000057149 001__ 57149
000057149 005__ 20180211185506.0
000057149 0247_ $$2DOI$$a10.2136/vzj2006.0156
000057149 0247_ $$2WOS$$aWOS:000248503000005
000057149 037__ $$aPreJuSER-57149
000057149 041__ $$aeng
000057149 082__ $$a550
000057149 084__ $$2WoS$$aEnvironmental Sciences
000057149 084__ $$2WoS$$aSoil Science
000057149 084__ $$2WoS$$aWater Resources
000057149 1001_ $$0P:(DE-Juel1)129466$$aHardelauf, H.$$b0$$uFZJ
000057149 245__ $$aPARSWMS: A Parallelized Model for Simulating Three-Dimensional Water Flow and Solute Transport in Variably Saturated Soils
000057149 260__ $$aMadison, Wis.$$bSSSA$$c2007
000057149 300__ $$a255 - 259
000057149 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000057149 3367_ $$2DataCite$$aOutput Types/Journal article
000057149 3367_ $$00$$2EndNote$$aJournal Article
000057149 3367_ $$2BibTeX$$aARTICLE
000057149 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000057149 3367_ $$2DRIVER$$aarticle
000057149 440_0 $$010301$$aVadose Zone Journal$$v6$$x1539-1663
000057149 500__ $$aRecord converted from VDB: 12.11.2012
000057149 520__ $$aThree-dimensional vadose zone models are used more and more for solving hydrological problems on a broad range of scales with large amount of nodes. Currently, the problems we can solve in reasonable computational time may have up to 5 x 10(6) nodes. However, distributed models may need up to 10(10) nodes to properly predict. ow and transport at the watershed scale. The speed and efficiency of current flow and transport models therefore need to be improved. The parallelization of the code is one possible way to decrease the computational time by distributing a complex large geometry problem over multiple processors working in parallel. This is the solution we implemented by developing PARSWMS, a parallelized version of SWMS_3D (Simunek et al., 1995). The objective of this technical note is to describe the PARSWMS model, test its reliability, and show its performance and efficiency compared with single processor runs.
000057149 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000057149 588__ $$aDataset connected to Web of Science
000057149 650_7 $$2WoSType$$aJ
000057149 7001_ $$0P:(DE-Juel1)129477$$aJavaux, M.$$b1$$uFZJ
000057149 7001_ $$0P:(DE-Juel1)129469$$aHerbst, M.$$b2$$uFZJ
000057149 7001_ $$0P:(DE-Juel1)VDB57509$$aGottschalk, S.$$b3$$uFZJ
000057149 7001_ $$0P:(DE-Juel1)VDB724$$aKasteel, R.$$b4$$uFZJ
000057149 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, J.$$b5$$uFZJ
000057149 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b6$$uFZJ
000057149 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2006.0156$$gVol. 6, p. 255 - 259$$p255 - 259$$q6<255 - 259$$tVadose zone journal$$v6$$x1539-1663$$y2007
000057149 8567_ $$uhttp://dx.doi.org/10.2136/vzj2006.0156
000057149 909CO $$ooai:juser.fz-juelich.de:57149$$pVDB
000057149 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000057149 9141_ $$y2007
000057149 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000057149 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000057149 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x2
000057149 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x3
000057149 970__ $$aVDB:(DE-Juel1)89903
000057149 980__ $$aVDB
000057149 980__ $$aConvertedRecord
000057149 980__ $$ajournal
000057149 980__ $$aI:(DE-Juel1)IBG-3-20101118
000057149 980__ $$aI:(DE-82)080011_20140620
000057149 980__ $$aI:(DE-Juel1)VDB1045
000057149 980__ $$aUNRESTRICTED
000057149 981__ $$aI:(DE-Juel1)IBG-3-20101118
000057149 981__ $$aI:(DE-Juel1)VDB1045
000057149 981__ $$aI:(DE-Juel1)VDB1047