bud-

ding transition at given inclusion density in the membrane is

independent of �̄.

In the simulations presented in Ref. �36�, budding is in-

duced by inclusions with ri=5.5 nm that are initially placed

in a regular array on a planar membrane with �=12kBT.

Under the assumption that the initial inclusion density, �
=2�10−3 nm−2, determines the bud size �see Sec. IV�, we

can roughly predict the bud radius from Eq. �7�. Possible bud

radii are estimated by comparing the free energies for differ-

ent vesicle radii in Fig. 10 at the initial inclusion density.

The parameters for which the free energies are plotted in

Fig. 10 are chosen to match the bending rigidity and the

inclusion geometry of the “large inclusions” in Ref. �36� with

�=0.26� �66�. For an initial inclusion density in the planar

membrane, �=0.002 nm−2
0.15���i
2, which is estimated

by visual inspection from the simulation snapshots, we find

that the inclusions are in the crystalline phase on the vesicle

with R=1 �m �i.e., in a planar membrane�. The free energy

per inclusion is about 10kBT. Significantly smaller free ener-

gies per inclusion can be found for vesicle radii 22 nm�R

�100 nm; the optimal vesicle radii are 30 nm�R

�60 nm with free energies per inclusion of about −1kBT.
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FIG. 12. Energies per inclusion needed to place ten inclusions

of size �i=2.5 nm on a vesicle with R=15 nm, �=20kBT, and �̄

=−20kBT, as function of �. Lines show bending energy �long-

dashed�, bending energy and inclusion entropy �short-dashed�,
saddle-splay energy �dotted�, and total energy �solid�. For compari-

son, we also plot the simulation data of Ref. �37� �symbols indicate

different calculation methods �37�� shifted by �F=−10.5kBT �see

main text�. The deviation of the simulations and our theory for �

�0.4 might be due to the surface tension used in the simulation,

which is not included in our model.
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These radii agree well with the observed radius R=30 nm of

the bud that forms in the simulations as final state via an

initially slightly larger bud. The optimal bud radius from Eq.

�7� is approximately 37 nm.

Similarly, for the “very large inclusions” in Ref. �36� ��
=0.39�� we predict bud radii, 15 nm�R�20 nm, as ob-

served in the simulations; based on bending energy only we

find from Eq. �7� R
11 nm. For the “small inclusions” in

Ref. �36� ��=0.20�� that are already in the planar membrane

almost in the fluid phase, our model predicts for the 36 in-

clusions studied in the simulations a maximal gain for the

free energy per inclusion of 
1.5kBT for R=38 nm and a

strong decrease in this energy gain for smaller vesicle radii.

Already for R=34 nm and 29 inclusions, the energy per in-

clusion on the bud and in the plane are approximately equal.

Larger energy gains are possible for larger bud radii, for

which many more than the simulated 36 inclusions and a

larger area of the bilayer patch are needed. From these con-

siderations, it is not surprising that no budding is observed

for the small inclusions in the simulations of Ref. �36�.

VI. CONCLUSIONS

We have calculated the membrane-mediated interaction of

conical inclusions in a lipid bilayer and the inclusion entropy,

which allow the prediction of budding transitions and vesicu-

lation. Our model is based on the membrane bending energy;

with this contribution alone, the spontaneous curvature of a

bilayer with inclusions as well as budding can be predicted

for many systems, ranging from protein inclusions to viral

budding. Although the interaction between the inclusions by

membrane deformation is repulsive, the screening of the re-

pulsive interaction due to the average membrane curvature

allows higher inclusion densities on a bud than in the initial

vesicle. Translational entropy of the inclusions favors the

formation of equally sized daughter vesicles and lifts the

degeneracy that is found for states with vanishing bending

energy.

From our calculations, the following picture of the effect

of the bilayer deformation by curved inclusions emerges. For

low inclusion density, the membrane around each inclusion

assumes a catenoid shape of vanishing curvature energy. At

optimal inclusion density, the catenoids are closely packed

and the bending energy for the entire vesicle vanishes. For

high inclusion density, the boundary conditions for the mem-

brane deformation around the inclusion do not allow the for-

mation of catenoidal patches and the inclusions always feel

the membrane-mediated repulsive interaction with neighbor-

ing inclusions. In this regime, bud formation can occur.

If we assume a specific biological mechanism that leads

to formation of clusters with well-defined and limited size,

we find that such a mechanism can induce bud formation and

vesiculation without the need to insert additional conical pro-

teins into the cell membrane: cluster formation reduces the

preferred curvature radius of the membrane. We quantify the

effect of aggregation by the coagulation factor, which de-

scribes how the preferred curvature radius for a fixed amount

of inclusions changes with the cluster size.

In general, our analytical model is applicable for a wide

range of length scales and inclusion geometries. Computer

simulations are usually designed only for a specific length

scale, e.g., a length scale comparable to the length scale of

lipids in Ref. �36� or the length scale of entire vesicles in

Ref. �37�. The good agreement with the simulation results of

Refs. �36,37� suggests that the approximations used in our

calculations are justified.

We argue that the undulation-induced attraction can be

neglected compared with the deformation-induced repulsion

and the translational entropy of the inclusions for ��2

�15kBT / �2��, i.e., ��0.35 for �=20kBT. For example, the

BAR �Bin/amphiphysin/Rvs� domains induce a local mem-

brane curvature with an opening angle �
0.4 �4�. Clathrin

can induce a variety of opening angles �67,68�.
The number of the inclusions per bud is determined by the

budding process. Around a growing bud, a neck forms that

presents an energetic barrier for the diffusion of inclusions.

Because the deformation of the lipid membrane typically oc-

curs much faster than the diffusion of the inclusions within

the membrane, the number of inclusions per bud is well de-

termined by the initial inclusion density in the membrane.

From this, we can estimate a range of possible bud radii,

which agrees well with the simulations in Ref. �36�.
It would be interesting to test the validity of our model in

the limits of �a� very small inclusions, such as lipids with

large headgroups, when the description of the lipid mem-

brane by curvature elastic constants may not be appropriate

and �b� very floppy membranes, when neglecting the thermal

membrane undulations may not be justified.
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