001     57095
005     20200402210344.0
024 7 _ |2 pmid
|a pmid:17329123
024 7 _ |2 DOI
|a 10.1016/j.jsb.2006.11.010
024 7 _ |2 WOS
|a WOS:000246927800003
037 _ _ |a PreJuSER-57095
041 _ _ |a eng
082 _ _ |a 540
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
084 _ _ |2 WoS
|a Biophysics
084 _ _ |2 WoS
|a Cell Biology
100 1 _ |a Schaap, I.A.T.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Tau protein binding forms a 1 nm thick layer along protofilaments without affecting the radial elasticity of microtubules
260 _ _ |a San Diego, Calif.
|b Elsevier
|c 2007
300 _ _ |a 282 - 292
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Structural Biology
|x 1047-8477
|0 3814
|v 158
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Tau is one of the most abundant microtubule-associated proteins involved in kinetic stabilization and bundling of axonal microtubules. Although intense research has revealed much about tau function and its involvement in Alzheimer's disease during the past years, it still remains unclear how exactly tau binds on microtubules and if the kinetic stabilization of microtubules by tau is accompanied, at least in part, by a mechanical reinforcement of microtubules. In this paper, we have used atomic force microscopy to address both aspects by visualizing and mechanically analyzing microtubules in the presence of native tau isoforms. We could show that tau at saturating concentrations forms a 1 nm thick layer around the microtubule, but leaves the protofilament structure well visible. The latter observation argues for tau binding mainly along and not across the protofilaments. The radial elasticity of microtubules was almost unaffected by tau, consistent with tau binding along the tops of the protofilaments. Tau did increase the resistance of microtubules against rupture. Finite-element calculations confirmed our findings.
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Animals
650 _ 2 |2 MeSH
|a Elasticity
650 _ 2 |2 MeSH
|a Kinetics
650 _ 2 |2 MeSH
|a Microscopy, Atomic Force
650 _ 2 |2 MeSH
|a Microtubule-Associated Proteins: chemistry
650 _ 2 |2 MeSH
|a Microtubules: chemistry
650 _ 2 |2 MeSH
|a Protein Binding
650 _ 2 |2 MeSH
|a Protein Isoforms
650 _ 2 |2 MeSH
|a Swine: metabolism
650 _ 2 |2 MeSH
|a tau Proteins: chemistry
650 _ 7 |0 0
|2 NLM Chemicals
|a Microtubule-Associated Proteins
650 _ 7 |0 0
|2 NLM Chemicals
|a Protein Isoforms
650 _ 7 |0 0
|2 NLM Chemicals
|a tau Proteins
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a microtubule
653 2 0 |2 Author
|a tau protein
653 2 0 |2 Author
|a kinesin
653 2 0 |2 Author
|a atomic force microscopy
653 2 0 |2 Author
|a AFM
653 2 0 |2 Author
|a finite element modeling
653 2 0 |2 Author
|a FEM
700 1 _ |a Hoffmann, B.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB27696
700 1 _ |a Carrasco, C.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Merkel, R.
|b 3
|u FZJ
|0 P:(DE-Juel1)128833
700 1 _ |a Schmidt, C. F.
|b 4
|0 P:(DE-HGF)0
773 _ _ |a 10.1016/j.jsb.2006.11.010
|g Vol. 158, p. 282 - 292
|p 282 - 292
|q 158<282 - 292
|0 PERI:(DE-600)1469822-5
|t Journal of structural biology
|v 158
|y 2007
|x 1047-8477
856 7 _ |u http://dx.doi.org/10.1016/j.jsb.2006.11.010
909 C O |o oai:juser.fz-juelich.de:57095
|p VDB
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |k IBN-4
|l Biomechanik
|d 31.12.2010
|g IBN
|0 I:(DE-Juel1)VDB802
|x 0
970 _ _ |a VDB:(DE-Juel1)89823
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-7-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-2-20200312
981 _ _ |a I:(DE-Juel1)ICS-7-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21