000057124 001__ 57124
000057124 005__ 20240708132900.0
000057124 0247_ $$2WOS$$aWOS:000170962600026
000057124 037__ $$aPreJuSER-57124
000057124 041__ $$aeng
000057124 082__ $$a660
000057124 084__ $$2WoS$$aMaterials Science, Ceramics
000057124 1001_ $$0P:(DE-Juel1)VDB216$$aCao, X. Q.$$b0$$uFZJ
000057124 245__ $$aThermal stability of lanthanum zirconate plasma-sprayed coating
000057124 260__ $$aOxford [u.a.]$$bWiley-Blackwell$$c2001
000057124 300__ $$a2086 - 2090
000057124 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000057124 3367_ $$2DataCite$$aOutput Types/Journal article
000057124 3367_ $$00$$2EndNote$$aJournal Article
000057124 3367_ $$2BibTeX$$aARTICLE
000057124 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000057124 3367_ $$2DRIVER$$aarticle
000057124 440_0 $$03845$$aJournal of the American Ceramic Society$$v84$$x0002-7820$$y9
000057124 500__ $$aRecord converted from VDB: 12.11.2012
000057124 520__ $$aLanthanum zirconate (La2Zr2O7, LZ) is a newly proposed material for thermal barrier coatings (TBCs). The thermal stability of LZ coating was studied in this work by long-term annealing and thermal cycling. After long-term annealing at 1400 degreesC or thermal cycling, both LZ powder and plasma-sprayed coating still kept the pyrochlore structure, and a preferred crystal growth direction in the coating was observed by X-ray diffraction. A considerable amount of La2O3 in the powder was evaporated in the plasma flame, resulting in a nonstoichiometric coating. Additionally, compared with the standard TBC material yttria-stabilized zirconia (YSZ), LZ coating has a lower thermal expansion coefficient, which leads to higher stress levels in a TBC system.
000057124 536__ $$0G:(DE-Juel1)FUEK24$$2G:(DE-HGF)$$aWerkstoff- und Bauteilentwicklung für fortschrittliche Kraftwerke$$c11.30.0$$x0
000057124 588__ $$aDataset connected to Web of Science
000057124 650_7 $$2WoSType$$aJ
000057124 7001_ $$0P:(DE-Juel1)129670$$aVaßen, R.$$b1$$uFZJ
000057124 7001_ $$0P:(DE-Juel1)VDB710$$aJungen, W.$$b2$$uFZJ
000057124 7001_ $$0P:(DE-HGF)0$$aSchwartz, S.$$b3
000057124 7001_ $$0P:(DE-Juel1)129667$$aTietz, F.$$b4$$uFZJ
000057124 7001_ $$0P:(DE-Juel1)129666$$aStöver, D.$$b5$$uFZJ
000057124 773__ $$0PERI:(DE-600)2008170-4$$gVol. 84, p. 2086 - 2090$$p2086 - 2090$$q84<2086 - 2090$$tJournal of the American Ceramic Society$$v84$$x0002-7820$$y2001
000057124 909CO $$ooai:juser.fz-juelich.de:57124$$pVDB
000057124 9131_ $$0G:(DE-Juel1)FUEK24$$bEnergietechnik$$k11.30.0$$lWerkstoffe der Energietechnik$$vWerkstoff- und Bauteilentwicklung für fortschrittliche Kraftwerke$$x0
000057124 9141_ $$y2002
000057124 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000057124 9201_ $$0I:(DE-Juel1)VDB5$$d31.12.2006$$gIWV$$kIWV-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000057124 970__ $$aVDB:(DE-Juel1)8987
000057124 980__ $$aVDB
000057124 980__ $$aConvertedRecord
000057124 980__ $$ajournal
000057124 980__ $$aI:(DE-Juel1)IEK-1-20101013
000057124 980__ $$aUNRESTRICTED
000057124 981__ $$aI:(DE-Juel1)IMD-2-20101013
000057124 981__ $$aI:(DE-Juel1)IEK-1-20101013