000057121 001__ 57121
000057121 005__ 20230426083229.0
000057121 0247_ $$2DOI$$a10.1103/PhysRevB.74.134430
000057121 0247_ $$2WOS$$aWOS:000241723200081
000057121 0247_ $$2Handle$$a2128/7689
000057121 037__ $$aPreJuSER-57121
000057121 041__ $$aeng
000057121 082__ $$a530
000057121 084__ $$2WoS$$aPhysics, Condensed Matter
000057121 1001_ $$0P:(DE-Juel1)VDB54416$$aPerroni, C. A.$$b0$$uFZJ
000057121 245__ $$aMagnetization dynamics in dysprosium orthoferrites via the inverse Faraday effect
000057121 260__ $$aCollege Park, Md.$$bAPS$$c2006
000057121 300__ $$a134430
000057121 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000057121 3367_ $$2DataCite$$aOutput Types/Journal article
000057121 3367_ $$00$$2EndNote$$aJournal Article
000057121 3367_ $$2BibTeX$$aARTICLE
000057121 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000057121 3367_ $$2DRIVER$$aarticle
000057121 440_0 $$04919$$aPhysical Review B$$v74$$x1098-0121
000057121 500__ $$aRecord converted from VDB: 12.11.2012
000057121 520__ $$aThe ultrafast nonthermal control of magnetization has recently become feasible in canted antiferromagnets through photomagnetic instantaneous pulses [A. V. Kimel , Nature 435, 655 (2005)]. In this experiment, circularly polarized femtosecond laser pulses set up a strong magnetic field along the wave vector of the radiation through the inverse Faraday effect, thereby exciting nonthermally the spin dynamics of dysprosium orthoferrites. A theoretical study is performed by using a model for orthoferrites based on a general form of free energy whose parameters are extracted from experimental measurements. The magnetization dynamics is described by solving coupled sublattice Landau-Lifshitz-Gilbert equations whose damping term is associated with the scattering rate due to magnon-magnon interaction. Due to the inverse Faraday effect and the nonthermal excitation, the effect of the laser is simulated by magnetic-field Gaussian pulses with temporal width of the order of 100 fs. When the field is along the z axis, a single resonance mode of the magnetization is excited. The amplitude of the magnetization and out-of-phase behavior of the oscillations for fields in the z and -z directions are in good agreement with the cited experiment. The analysis of the effect of the temperature shows that the magnon-magnon scattering mechanism affects the decay of the oscillations on the picosecond scale. Finally, when the field pulse is along the x axis, another mode is excited, as observed in experiments. In this case, a comparison between theoretical and experimental results shows some discrepancies, the origin of which is related to the role played by anisotropies in orthoferrites.
000057121 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0
000057121 542__ $$2Crossref$$i2006-10-31$$uhttp://link.aps.org/licenses/aps-default-license
000057121 588__ $$aDataset connected to Web of Science
000057121 650_7 $$2WoSType$$aJ
000057121 7001_ $$0P:(DE-Juel1)VDB941$$aLiebsch, A.$$b1$$uFZJ
000057121 77318 $$2Crossref$$3journal-article$$a10.1103/physrevb.74.134430$$bAmerican Physical Society (APS)$$d2006-10-31$$n13$$p134430$$tPhysical Review B$$v74$$x1098-0121$$y2006
000057121 773__ $$0PERI:(DE-600)2844160-6$$a10.1103/PhysRevB.74.134430$$gVol. 74, p. 134430$$n13$$p134430$$q74<134430$$tPhysical review / B$$v74$$x1098-0121$$y2006
000057121 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevB.74.134430
000057121 8564_ $$uhttps://juser.fz-juelich.de/record/57121/files/FZJ-57121.pdf$$yOpenAccess$$zPublished final document.
000057121 8564_ $$uhttps://juser.fz-juelich.de/record/57121/files/FZJ-57121.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000057121 8564_ $$uhttps://juser.fz-juelich.de/record/57121/files/FZJ-57121.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000057121 8564_ $$uhttps://juser.fz-juelich.de/record/57121/files/FZJ-57121.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000057121 909CO $$ooai:juser.fz-juelich.de:57121$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000057121 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt bis 2009
000057121 9141_ $$aNachtrag$$y2006
000057121 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000057121 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000057121 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Ag
000057121 9201_ $$0I:(DE-Juel1)VDB30$$d31.12.2006$$gIFF$$kIFF-TH-I$$lTheorie I$$x1
000057121 970__ $$aVDB:(DE-Juel1)89867
000057121 980__ $$aVDB
000057121 980__ $$aConvertedRecord
000057121 980__ $$ajournal
000057121 980__ $$aI:(DE-Juel1)PGI-1-20110106
000057121 980__ $$aUNRESTRICTED
000057121 980__ $$aJUWEL
000057121 980__ $$aFullTexts
000057121 9801_ $$aFullTexts
000057121 981__ $$aI:(DE-Juel1)PGI-1-20110106
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.76.4250
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.78.4861
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.79.5146
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.85.844
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.85.3025
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.89.017401
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.93.197403
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature02659
000057121 999C5 $$1J. Hohlfeld$$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.65.012413$$p012413 -$$tPhys. Rev. B$$v65$$y2002
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature03564
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.15.190
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRev.143.574
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1709678
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.95.047402
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.73.014421
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.25.1822
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJ.57.4418
000057121 999C5 $$1G. F. Herrmann$$2Crossref$$9-- missing cx lookup --$$a10.1016/S0022-3697(63)80001-3$$p597 -$$tJ. Phys. Chem. Solids$$v24$$y1963
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1657530
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.89.287401
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.324577
000057121 999C5 $$1A. H. Morrish$$2Crossref$$oA. H. Morrish The Physical Principles of Magnetism 1965$$tThe Physical Principles of Magnetism$$y1965
000057121 999C5 $$1R. K. Nagle$$2Crossref$$oR. K. Nagle Fundamentals of Differential Equations 1989$$tFundamentals of Differential Equations$$y1989
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1658074
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1134/1.2142893
000057121 999C5 $$1A. K. Zvezdin$$2Crossref$$oA. K. Zvezdin 1985$$y1985
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.1799244
000057121 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0953-8984/18/31/002