001     57019
005     20180211175802.0
024 7 _ |2 DOI
|a 10.1137/050628301
024 7 _ |2 WOS
|a WOS:000243280600002
037 _ _ |a PreJuSER-57019
041 _ _ |a eng
082 _ _ |a 510
084 _ _ |2 WoS
|a Mathematics, Applied
100 1 _ |a Willems, P. R.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB68518
245 _ _ |a Computing the bidiagonal SVD using multiple relatively robust representations
260 _ _ |a Philadelphia, Pa.
|b Soc.
|c 2006
300 _ _ |a 907 - 926
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a SIAM Journal on Matrix Analysis and Applications
|x 0895-4798
|0 17201
|y 4
|v 28
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We describe the design and implementation of a new algorithm for computing the singular value decomposition (SVD) of a real bidiagonal matrix. This algorithm uses ideas developed by Grosser and Lang that extend Parlett's and Dhillon's multiple relatively robust representations (MRRR) algorithm for the tridiagonal symmetric eigenproblem. One key feature of our new implementation is that k singular triplets can be computed using only O(nk) storage units and floating point operations, where n is the dimension of the matrix. The algorithm will be made available as routine xBDSCR in the upcoming new release of the LAPACK library.
536 _ _ |a Scientific Computing
|c P41
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK411
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a bidiagonal singular value decomposition
653 2 0 |2 Author
|a tridiagonal symmetric eigenproblem
653 2 0 |2 Author
|a MRRR algorithm
653 2 0 |2 Author
|a coupling relations
653 2 0 |2 Author
|a LAPACK library
700 1 _ |a Lang, B.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Vömel, C.
|b 2
|0 P:(DE-HGF)0
773 _ _ |a 10.1137/050628301
|g Vol. 28, p. 907 - 926
|p 907 - 926
|q 28<907 - 926
|0 PERI:(DE-600)1468407-x
|t SIAM journal on matrix analysis and applications
|v 28
|y 2006
|x 0895-4798
856 7 _ |u http://dx.doi.org/10.1137/050628301
909 C O |o oai:juser.fz-juelich.de:57019
|p VDB
913 1 _ |k P41
|v Scientific Computing
|l Supercomputing
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK411
|x 0
914 1 _ |a Nachtrag
|y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k ZAM
|l Zentralinstitut für Angewandte Mathematik
|d 31.12.2007
|g ZAM
|0 I:(DE-Juel1)VDB62
|x 1
970 _ _ |a VDB:(DE-Juel1)89714
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)JSC-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21