
John von Neumann Institute for Computing

A Load Balanced Force-Domain Decomposition
Algorithm for Parallel Molecular Dynamics

Simulations

G. Sutmann, F. Janoschek

published in

From Computational Biophysics to Systems Biology (CBSB07),
Proceedings of the NIC Workshop 2007,
Ulrich H. E. Hansmann, Jan Meinke, Sandipan Mohanty,
Olav Zimmermann (Editors),
John von Neumann Institute for Computing, Jülich,
NIC Series, Vol. 36, ISBN 978-3-9810843-2-0, pp. 279-282, 2007.

c© 2007 by John von Neumann Institute for Computing
Permission to make digital or hard copies of portions of this work for
personal or classroom use is granted provided that the copies are not
made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise
requires prior specific permission by the publisher mentioned above.

http://www.fz-juelich.de/nic-series/volume36



A Load Balanced Force-Domain Decomposition Algorithm
for Parallel Molecular Dynamics Simulations

Godehard Sutmann1 and Florian Janoschek2

1 Central Institute for Applied Mathematics and
John von Neumann Institute for Computing,

Research Centre Jülich, 52425 Jülich, Germany
E-mail: g.sutmann@fz-juelich.de

2 Stuttgart University
Institute for Computational Physics, Pfaffenwaldring 27

D - 70569 Stuttgart, Germany

1 Introduction

Classical molecular dynamics simulations are often considered as themethod par excel-
lenceto be ported to parallel computers, promising a good scalingbehavior. On the one
hand parallel algorithms exist which enable good scaling1. On the other hand the complex-
ity of the problem at hand, often scales likeO(N), enabling a linear increase of problem
size with memory. However, this point of view applies only toa limited class of problems
which can be tackled by molecular dynamics. E.g. in the case of homogeneous periodic
systems, where particles interact via short range interactions, the most efficient algorithm
is a domain decomposition scheme, guaranteeing local communication between proces-
sors and therefore allowing good parallel scaling. In combination with linked-cell lists, the
problem scales likeO(N) both in computational complexity and memory demand, so that
an ideal behavior in both strong and weak scaling might be expected.

On the other hand, this ideal behavior breaks down if different problem classes are
considered, e.g. the case of long range interactions, wherenot only local communica-
tions between processors are required. Another class of counter examples is the case of
inhomogenous systems, which occur e.g. in open systems, where the particle density is
considerably larger in the center of the system than in the diffuse halo or e.g. in sys-
tems consisting of different thermodynamic phases as is thecase for the coexistence of
liquid/gas or solid/gas phases. In this case, domain decomposition algorithms often fail.
Due to a more or less regular geometric decompoition of space, processors are responsible
for different numbers of particles, often introducing a strong load-imbalance, which leads
to inefficient CPU usage on some processors and therefore to abad parallel scaling.

For these classes, other parallel decomposition schemes are often applied, like atom-
or force-decomposition schemes1. While the former one distributes equally particles onto
processors, the latter one decomposes the interaction matrix among processors. It is the
latter case which is considered in the present paper. This method also allows a geometric
approach which consists of equally partitioning of the force-matrixF ∈ R

3N×3N onto
processors. Taking into account Newton’s law of action and counteraction either the upper
triangular part ofF may be decomposed into equal areas2, or the whole matrix is decom-
posed3, 4, while assigning only a subset of interactions onto each PE,in order to fulfil the
skew symmetry of the interactions.

279



 0
 2000
 4000
 6000
 8000
 10000
 12000
 14000
 16000
 18000

 0
 10

 20
 30

 40
 50

 60
 70

 0
 10

 20
 30

 40
 50

 60
 70

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 0

 500

 1000

 1500

 2000

 2500

 0
 10

 20
 30

 40
 50

 60
 70

 0
 10

 20
 30

 40
 50

 60
 70

 0

 500

 1000

 1500

 2000

 2500

Figure 1. Communication patterns between processors for random distribution of particles (left) and sorted par-
ticles according to a space-filling Hilbert curve (right). Note the different magnitudes of data volume. Shown
is the case forP = 64. Left part of each figure shows the upper triangular part of the force matrix. Each row
corresponds to data stored on individual PEs.

In general there are two points in force decomposition methods, where communication
is required:

1. after propagating the particle position in the integration step, the position of particles
must be transferred to remote processors in order to calculate mutual interactions.

2. after calculating interactions, the partial forces, calculated on different processors act-
ing on a tagged particle must be collected onto the host processor of that particle, in
order to propagate its positions and momenta.

2 Method

2.1 Communication

Traditionally, coordinates and forces are transferred by all-to-all communication steps.
Positions are usually distributed by anmpi allgatherv command while forces are
summed up simply by anmpi allreduce procedure. This is certainly the most sim-
ple way to proceed. Since most MPI implementations internally make use of a tree-wise
communication protocol, the global communication will scale like O(log2(P )), if P is
the number of processors. However, for a big system and a large number of processors,
there will be a lot of redundant data transferred to processors. I.e. global communication
operations do not take into account whether transferred data are really needed on remote
processors. Therefore two alternative methods are considered here.

The first approach still gathers all position coordinates from remote PEs, in order to
calculate interactions with local particles. However, theforces are selected according to
whether they have been calculated or not. This avoids sending a lot of redundant infor-
mation across the network, although the communication protocoll gets a little bit more
involved. In the case of the upper triangular force matrix decomposition, forces must be
sent from local PEs to the ones with larger rank. In this caseP − ip − 1 communication
steps have to be performed, ifip is the rank of the local PE. In this case twompi gatherv
operations have to be performed: (i) to transfer the non-zero partial forces, (ii) to transfer
the particle indices, onto which forces act.

280



1 2 4 8 16 32 64 128 256
processors

1

2

4

8

16

32

64

128

256

sp
ee

du
p

ideal
R = 2

1/6σ
R = 4.6 σ

N = 10
5

Figure 2. Parallel speedup for the force-domain decomposition method for the case ofN = 105 particles and
two different cutoff radii for interparticle interactions.

The second approach is more involved. The basic principle isto combine a domain
decomposition with a force decomposition scheme. Domain decomposition is achieved
by sorting the particles according to their positions alonga space filling Hilbert curve.
This ensures that most particles which are local in space arealso local in memory. For
short range interactions this implies that most interaction partners are stored already on the
same PE. According to this organisation, the force matrix becomes dominant around the
diagonal and off-diagonal areas are sparse. The next step isto calculate interaction lists,
which are distributed onto all PEs. Indices of interaction partners are stored in Verlet lists,
which are valid for a number of time steps. Therefore, these lists only have to be created
and distributed from time to time (e.g. every 20 time steps5). According to these lists it
is known which particles from remote PEs are needed on local PEs. The same is true for
calculated partial forces. Since the amount of data is very small with respect to global
communications of positions and forces, the communicationoverhead of this method is
strongly reduced, enabling a very much better parallel scaling. Since randomisation of
particle positions occur on a diffusive time scale, the space filling curve has to be updated
only one or two orders of magnitude less than the interactionlists, thus introducing only a
small overhead.

2.2 Load-Balancing

Another contribution of the present paper is to combine the proposed methods with an effi-
cient load-balancing strategy. This is developed for the force-stripped row method, which
partitiones equal areas in the interaction matrix to different processors. For inhomogenous
systems, this approach becomes quite inefficient, since thenumber of interactions within
such areas may vary considerably. Therefore, two differentapproaches are discussed and
implemented here. The first consists in distributing the number of interactions equally
onto the pocessors. This may give good results for the case, where particles are located
randomly in memory. However, if a subset is random and another subset is ordered (as it
might occur for the case of a solid/liquid system) in memory,cache effects will destroy the

281



equal load on PEs. Therefore, a second approach consists in distributing the work, propor-
tional to the time which is spent on every PE. This strategy turns out to be most efficient,
leading to a very fast distribution of equal load between theprocessors.

3 Results

The above methods are tested for a simple system consisting of Lennard-Jones parti-
cles. Molecular dynamics simulations were carried out for systems withN = 105 par-
ticles. Fig. 1 shows the amount of data which has to be communicated between proces-
sors for the cases of traditional force-decomposition (FD)methods and the force-domain-
decomposition (FDD) technique, which uses the space fillingHilbert curve. In FD inter-
acting particles are randomly distributed in memory (at least for long simulations particles
get uncorrelated). Therefore, coordinates have to be sent from a processorpi to all other
processorspj < pi, while forces have to be redistributet in the opposite direction from
pj to all other processorspi > pj . Sorting reduces significantly the amount of data to be
sent. First of all the size of the data buffers become smaller, second the matrix becomes
sparse, i.e. a given processorpi does not send coordinates to all other processorspj < pi,
but only to those where these coordinates are really needed to compute interactions. Since
sorting concentrates interaction partners close to the diagonal, only small amounts of data
have to be sent to remote processors. Calculations were carried out for the FDD method,
considering a system ofN = 105 particles with different size of the interaction radius
Rc. For decreasingRc, the amount of data to be sent to remote PEs gets smaller. On the
other hand also the work performed on a single PE decreases, because of a smaller number
of interaction evaluations. Therefore, for smallRc communication becomes a bottleneck
for a large number of processors, because of the accumulation of latency. Therefore, the
speedup curve saturates for 128 processors. In the case of a larger cutoff (Rc = 4.6 σ)
the computation dominates communication and the program scales up to 128 processors.
Note, that for a global communication, like in traditional FD, communication would have
a significant larger contribution and the program would not scale as well as in the present
case.

References

1. S. Plimpton. Fast parallel algorithms for short range molecular dynamicsJ. Comp.
Phys., 117:1, 1995.

2. R. Murty and D. Okunbor. Efficient parallel algorithms formolecular dynamics
simulations.Parall. Comp., 25:217–230, 1999.

3. V. E. Taylor, R. L. Stevens, and K. E. Arnold. Parallel molecular dynamics: Commu-
nication requirements for parallel machines. InProc. of the fifth Symposium on the
Frontiers of Massively Parallel Computation, pages 156–163, 1994.

4. S. Plimpton and B. Hendrickson. A new parallel method for molecular dynamics
simulation of macromolecules.J. Comp. Chem., 17:326, 1996.

5. G. Sutmann and V. Stegailov. Optimization of neighbor list techniques for molecular
dynamics simulations.J. Mol. Liq., 125:197–203, 2006.

282


