000057068 001__ 57068
000057068 005__ 20240529111810.0
000057068 0247_ $$2DOI$$a10.1088/0022-3727/39/23/002
000057068 0247_ $$2WOS$$aWOS:000242650300003
000057068 037__ $$aPreJuSER-57068
000057068 041__ $$aeng
000057068 082__ $$a530
000057068 084__ $$2WoS$$aPhysics, Applied
000057068 1001_ $$0P:(DE-Juel1)144092$$aLi, H.$$b0$$uFZJ
000057068 245__ $$aUltrathin high anisotropic magnetoresistance Ni0.81Fe0.19 films
000057068 260__ $$aBristol$$bIOP Publ.$$c2006
000057068 300__ $$a4915 - 4919
000057068 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000057068 3367_ $$2DataCite$$aOutput Types/Journal article
000057068 3367_ $$00$$2EndNote$$aJournal Article
000057068 3367_ $$2BibTeX$$aARTICLE
000057068 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000057068 3367_ $$2DRIVER$$aarticle
000057068 440_0 $$03700$$aJournal of Physics D - Applied Physics$$v39$$x0022-3727
000057068 500__ $$aRecord converted from VDB: 12.11.2012
000057068 520__ $$aWe have fabricated an ultrathin high anisotropic magnetoresistance (AMR) Ni0.81Fe0.19 (10.0 nm) film grown on a (Ni0.81Fe0.19) Cr-0.63(0.37) (5.5 nm) underlayer with dc magnetron sputtering. The AMR value (Delta R/R) and the coercivity of the film attain 1.61(6)% and 178Am(-1) (i. e. 2.2 Oe), respectively. The Delta R/R of (Ni0.81Fe0.19)(0.63)Cr-0.37(5.5 nm)/ Ni0.81Fe0.19(10.0 nm) film has increased by similar to 34% over that of Ta(5.4 nm)/Ni0.81Fe0.19(10.0 nm) film (Delta R/R = 1.20(6)%) prepared using the same magnetron sputtering. The results of x-ray diffraction and atomic force microscopy show that the underlayer of (Ni0.81Fe0.19)(0.63)Cr-0.37 makes it easier to promote the formation of Ni0.81Fe0.19(111) texture and dramatically improves the crystalline grain size in the columnar direction and the average surface grain size of the Ni(0.81)Fe(0.19)film. The result of x-ray photoelectron spectroscopy shows that the (Ni0.81Fe0.19) Cr-0.63(0.37) underlayer, unlike the traditional Ta, does not react with the Ni0.81Fe0.19 film at the interface.
000057068 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000057068 536__ $$0G:(DE-Juel1)FUEK415$$aGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$cP55$$x1
000057068 588__ $$aDataset connected to Web of Science
000057068 650_7 $$2WoSType$$aJ
000057068 7001_ $$0P:(DE-HGF)0$$aYu, G.$$b1
000057068 7001_ $$0P:(DE-HGF)0$$aTeng, J.$$b2
000057068 7001_ $$0P:(DE-HGF)0$$aZhu, F.$$b3
000057068 773__ $$0PERI:(DE-600)1472948-9$$a10.1088/0022-3727/39/23/002$$gVol. 39, p. 4915 - 4919$$p4915 - 4919$$q39<4915 - 4919$$tJournal of physics / D$$v39$$x0022-3727$$y2006
000057068 8567_ $$uhttp://dx.doi.org/10.1088/0022-3727/39/23/002
000057068 909CO $$ooai:juser.fz-juelich.de:57068$$pVDB
000057068 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt   bis 2009
000057068 9131_ $$0G:(DE-Juel1)FUEK415$$bStruktur der Materie$$kP55$$lGroßgeräteforschung mit Photonen, Neutronen und Ionen$$vGroßgeräte für die Forschung mit Photonen, Neutronen und Ionen (PNI)$$x1
000057068 9141_ $$aNachtrag$$y2006
000057068 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000057068 9201_ $$0I:(DE-Juel1)VDB33$$d31.12.2003$$gIFF$$kIFF-STM$$lStreumethoden$$x1
000057068 970__ $$aVDB:(DE-Juel1)89780
000057068 980__ $$aVDB
000057068 980__ $$aConvertedRecord
000057068 980__ $$ajournal
000057068 980__ $$aI:(DE-Juel1)PGI-4-20110106
000057068 980__ $$aUNRESTRICTED
000057068 981__ $$aI:(DE-Juel1)JCNS-2-20110106
000057068 981__ $$aI:(DE-Juel1)PGI-4-20110106