000056982 001__ 56982
000056982 005__ 20240709094456.0
000056982 0247_ $$2DOI$$a10.1016/j.jnucmat.2007.01.146
000056982 0247_ $$2WOS$$aWOS:000247657200195
000056982 037__ $$aPreJuSER-56982
000056982 041__ $$aeng
000056982 082__ $$a530
000056982 084__ $$2WoS$$aMaterials Science, Multidisciplinary
000056982 084__ $$2WoS$$aNuclear Science & Technology
000056982 084__ $$2WoS$$aMining & Mineral Processing
000056982 1001_ $$0P:(DE-Juel1)VDB54478$$aUytdenhouwen, I.$$b0$$uFZJ
000056982 245__ $$aInfluence of Recrystallization on Thermal Shock Resistance of Various Tungsten Grades
000056982 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2007
000056982 300__ $$a1099 - 1103
000056982 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000056982 3367_ $$2DataCite$$aOutput Types/Journal article
000056982 3367_ $$00$$2EndNote$$aJournal Article
000056982 3367_ $$2BibTeX$$aARTICLE
000056982 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000056982 3367_ $$2DRIVER$$aarticle
000056982 440_0 $$03620$$aJournal of Nuclear Materials$$v363-365$$x0022-3115
000056982 500__ $$aRecord converted from VDB: 12.11.2012
000056982 520__ $$aThermal shock resistance of various tungsten grades (different manufacturing technologies and heat treatments) was examined under plasma disruption conditions, especially in the cracking regime, i.e. below the melting threshold. The tests have been simulated with the electron beam test facility JUDITH. The comparison of the thermal shock resistance showed that sintered tungsten appeared to be better than the deformed tungsten material and clear degradation after recrystallization was found. Damage processes linked to the mechanical properties of W are discussed. (c) 2007 Published by Elsevier B.V.
000056982 536__ $$0G:(DE-Juel1)FUEK403$$2G:(DE-HGF)$$aFusion$$cP13$$x0
000056982 588__ $$aDataset connected to Web of Science
000056982 650_7 $$2WoSType$$aJ
000056982 65320 $$2Author$$atungsten
000056982 65320 $$2Author$$adisruption
000056982 65320 $$2Author$$athermal shock
000056982 65320 $$2Author$$adivertor
000056982 65320 $$2Author$$aerosion
000056982 7001_ $$0P:(DE-HGF)0$$aDecreton, M.$$b1
000056982 7001_ $$0P:(DE-Juel1)VDB3733$$aHirai, T.$$b2$$uFZJ
000056982 7001_ $$0P:(DE-Juel1)VDB2728$$aLinke, J.$$b3$$uFZJ
000056982 7001_ $$0P:(DE-Juel1)VDB5612$$aPintsuk, G.$$b4$$uFZJ
000056982 7001_ $$0P:(DE-Juel1)130180$$aVan Oost, G.$$b5$$uFZJ
000056982 773__ $$0PERI:(DE-600)2001279-2$$a10.1016/j.jnucmat.2007.01.146$$gVol. 363-365, p. 1099 - 1103$$p1099 - 1103$$q363-365<1099 - 1103$$tJournal of nuclear materials$$v363-365$$x0022-3115$$y2007
000056982 8567_ $$uhttp://dx.doi.org/10.1016/j.jnucmat.2007.01.146
000056982 909CO $$ooai:juser.fz-juelich.de:56982$$pVDB
000056982 9131_ $$0G:(DE-Juel1)FUEK403$$bEnergie$$kP13$$lFusion$$vFusion$$x0
000056982 9141_ $$y2007
000056982 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000056982 9201_ $$0I:(DE-Juel1)VDB810$$d30.09.2010$$gIEF$$kIEF-2$$lWerkstoffstruktur und Eigenschaften$$x0
000056982 970__ $$aVDB:(DE-Juel1)89627
000056982 980__ $$aVDB
000056982 980__ $$aConvertedRecord
000056982 980__ $$ajournal
000056982 980__ $$aI:(DE-Juel1)IEK-2-20101013
000056982 980__ $$aUNRESTRICTED
000056982 981__ $$aI:(DE-Juel1)IMD-1-20101013
000056982 981__ $$aI:(DE-Juel1)IEK-2-20101013