001     57023
005     20240619092112.0
024 7 _ |2 DOI
|a 10.1016/j.physb.2006.05.290
024 7 _ |2 WOS
|a WOS:000243096400202
037 _ _ |a PreJuSER-57023
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |a Endo, H.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB4229
245 _ _ |a Study on multicomponent systems by means of contrast variation SANS
260 _ _ |a Amsterdam
|b North-Holland Physics Publ.
|c 2006
300 _ _ |a 682 - 684
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physica B: Condensed Matter
|x 0921-4526
|0 4907
|v 385-386
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Multicomponent systems are of great interest because of their rich variety (structures, interactions, complexities, etc.). Quantitative studies on multicomponent systems with scattering method, however, are quite tricky. Due to overlapping of the scattering signals from each component, the data analyses of scattering patterns from multicomponent systems are attended with much difficulty. We can overcome this problem with the aid of contrast variation. With neutrons as probe, hydrogen/deuterium replacement can be used to modify the "visibility" of different components in the system. Moreover, the fine application of the contrast variation may lead to decompose the scattering signals into partial scattering functions, which allows us to evaluate each component in detail. Especially, the cross-terms can be achieved by means of this technique, which directly reflect the interaction of the corresponding two components. In this manuscript, experimental procedure of the contrast variation small angle neutron scattering as well as a theoretical basis for understanding of the partial scattering functions (both self-terms and cross-terms) are briefly described. (c) 2006 Elsevier B.V. All rights reserved.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
536 _ _ |a Großgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)
|c P55
|0 G:(DE-Juel1)FUEK415
|x 1
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a contrast variation
653 2 0 |2 Author
|a SANS
653 2 0 |2 Author
|a multicomponent systems
773 _ _ |a 10.1016/j.physb.2006.05.290
|g Vol. 385-386, p. 682 - 684
|p 682 - 684
|q 385-386<682 - 684
|0 PERI:(DE-600)1466579-7
|t Physica / B
|v 385-386
|y 2006
|x 0921-4526
856 7 _ |u http://dx.doi.org/10.1016/j.physb.2006.05.290
909 C O |o oai:juser.fz-juelich.de:57023
|p VDB
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
913 1 _ |k P55
|v Großgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)
|l Großgeräteforschung mit Photonen, Neutronen und Ionen
|b Struktur der Materie
|0 G:(DE-Juel1)FUEK415
|x 1
914 1 _ |a Nachtrag
|y 2006
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IFF-INS
|l Neutronenstreuung
|d 31.12.2006
|g IFF
|0 I:(DE-Juel1)VDB341
|x 1
970 _ _ |a VDB:(DE-Juel1)89722
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-1-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-8-20200312
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106
981 _ _ |a I:(DE-Juel1)ICS-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21