000057132 001__ 57132
000057132 005__ 20200402210345.0
000057132 0247_ $$2pmid$$apmid:16624250
000057132 0247_ $$2DOI$$a10.1016/j.bbabio.2006.02.015
000057132 0247_ $$2WOS$$aWOS:000241481300005
000057132 037__ $$aPreJuSER-57132
000057132 041__ $$aeng
000057132 082__ $$a570
000057132 084__ $$2WoS$$aBiochemistry & Molecular Biology
000057132 084__ $$2WoS$$aBiophysics
000057132 1001_ $$0P:(DE-HGF)0$$aMulkidjanian, A. Y.$$b0
000057132 245__ $$aProtons @ interfaces: implications for biological energy conversion
000057132 260__ $$aAmsterdam$$bElsevier$$c2006
000057132 300__ $$a913 - 930
000057132 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000057132 3367_ $$2DataCite$$aOutput Types/Journal article
000057132 3367_ $$00$$2EndNote$$aJournal Article
000057132 3367_ $$2BibTeX$$aARTICLE
000057132 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000057132 3367_ $$2DRIVER$$aarticle
000057132 440_0 $$019422$$aBBA - Bioenergetics$$v1757$$x0005-2728$$y8
000057132 500__ $$aRecord converted from VDB: 12.11.2012
000057132 520__ $$aThe review focuses on the anisotropy of proton transfer at the surface of biological membranes. We consider (i) the data from "pulsed" experiments, where light-triggered enzymes capture or eject protons at the membrane surface, (ii) the electrostatic properties of water at charged interfaces, and (iii) the specific structural attributes of proton-translocating enzymes. The pulsed experiments revealed that proton exchange between the membrane surface and the bulk aqueous phase takes as much as about 1 ms, but could be accelerated by added mobile pH-buffers. Since the accelerating capacity of the latter decreased with the increase in their electric charge, it was concluded that the membrane surface is separated from the bulk aqueous phase by a barrier of electrostatic nature. The barrier could arise owing to the water polarization at the negatively charged membrane surface. The barrier height depends linearly on the charge of penetrating ions; for protons, it has been estimated as about 0.12 eV. While the proton exchange between the surface and the bulk aqueous phase is retarded by the interfacial barrier, the proton diffusion along the membrane, between neighboring enzymes, takes only microseconds. The proton spreading over the membrane is facilitated by the hydrogen-bonded networks at the surface. The membrane-buried layers of these networks can eventually serve as a storage/buffer for protons (proton sponges). As the proton equilibration between the surface and the bulk aqueous phase is slower than the lateral proton diffusion between the "sources" and "sinks", the proton activity at the membrane surface, as sensed by the energy transducing enzymes at steady state, might deviate from that measured in the adjoining water phase. This trait should increase the driving force for ATP synthesis, especially in the case of alkaliphilic bacteria.
000057132 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems$$cP33$$x0
000057132 588__ $$aDataset connected to Web of Science, Pubmed
000057132 650_2 $$2MeSH$$aBiological Transport
000057132 650_2 $$2MeSH$$aCations: chemistry
000057132 650_2 $$2MeSH$$aElectron Transport Complex IV: chemistry
000057132 650_2 $$2MeSH$$aEnergy Metabolism
000057132 650_2 $$2MeSH$$aKinetics
000057132 650_2 $$2MeSH$$aMembranes: physiology
000057132 650_2 $$2MeSH$$aModels, Biological
000057132 650_2 $$2MeSH$$aModels, Molecular
000057132 650_2 $$2MeSH$$aProtein Conformation
000057132 650_2 $$2MeSH$$aProtons
000057132 650_2 $$2MeSH$$aWater: chemistry
000057132 650_7 $$00$$2NLM Chemicals$$aCations
000057132 650_7 $$00$$2NLM Chemicals$$aProtons
000057132 650_7 $$07732-18-5$$2NLM Chemicals$$aWater
000057132 650_7 $$0EC 1.9.3.1$$2NLM Chemicals$$aElectron Transport Complex IV
000057132 650_7 $$2WoSType$$aJ
000057132 65320 $$2Author$$aGrotthus mechanism
000057132 65320 $$2Author$$aATP synthesis
000057132 65320 $$2Author$$aproton transfer
000057132 65320 $$2Author$$amembrane potential
000057132 65320 $$2Author$$achemiosmotic coupling
000057132 65320 $$2Author$$aalkaliphilic bacteria
000057132 65320 $$2Author$$asurface potential
000057132 65320 $$2Author$$anonlocal electrostatics
000057132 7001_ $$0P:(DE-Juel1)VDB572$$aHeberle, J.$$b1$$uFZJ
000057132 7001_ $$0P:(DE-HGF)0$$aCherepanov, D. A.$$b2
000057132 773__ $$0PERI:(DE-600)2209370-9$$a10.1016/j.bbabio.2006.02.015$$gVol. 1757, p. 913 - 930$$p913 - 930$$q1757<913 - 930$$tBiochimica et biophysica acta / Bioenergetics$$v1757$$x0005-2728$$y2006
000057132 8567_ $$uhttp://dx.doi.org/10.1016/j.bbabio.2006.02.015
000057132 909CO $$ooai:juser.fz-juelich.de:57132$$pVDB
000057132 9131_ $$0G:(DE-Juel1)FUEK409$$bGesundheit$$kP33$$lFunktion und Dysfunktion des Nervensystems$$vFunktion und Dysfunktion des Nervensystems$$x0
000057132 9141_ $$aNachtrag$$y2006
000057132 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000057132 9201_ $$0I:(DE-Juel1)VDB58$$d31.12.2006$$gIBI$$kIBI-2$$lBiologische Strukturforschung$$x1
000057132 970__ $$aVDB:(DE-Juel1)89877
000057132 980__ $$aVDB
000057132 980__ $$aConvertedRecord
000057132 980__ $$ajournal
000057132 980__ $$aI:(DE-Juel1)ISB-2-20090406
000057132 980__ $$aUNRESTRICTED
000057132 980__ $$aI:(DE-Juel1)ICS-6-20110106
000057132 981__ $$aI:(DE-Juel1)IBI-7-20200312
000057132 981__ $$aI:(DE-Juel1)ISB-2-20090406
000057132 981__ $$aI:(DE-Juel1)ICS-6-20110106