001     57149
005     20180211185506.0
024 7 _ |2 DOI
|a 10.2136/vzj2006.0156
024 7 _ |2 WOS
|a WOS:000248503000005
037 _ _ |a PreJuSER-57149
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Environmental Sciences
084 _ _ |2 WoS
|a Soil Science
084 _ _ |2 WoS
|a Water Resources
100 1 _ |a Hardelauf, H.
|b 0
|u FZJ
|0 P:(DE-Juel1)129466
245 _ _ |a PARSWMS: A Parallelized Model for Simulating Three-Dimensional Water Flow and Solute Transport in Variably Saturated Soils
260 _ _ |a Madison, Wis.
|b SSSA
|c 2007
300 _ _ |a 255 - 259
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Vadose Zone Journal
|x 1539-1663
|0 10301
|v 6
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Three-dimensional vadose zone models are used more and more for solving hydrological problems on a broad range of scales with large amount of nodes. Currently, the problems we can solve in reasonable computational time may have up to 5 x 10(6) nodes. However, distributed models may need up to 10(10) nodes to properly predict. ow and transport at the watershed scale. The speed and efficiency of current flow and transport models therefore need to be improved. The parallelization of the code is one possible way to decrease the computational time by distributing a complex large geometry problem over multiple processors working in parallel. This is the solution we implemented by developing PARSWMS, a parallelized version of SWMS_3D (Simunek et al., 1995). The objective of this technical note is to describe the PARSWMS model, test its reliability, and show its performance and efficiency compared with single processor runs.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Javaux, M.
|b 1
|u FZJ
|0 P:(DE-Juel1)129477
700 1 _ |a Herbst, M.
|b 2
|u FZJ
|0 P:(DE-Juel1)129469
700 1 _ |a Gottschalk, S.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB57509
700 1 _ |a Kasteel, R.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB724
700 1 _ |a Vanderborght, J.
|b 5
|u FZJ
|0 P:(DE-Juel1)129548
700 1 _ |a Vereecken, H.
|b 6
|u FZJ
|0 P:(DE-Juel1)129549
773 _ _ |a 10.2136/vzj2006.0156
|g Vol. 6, p. 255 - 259
|p 255 - 259
|q 6<255 - 259
|0 PERI:(DE-600)2088189-7
|t Vadose zone journal
|v 6
|y 2007
|x 1539-1663
856 7 _ |u http://dx.doi.org/10.2136/vzj2006.0156
909 C O |o oai:juser.fz-juelich.de:57149
|p VDB
913 1 _ |k P24
|v Terrestrische Umwelt
|l Terrestrische Umwelt
|b Erde und Umwelt
|0 G:(DE-Juel1)FUEK407
|x 0
914 1 _ |y 2007
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |d 31.10.2010
|g ICG
|k ICG-4
|l Agrosphäre
|0 I:(DE-Juel1)VDB793
|x 1
920 1 _ |0 I:(DE-82)080011_20140620
|k JARA-ENERGY
|l Jülich-Aachen Research Alliance - Energy
|g JARA
|x 2
920 1 _ |0 I:(DE-Juel1)VDB1045
|k JARA-SIM
|l Jülich-Aachen Research Alliance - Simulation Sciences
|g JARA
|x 3
970 _ _ |a VDB:(DE-Juel1)89903
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-82)080011_20140620
980 _ _ |a I:(DE-Juel1)VDB1045
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBG-3-20101118
981 _ _ |a I:(DE-Juel1)VDB1045
981 _ _ |a I:(DE-Juel1)VDB1047


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21