000057153 001__ 57153
000057153 005__ 20200423204450.0
000057153 0247_ $$2DOI$$a10.1029/2006WR005333
000057153 0247_ $$2WOS$$aWOS:000246147700002
000057153 0247_ $$2Handle$$a2128/19879
000057153 037__ $$aPreJuSER-57153
000057153 041__ $$aeng
000057153 082__ $$a550
000057153 084__ $$2WoS$$aEnvironmental Sciences
000057153 084__ $$2WoS$$aLimnology
000057153 084__ $$2WoS$$aWater Resources
000057153 1001_ $$0P:(DE-HGF)0$$aLi, W.$$b0
000057153 245__ $$aTwo-dimensional characterization of hydraulic heterogeneity by multiple pumping tests
000057153 260__ $$aWashington, DC$$bAGU$$c2007
000057153 300__ $$aWO04433
000057153 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000057153 3367_ $$2DataCite$$aOutput Types/Journal article
000057153 3367_ $$00$$2EndNote$$aJournal Article
000057153 3367_ $$2BibTeX$$aARTICLE
000057153 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000057153 3367_ $$2DRIVER$$aarticle
000057153 440_0 $$05958$$aWater Resources Research$$v43$$x0043-1397$$y4
000057153 500__ $$aRecord converted from VDB: 12.11.2012
000057153 520__ $$a[1] The conventional analysis of pumping tests by type-curve methods is based on the assumption of a homogeneous aquifer. Applying these techniques to pumping test data from real heterogeneous aquifers leads to estimates of the hydraulic parameters that depend on the choice of the pumping and observation well positions. In this paper, we test whether these values may be viewed as pseudo-local values of transmissivity and storativity, which can be interpolated by kriging. We compare such estimates to those obtained by geostatistical inverse modeling, where heterogeneity is assumed in all stages of estimation. We use drawdown data from multiple pumping tests conducted at the test site in Krauthausen, Germany. The geometric mean values of transmissivity and storativity determined by type-curve analysis are very close to those obtained by geostatistical inversion, but the conventional approach failed to resolve the spatial variability of transmissivity. In contrast, the estimate from geostatistical inversion reveals more structure. This indicates that the estimates of the type-curve approaches can not be treated as pseudo-local values. Concerning storativity, both analysis methods show strong fluctuations. Because the variability of all terms making up the storativity is small, we believe that the estimated variability of storativity is biased. We examine the influence of measurement error on estimating structural parameters of covariance functions in the inversion. We obtain larger correlation lengths and smaller prior variances if we trust the measured data less.
000057153 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000057153 588__ $$aDataset connected to Web of Science
000057153 650_7 $$2WoSType$$aJ
000057153 7001_ $$0P:(DE-Juel1)VDB359$$aEnglert, A.$$b1$$uFZJ
000057153 7001_ $$0P:(DE-HGF)0$$aCirpka, O.A.$$b2
000057153 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, J.$$b3$$uFZJ
000057153 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b4$$uFZJ
000057153 773__ $$0PERI:(DE-600)2029553-4$$a10.1029/2006WR005333$$gVol. 43, p. WO04433$$pWO04433$$q43<WO04433$$tWater resources research$$v43$$x0043-1397$$y2007
000057153 8567_ $$uhttp://dx.doi.org/10.1029/2006WR005333.
000057153 8564_ $$uhttps://juser.fz-juelich.de/record/57153/files/Li_et_al-2007-Water_Resources_Research.pdf$$yOpenAccess
000057153 8564_ $$uhttps://juser.fz-juelich.de/record/57153/files/Li_et_al-2007-Water_Resources_Research.gif?subformat=icon$$xicon$$yOpenAccess
000057153 8564_ $$uhttps://juser.fz-juelich.de/record/57153/files/Li_et_al-2007-Water_Resources_Research.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000057153 8564_ $$uhttps://juser.fz-juelich.de/record/57153/files/Li_et_al-2007-Water_Resources_Research.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000057153 8564_ $$uhttps://juser.fz-juelich.de/record/57153/files/Li_et_al-2007-Water_Resources_Research.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000057153 909CO $$ooai:juser.fz-juelich.de:57153$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000057153 9141_ $$y2007
000057153 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000057153 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000057153 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000057153 9131_ $$0G:(DE-Juel1)FUEK407$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000057153 9201_ $$0I:(DE-Juel1)VDB793$$d31.10.2010$$gICG$$kICG-4$$lAgrosphäre$$x1
000057153 9201_ $$0I:(DE-82)080011_20140620$$gJARA$$kJARA-ENERGY$$lJülich-Aachen Research Alliance - Energy$$x2
000057153 9201_ $$0I:(DE-Juel1)VDB1045$$gJARA$$kJARA-SIM$$lJülich-Aachen Research Alliance - Simulation Sciences$$x3
000057153 970__ $$aVDB:(DE-Juel1)89907
000057153 980__ $$aVDB
000057153 980__ $$aConvertedRecord
000057153 980__ $$ajournal
000057153 980__ $$aI:(DE-Juel1)IBG-3-20101118
000057153 980__ $$aI:(DE-82)080011_20140620
000057153 980__ $$aI:(DE-Juel1)VDB1045
000057153 980__ $$aUNRESTRICTED
000057153 9801_ $$aFullTexts
000057153 981__ $$aI:(DE-Juel1)IBG-3-20101118
000057153 981__ $$aI:(DE-Juel1)VDB1045
000057153 981__ $$aI:(DE-Juel1)VDB1047